Learning Goals

- Minimum-cost Path problem with general edge costs
- Bellman-Ford algorithm
- Running time of Bellman-Ford algorithm
- Polynomial-time algorithm to detect a negative cycle

Finding minimum-cost paths in a graph

- Input: a directed graph $G=(V, E)$, with cost $c_{e} \in \mathbb{R}$ for each edge $e \in E$. A node $s \in V$.
- Output: If a negative cycle exists, report so. If not, for each node $v \in V$, a minimum-cost path from s to v, and its cost.

Finding minimum-cost paths in a graph

- Input: a directed graph $G=(V, E)$, with $\operatorname{cost} c_{e} \in \mathbb{R}$ for each edge $e \in E$. A node $s \in V$.
- Output: If a negative cycle exists, report so. If not, for each node $v \in V$, a minimum-cost path from s to v, and its cost.
- The two cases (with negative cycle or not) needs to be separate
- With a negative cycle, minimum-cost paths are generally not defined.

Finding minimum-cost paths in a graph

- Input: a directed graph $G=(V, E)$, with cost $c_{e} \in \mathbb{R}$ for each edge $e \in E$. A node $s \in V$.
- Output: If a negative cycle exists, report so. If not, for each node $v \in V$, a minimum-cost path from s to v, and its cost.
- The two cases (with negative cycle or not) needs to be separate
- With a negative cycle, minimum-cost paths are generally not defined.
- A path can go around such a cycle indefinitely to reduce its cost!

Why Dijkstra fails

- Even without negative cycles, Dijkstra's algorithm may fail when there are negative edge costs.

Why Dijkstra fails

- Even without negative cycles, Dijkstra's algorithm may fail when there are negative edge costs.

Example of Dijkstra failure

Why Dijkstra fails

- Even without negative cycles, Dijkstra's algorithm may fail when there are negative edge costs.

Example of Dijkstra failure

Why Dijkstra fails

- Even without negative cycles, Dijkstra's algorithm may fail when there are negative edge costs.

Example of Dijkstra failure

- D: Dijkstra results
- d_{t} is correct answer
- $D_{t}=2$ is incorrect
- Lesson: Nodes "discovered" later may lead to better paths to nodes "discovered" earlier

Review of Last Lecture

Min-cost paths are not well defined when there is a negative cycle.

Dijkstra can fail when there are negative edge costs.

Bellman-Ford Algorithm

- The example suggests: Keep updating everything, always

Bellman-Ford Algorithm

- The example suggests: Keep updating everything, always
- Bellman-Ford Algorithm, when the graph is guaranteed to have no negative cycle:
- Initialize: $d_{0}(s)=0, d_{0}(v)=\infty$ for all $v \neq s$.

Bellman-Ford Algorithm

- The example suggests: Keep updating everything, always
- Bellman-Ford Algorithm, when the graph is guaranteed to have no negative cycle:
- Initialize: $d_{0}(s)=0, d_{0}(v)=\infty$ for all $v \neq s$.
- Iterate: initialize $i \leftarrow 1$.
- for each $v \in V, d_{i}(v) \leftarrow \min \left\{d_{i-1}(v), \min _{(u, v) \in E} d_{i-1}(u)+c_{(u, v)}\right\}$.
- If $d_{i}(v)=d_{i-1}(v)$ for all v, terminate.
- $i \leftarrow i+1$.

Bellman-Ford Algorithm

- The example suggests: Keep updating everything, always
- Bellman-Ford Algorithm, when the graph is guaranteed to have no negative cycle:
- Initialize: $d_{0}(s)=0, d_{0}(v)=\infty$ for all $v \neq s$.
- Iterate: initialize $i \leftarrow 1$.
- for each $v \in V, d_{i}(v) \leftarrow \min \left\{d_{i-1}(v), \min _{(u, v) \in E} d_{i-1}(u)+c_{(u, v)}\right\}$.
- If $d_{i}(v)=d_{i-1}(v)$ for all v, terminate.
- $i \leftarrow i+1$.
- Output $d_{i}(v)$ for each $v \in V$.

