Learning Goal

- Reduction from Baseball Elimination to max flow
- Interpreting min cuts in Baseball Elimination

Motivating Problem

- There is a set S of baseball teams
- Each team $x \in S$ has won w_{x} games in the past;

Motivating Problem

- There is a set S of baseball teams
- Each team $x \in S$ has won w_{x} games in the past;
- Between each pair of teams x and y, there are still $g_{x y}$ games to be played; ($g_{x y}$ may be 0)

Motivating Problem

- There is a set S of baseball teams
- Each team $x \in S$ has won w_{x} games in the past;
- Between each pair of teams x and y, there are still $g_{x y}$ games to be played; ($g_{x y}$ may be 0)
- Question: is it still possible for a particular team z to be a champion, i.e., its number of games won is the highest (allowing ties) after all games are played?

An example

- Obvious first step: for best case scenario, suppose team z wins all future games.

An example

- Obvious first step: for best case scenario, suppose team z wins all future games.
- Example:
- Past games won:

New York: 92; Baltimore: 91; Toronto: 91; Boston: 90.

- One game left between every two teams except between New York and Boston.

An example

- Obvious first step: for best case scenario, suppose team z wins all future games.
- Example:
- Past games won:

New York: 92; Baltimore: 91; Toronto: 91; Boston: 90.

- One game left between every two teams except between New York and Boston.
- Consider $z=$ Boston. In best case scenario, Boston wins both games left, totaling 92 wins.

An example

- Obvious first step: for best case scenario, suppose team z wins all future games.
- Example:
- Past games won:

New York: 92; Baltimore: 91; Toronto: 91; Boston: 90.

- One game left between every two teams except between New York and Boston.
- Consider $z=$ Boston. In best case scenario, Boston wins both games left, totaling 92 wins.
- In order for Boston to be the highest, New York must lose both games, which means Baltimore and Toronto are both at 92 wins before counting the game between them;

An example

- Obvious first step: for best case scenario, suppose team z wins all future games.
- Example:
- Past games won:

New York: 92; Baltimore: 91; Toronto: 91; Boston: 90.

- One game left between every two teams except between New York and Boston.
- Consider $z=$ Boston. In best case scenario, Boston wins both games left, totaling 92 wins.
- In order for Boston to be the highest, New York must lose both games, which means Baltimore and Toronto are both at 92 wins before counting the game between them;
- But then counting the game between Baltimore and Toronto, one of them has 93 wins. Therefore Boston already cannot be a champion.

Connection to Flows

- Assume z wins all future games, totaling m wins, the remaining question is whether the remaining games can be played so that all other teams have $\leq m$ wins.

Connection to Flows

- Assume z wins all future games, totaling m wins, the remaining question is whether the remaining games can be played so that all other teams have $\leq m$ wins.
- Key idea:
- Deciding the outcome of a game is like allocating a resource between the two teams involved;
- Each team having no more than m wins is like an upper bound on its total allocation.

Construction of the flow network: Step 1

Allocating $g_{x y}$ resources (wins) between team x and y.

Construction of the flow network: Step 2

Allocating wins between every pair of teams.

Construction of the flow network: Step 3

Capping the total wins allocated to each team.

Reduction to Max Flow

- Construct flow network G :
- Add source s and sink t;
- for each pair of teams $x, y \neq z$, create node $u_{x y}$;
- for each team $x \neq z$ create node v_{x};

Reduction to Max Flow

- Construct flow network G :
- Add source s and sink t;
- for each pair of teams $x, y \neq z$, create node $u_{x y}$;
- for each team $x \neq z$ create node v_{x};
- For each $u_{x y}$, add edge from s to $u_{x y}$ with capacity $g_{x y}$;

Reduction to Max Flow

- Construct flow network G :
- Add source s and sink t;
- for each pair of teams $x, y \neq z$, create node $u_{x y}$;
- for each team $x \neq z$ create node v_{x};
- For each $u_{x y}$, add edge from s to $u_{x y}$ with capacity $g_{x y}$;
- For each v_{x}, add edge from v_{x} to t with capacity $m-w_{x}$;

Reduction to Max Flow

- Construct flow network G :
- Add source s and sink t;
- for each pair of teams $x, y \neq z$, create node $u_{x y}$;
- for each team $x \neq z$ create node v_{x};
- For each $u_{x y}$, add edge from s to $u_{x y}$ with capacity $g_{x y}$;
- For each v_{x}, add edge from v_{x} to t with capacity $m-w_{x}$;
- For each $u_{x y}$, add edges from $u_{x y}$ to v_{x} and v_{y}, with infinite capacity.

Claim

Team z can be a champion if and only if G has a flow that saturates all edges from s.

Reduction to Max Flow

- Construct flow network G :
- Add source s and sink t;
- for each pair of teams $x, y \neq z$, create node $u_{x y}$;
- for each team $x \neq z$ create node v_{x};
- For each $u_{x y}$, add edge from s to $u_{x y}$ with capacity $g_{x y}$;
- For each v_{x}, add edge from v_{x} to t with capacity $m-w_{x}$;
- For each $u_{x y}$, add edges from $u_{x y}$ to v_{x} and v_{y}, with infinite capacity.

Claim

Team z can be a champion if and only if G has a flow that saturates all edges from s.

Proof.

(1) Any scenario with z as a champion corresponds to such a flow;
(2) Any such flow corresponds to a scenario with z as a champion.

Interpreting Consequences of Max Flow Min Cut

- Corollary of Max Flow Min Cut Theorem: A max flow saturates edges from s if and only if the cut with $\{s\}$ on one side is a min cut in G.

