
Approximation Algorithms Introduction

Learning Goals

De�ne approximation algorithms and their approximation ratios

Understand the 2-approximation for Vertex Cover

De�ne makespan

Analyze the 2-approximation algorithm for Load Balancing

Analyze the 1.5-approximation algorithm for Load Balancing

Design simple greedy approximation algorithms
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Approximation Algorithms Introduction

Ways to deal with NP-hard problems

Relatively fast exponential-time algorithms

Typically with a running time that has an exponential dependence on
some parameter of the problem
Practical when this parameter is small.

Known as �xed-parmameter tractable algorithms (Chapter 10)

Poly-time algorithms for NP-hard problems in special cases

In general we cannot hope to get optimal solutions in practically

acceptable time, and have to run heuristic algorithms.
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Approximation Algorithms Introduction

Motivating Approximation Algorithms

How do we justify heuristic algorithms? How do we compare one

heuristic with another?

A worst-case analysis framework: show that an algorithm's output on

any instance is not far from the optimal.

How do we measure how much worse an output is compared with an
optimal solution?

Multiplicative ratio between the objectives
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Approximation Algorithms Introduction

De�nition of Approximation Algorithms

De�nition

For a maximization problem Q that asks to maximize the value of an

objective, an algorithm A is said to be an α-approximation algorithm if, on

any instance of Q, we have α · ALG ≥ OPT, where ALG is the objective

value of A's output (on this instance), and OPT the objective value of an

optimal solution.

In this de�nition, α ≥ 1 is called the approximation ratio of A.
We also say that algorithm A α-approximates the objective.
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Approximation Algorithms Introduction

Simple Example 1: Independent Set

Example (Independent Set)

Input: Given an undirected simple graph G = (V ,E ).
Output: The size of an independent set of maximum cardinality.

Algorithm: Pick an arbitrary node. This singleton set is an

n-approximation.

(Asymptotically this is in fact the best possible unless P = NP. Showing

this is way beyond the scope of this class.)
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Simple Example 2: Vertex Cover

Example

Input: An undirected simple graph G = (V ,E ).
Output: The size of a vertex cover of minimum cardinality.

Algorithm: Initialize S = ∅. Pick an arbitrary edge and add both its

endpoints to the cover. Then remove from the graph the two vertices and

all edges incident to either. Repeat until there is no edge left. Return |S |.

Claim

This algorithm gives a 2-approximation for Vertex Cover.
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Proof of Vertex Cover 2-Approximation

Claim

This algorithm gives a 2-approximation for Vertex Cover.

Proof.

By the end of the algorithm, S is a vertex cover, because every edge in G
was removed because it is incident to some node in S .

The set of |S|
2

edges picked by the algorithm is a matching. Therefore any

vertex cover has size at least |S |
2
.

Formally, OPT ≥ |S|
2
⇒ |S | ≤ 2OPT.
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Approximation Algorithms Introduction

Serious example: Load balancing

We have m machines and n tasks. Each task has a processing time tj .
We need to assign tasks to machines. The machines work in parallel.

The makespan is the amount of time that elapses from the start of

work to the end, i.e. till all machines �nish the jobs assigned to them.

Formally, let Si be the set of jobs assigned to machine i , then the

makespan is maxi
∑

j∈Si tj .

We need to assign jobs to the machines to minimize the makespan.

The problem is NP-hard. (Reduction?)

Number Partition can be solved by an oracle that solves the two
machine case.
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Approximation Algorithms Introduction

Greedy algorithm

A natural algorithm: consider the jobs one by one in an arbitrary order.

For task j , if jobs assigned to machine i take least time to process,

assign task j to machine i .

Running time obviously polynomial.

Theorem

The above greey algorithm gives a 2-approximation to the makespan.
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Proof Strategy (for all approximation algorithms)

General proof strategy:

In order to compare with the optimal, we need to know something

about the optimal solution.

For NP-hard problems, we in general don't have a clean

characterization of the optimal solution.

But we can bound the optimal, either using given information or using

steps from the algorithm.
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Proof for the Greedy Algorithm

We need to lower bound OPT, the optimal makespan:

Proposition (Makespan no less than longest job)

OPT ≥ maxj tj .

Proposition (Makespan no less than average lengths)

For any subset S of jobs, OPT ≥ 1

m

∑
j∈S tj .
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Putting things together

Let Si be the set of tasks assigned to machine i by our algorithm.

If |Si | = 1, its execution time is no more than OPT by Proposition 1.

If |Si | ≥ 2, suppose the last job added in is j :

tj ≤ OPT by Proposition 2.∑
k∈Si−{j} tk was the smallest when task j was added.

Then
∑

k∈Si−{j} tk was no more than the �machine average� over the
jobs that have been assigned when the algorithm considered task j .
Hence

∑
k∈Si−{j} tk ≤ OPT.

Therefore
∑

k∈Si tk ≤ 2OPT for all i .
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Tightness of the analysis

The above analysis is tight. Intuitively, a good algorithm should be holistic,

i.e., should consider the weights of all jobs before making individual

decisions.

For two machines, if the jobs have weight 1

2
, 1
2
, 1, then the optimal

makespan is 1 but the algorithm's makespan is 3

2
.

For any number of machines m > 0, if we have m(m − 1) jobs with
weight 1, and one with weight m, which is considered the last.

The algorithm's makespan is m − 1+m = 2m − 1.
The optimal has makespan m.
Hence approximation ratio is no better than 2− 1

m → 2(m→∞).
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Improving the Greedy Algorithm

In the tight example, the greedy algorithm did badly because it

doesn't foresee a large task coming at last.

This motivates considering larger jobs �rst: run the greedy algorithm

just as before, but consider the tasks in decreasing lengths.

Theorem

The improved greedy algorithm 3

2
-approximates the makespan.
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Theorem

The improved greedy algorithm 3

2
-approximates the makespan.

Proof.

Proof: Have a tighter bound on OPT: say t1 ≥ t2 ≥ . . . ≥ tn, then
OPT ≥ 2tm+1.

If machine i �nishes the last in the algorithm's solution:

If i has only one job, then the makespan is equal to optimal.

If i has at least two jobs, the last job has an index at least m + 1.

Therefore its weight is at most 1

2
OPT. (Previously we bounded this is

using OPT.)

The rest of the jobs can be bounded the same as before.

Putting things together, the makespan is at most 3

2
OPT.
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