Bellman-Ford Algorithm

- The example suggests: Keep updating everything, always
- Bellman-Ford Algorithm, when the graph is guaranteed to have no negative cycle:
- Initialize: $d_{0}(s)=0, d_{0}(v)=\infty$ for all $v \neq s$.
- Iterate: initialize $i \leftarrow 1$.
- for each $v \in V, d_{i}(v) \leftarrow \min \left\{d_{i-1}(v), \min _{(u, v) \in E} d_{i-1}(u)+c_{(u, v)}\right\}$.
- If $d_{i}(v)=d_{i-1}(v)$ for all v, terminate.
- $i \leftarrow i+1$.
- Output $d_{i}(v)$ for each $v \in V$.
- Obvious question: Does the algorithm terminate at all?

Bellman-Ford example

Bellman-Ford example

Bellman-Ford example

Bellman-Ford example

Proof of Correctness and Termination

The correctness of the algorithm is a consequence of two lemmas.

Lemma

For each $v \in V$, after the $i^{- \text {th }}$ iteration, $d_{i}(v)$ is the minimum cost among all paths from s to v using at most i edges.

Proof of Correctness and Termination

The correctness of the algorithm is a consequence of two lemmas.

Lemma

For each $v \in V$, after the $i^{- \text {th }}$ iteration, $d_{i}(v)$ is the minimum cost among all paths from s to v using at most i edges.

Lemma

In a graph containing no negative cycles, if there is a path from node s to node t, then there is a minimum-cost path with at most $n-1$ edges.

Proof of Correctness and Termination

The correctness of the algorithm is a consequence of two lemmas.

Lemma

For each $v \in V$, after the $i^{- \text {th }}$ iteration, $d_{i}(v)$ is the minimum cost among all paths from s to v using at most i edges.

Lemma

In a graph containing no negative cycles, if there is a path from node s to node t, then there is a minimum-cost path with at most $n-1$ edges.

When the graph is guaranteed to have no negative cycle, the algorithm terminates after at most n iterations, and $d_{i}(v)$ contains the correct answer for each $v \in V$.

Proof of Correctness and Termination

The correctness of the algorithm is a consequence of two lemmas.

Lemma

For each $v \in V$, after the $i^{- \text {th }}$ iteration, $d_{i}(v)$ is the minimum cost among all paths from s to v using at most i edges.

Lemma

In a graph containing no negative cycles, if there is a path from node s to node t, then there is a minimum-cost path with at most $n-1$ edges.

When the graph is guaranteed to have no negative cycle, the algorithm terminates after at most n iterations, and $d_{i}(v)$ contains the correct answer for each $v \in V$.
Running time: $O(m)$ per iteration, $O(n)$ iterations, so $O(m n)$ in total.

Proof of First Lemma

Lemma

For each $v \in V$, after the $i^{-t h}$ iteration, $d_{i}(v)$ is minimum cost among all paths from s to v using at most i edges.

Proof of First Lemma

Lemma

For each $v \in V$, after the $i^{-t h}$ iteration, $d_{i}(v)$ is minimum cost among all paths from s to v using at most i edges.

Proof.

By induction. Induction hypothesis is the lemma statement. Base case: $i=0$, obvious. Inductive step:

Proof of First Lemma

Lemma

For each $v \in V$, after the $i^{-t h}$ iteration, $d_{i}(v)$ is minimum cost among all paths from s to v using at most i edges.

Proof.

By induction. Induction hypothesis is the lemma statement. Base case:
$i=0$, obvious. Inductive step:

- For each $v \in V$, after the $i^{\text {-th }}$ iteration, $d_{i}(v)$ is the cost of some path from s to v with at most i edges.

Proof of First Lemma

Lemma

For each $v \in V$, after the $i^{-t h}$ iteration, $d_{i}(v)$ is minimum cost among all paths from s to v using at most i edges.