Interpreting Consequences of Max Flow Min Cut

- Corollary of Max Flow Min Cut Theorem: A max flow saturates edges from s if and only if the cut with $\{s\}$ on one side is a min cut in G.
- What happens when z is eliminated? There must be a cut with capacity $<\sum_{\{x, y\}} g_{x y}$.

Interpreting Consequences of Max Flow Min Cut

- Corollary of Max Flow Min Cut Theorem: A max flow saturates edges from s if and only if the cut with $\{s\}$ on one side is a min cut in G.
- What happens when z is eliminated? There must be a cut with capacity $<\sum_{\{x, y\}} g_{x y}$.
- What is the capacity of such an s-t cut (A, B) ?

Illustration of a cut

Capacity of the cut: $g_{x u}+g_{y u}+\left(m-w_{x}\right)+\left(m-w_{y}\right)$.

Characterizing min cuts

- Consider any s-t cut (A, B) of G.
- Let U be the set of nodes for games, and V the set of nodes for teams.

Characterizing min cuts

- Consider any s-t cut (A, B) of G.
- Let U be the set of nodes for games, and V the set of nodes for teams.
- Let T be the set of teams on the side of the sink in the cut. When can (A, B) be possibly a min cut?

Characterizing min cuts

- Consider any s-t cut (A, B) of G.
- Let U be the set of nodes for games, and V the set of nodes for teams.
- Let T be the set of teams on the side of the sink in the cut. When can (A, B) be possibly a min cut?
(1) If any game that involves a team in T is not also in $B, c(A, B)=\infty$.

Characterizing min cuts

- Consider any s-t cut (A, B) of G.
- Let U be the set of nodes for games, and V the set of nodes for teams.
- Let T be the set of teams on the side of the sink in the cut. When can (A, B) be possibly a min cut?
(1) If any game that involves a team in T is not also in $B, c(A, B)=\infty$.
(2) If a game that doesn't involve any team in T is in B, moving it to A reduces the cut's capacity.

Characterizing min cuts

- Consider any s-t cut (A, B) of G.
- Let U be the set of nodes for games, and V the set of nodes for teams.
- Let T be the set of teams on the side of the sink in the cut. When can (A, B) be possibly a min cut?
(1) If any game that involves a team in T is not also in $B, c(A, B)=\infty$.
(2) If a game that doesn't involve any team in T is in B, moving it to A reduces the cut's capacity.
- Therefore, fixing T, it minimizes the cut's capacity to let $B \cap U$ be the set of games involving any team in T.

Interpreting min cuts

- The capacity of such a cut (A, B) is

$$
c(A, B)=\sum_{x \notin T}\left(m-w_{x}\right)+\sum_{\{x, y\} \nsubseteq S \backslash T} g_{x y} .
$$

Interpreting min cuts

- The capacity of such a cut (A, B) is

$$
c(A, B)=\sum_{x \notin T}\left(m-w_{x}\right)+\sum_{\{x, y\} \nsubseteq S \backslash T} g_{x y} .
$$

- By the previous discussion, there exists an s-t cut (A, B) with $c(A, B)<\sum_{\{x, y\}} g_{x y}$.

Interpreting min cuts

- The capacity of such a cut (A, B) is

$$
c(A, B)=\sum_{x \notin T}\left(m-w_{x}\right)+\sum_{\{x, y\} \nsubseteq S \backslash T} g_{x y} .
$$

- By the previous discussion, there exists an s-t cut (A, B) with $c(A, B)<\sum_{\{x, y\}} g_{x y}$.
- Hence there exists a set of teams T with

$$
\sum_{x \notin T}\left(m-w_{x}\right)+\sum_{\{x, y\} \nsubseteq S \backslash T} g_{x y}<\sum_{\{x, y\}} g_{x y} .
$$

Interpreting min cuts

- The capacity of such a cut (A, B) is

$$
c(A, B)=\sum_{x \notin T}\left(m-w_{x}\right)+\sum_{\{x, y\} \nsubseteq S \backslash T} g_{x y} .
$$

- By the previous discussion, there exists an s-t cut (A, B) with $c(A, B)<\sum_{\{x, y\}} g_{x y}$.
- Hence there exists a set of teams T with

$$
\begin{aligned}
& \sum_{x \notin T}\left(m-w_{x}\right)+\sum_{\{x, y\} \nsubseteq S \backslash T} g_{x y}<\sum_{\{x, y\}} g_{x y} . \\
\Rightarrow & \sum_{\{x, y\} \subseteq S \backslash T} g_{x y}>\sum_{x \in S \backslash T}\left(m-w_{x}\right) .
\end{aligned}
$$

Interpreting min cuts

- The capacity of such a cut (A, B) is

$$
c(A, B)=\sum_{x \notin T}\left(m-w_{x}\right)+\sum_{\{x, y\} \nsubseteq S \backslash T} g_{x y} .
$$

- By the previous discussion, there exists an s-t cut (A, B) with $c(A, B)<\sum_{\{x, y\}} g_{x y}$.
- Hence there exists a set of teams T with

$$
\begin{aligned}
& \sum_{x \notin T}\left(m-w_{x}\right)+\sum_{\{x, y\} \nsubseteq S \backslash T} g_{x y}<\sum_{\{x, y\}} g_{x y} . \\
\Rightarrow & \sum_{\{x, y\} \subseteq S \backslash T} g_{x y}>\sum_{x \in S \backslash T}\left(m-w_{x}\right) .
\end{aligned}
$$

- The total number of games among teams in $S \backslash T$ exceeds the sum of upper bound of games each of them can win in order not to beat team z.