Proof.

By induction. Induction hypothesis is the lemma statement. Base case:
$i=0$, obvious. Inductive step:

- For each $v \in V$, after the $i^{- \text {th }}$ iteration, $d_{i}(v)$ is the cost of some path from s to v with at most i edges.
- Any path P from s to v with at most i edges either
- reaches v with $\leq i-1$ edges, with cost $\geq d_{i-1}(v)$, by IH;

Proof of First Lemma

Lemma

For each $v \in V$, after the $i^{-t h}$ iteration, $d_{i}(v)$ is minimum cost among all paths from s to v using at most i edges.

Proof.

By induction. Induction hypothesis is the lemma statement. Base case:
$i=0$, obvious. Inductive step:

- For each $v \in V$, after the $i^{\text {-th }}$ iteration, $d_{i}(v)$ is the cost of some path from s to v with at most i edges.
- Any path P from s to v with at most i edges either
- reaches v with $\leq i-1$ edges, with cost $\geq d_{i-1}(v)$, by IH;
- or first reaches some node u using at most $i-1$ edges, and then takes edge (u, v), with cost $\geq d_{i-1}(u)+c_{(u, v)}$.

Proof of First Lemma

Lemma

For each $v \in V$, after the $i^{-t h}$ iteration, $d_{i}(v)$ is minimum cost among all paths from s to v using at most i edges.

Proof.

By induction. Induction hypothesis is the lemma statement. Base case:
$i=0$, obvious. Inductive step:

- For each $v \in V$, after the $i^{- \text {th }}$ iteration, $d_{i}(v)$ is the cost of some path from s to v with at most i edges.
- Any path P from s to v with at most i edges either
- reaches v with $\leq i-1$ edges, with cost $\geq d_{i-1}(v)$, by IH;
- or first reaches some node u using at most $i-1$ edges, and then takes edge (u, v), with cost $\geq d_{i-1}(u)+c_{(u, v)}$.
- P has cost at least $\min \left\{d_{i-1}(v), \min _{(u, v) \in E} d_{i-1}(u)+c_{(u, v)}\right\}=d_{i}(v)$.

Proof of Second Lemma

Lemma

In a graph containing no negative cycles, if there is a path from node s to node t, then there is a minimum-cost path from s to t with at most $n-1$ edges.

Proof of Second Lemma

Lemma

In a graph containing no negative cycles, if there is a path from node s to node t, then there is a minimum-cost path from s to t with at most $n-1$ edges.

Proof.

Take any path P from s to t. If P passes a node v twice, the part of the path between these is a cycle.

Proof of Second Lemma

Lemma

In a graph containing no negative cycles, if there is a path from node s to node t, then there is a minimum-cost path from s to t with at most $n-1$ edges.

Proof.

Take any path P from s to t. If P passes a node v twice, the part of the path between these is a cycle. "Skipping" the cycle does not increase the cost of P because the cycle has nonnegative cost.

Proof of Second Lemma

Lemma

In a graph containing no negative cycles, if there is a path from node s to node t, then there is a minimum-cost path from s to t with at most $n-1$ edges.

Proof.

Take any path P from s to t. If P passes a node v twice, the part of the path between these is a cycle. "Skipping" the cycle does not increase the cost of P because the cycle has nonnegative cost. Keep removing cycles this way until P is simple (i.e., passes each node at most once); its cost never increased.

Proof of Second Lemma

Lemma

In a graph containing no negative cycles, if there is a path from node s to node t, then there is a minimum-cost path from s to t with at most $n-1$ edges.

Proof.

Take any path P from s to t. If P passes a node v twice, the part of the path between these is a cycle. "Skipping" the cycle does not increase the cost of P because the cycle has nonnegative cost. Keep removing cycles this way until P is simple (i.e., passes each node at most once); its cost never increased. A simple path has at most $n-1$ edges.

What if there is negative cycle?

Modified Bellman-Ford Algorithm, without guarantee of no negative cycle:

- Initialize: $d_{0}(s)=0, d_{0}(v)=\infty$ for $v \neq s$.

What if there is negative cycle?

Modified Bellman-Ford Algorithm, without guarantee of no negative cycle:

- Initialize: $d_{0}(s)=0, d_{0}(v)=\infty$ for $v \neq s$.
- Iterate: initialize $i \leftarrow 1$.
- for each $v \in V, d_{i}(v) \leftarrow \min \left\{d_{i-1}(v), \min _{(u, v) \in E} d_{i-1}(u)+c_{(u, v)}\right\}$.
- If $d_{i}(v)=d_{i-1}(v)$ for all v, terminate and output the $d_{i}(v)$'s.
- $i \leftarrow i+1$.
- If $i>n$, terminate, report there is a negative cycle.

Correctness of Modified Bellman-Ford Algorithm

Claim

The modified Bellman-Ford algorithm reports a negative cycle if and only if there is one reachable from s.

Correctness of Modified Bellman-Ford Algorithm

Claim

The modified Bellman-Ford algorithm reports a negative cycle if and only if there is one reachable from s.

Proof.

(\Rightarrow) : If the algorithm does not terminate after n iterations, there must be a negative cycle, because

- For some $v \in V, d_{n}(v)<d_{n-1}(v)$;

Correctness of Modified Bellman-Ford Algorithm

Claim

The modified Bellman-Ford algorithm reports a negative cycle if and only if there is one reachable from s.

Proof.

(\Rightarrow) : If the algorithm does not terminate after n iterations, there must be a negative cycle, because

- For some $v \in V, d_{n}(v)<d_{n-1}(v)$;
- By First Lemma, $d_{n-1}(v)$ is the cost of min-cost path to v with at most $n-1$ edges.

Correctness of Modified Bellman-Ford Algorithm

Claim

The modified Bellman-Ford algorithm reports a negative cycle if and only if there is one reachable from s.

Proof.

(\Rightarrow) : If the algorithm does not terminate after n iterations, there must be a negative cycle, because

- For some $v \in V, d_{n}(v)<d_{n-1}(v)$;
- By First Lemma, $d_{n-1}(v)$ is the cost of min-cost path to v with at most $n-1$ edges.
- By Second Lemma, if any path has strictly less cost than $d_{n-1}(v)$, there must be a negative cycle.

Correctness of Modified Bellman-Ford Algorithm Cont.

Claim

The modified Bellman-Ford algorithm reports a negative cycle if and only if there is one reachable from s.

Proof.

(\Leftarrow) : If there is a negative cycle reachable from s, the algorithm cannot terminate before n iterations finish. Proof by contradiction:

Correctness of Modified Bellman-Ford Algorithm Cont.

Claim

The modified Bellman-Ford algorithm reports a negative cycle if and only if there is one reachable from s.

Proof.

(\Leftarrow) : If there is a negative cycle reachable from s, the algorithm cannot terminate before n iterations finish. Proof by contradiction:

- Key observation: if in some iteration $i, d_{i}(v)=d_{i-1}(v)$ for all v, then $d_{k}(v)=d_{i}(v)$ for any $k>i$, including any $k \geq n$ (if we let the algorithm keep running).

Correctness of Modified Bellman-Ford Algorithm Cont.

Claim

The modified Bellman-Ford algorithm reports a negative cycle if and only if there is one reachable from s.

Proof.

(\Leftarrow) : If there is a negative cycle reachable from s, the algorithm cannot terminate before n iterations finish. Proof by contradiction:

- Key observation: if in some iteration $i, d_{i}(v)=d_{i-1}(v)$ for all v, then $d_{k}(v)=d_{i}(v)$ for any $k>i$, including any $k \geq n$ (if we let the algorithm keep running).
- By First Lemma, no path to v (of any length) can have cost $<d_{i}(v)$.

Correctness of Modified Bellman-Ford Algorithm Cont.

Claim

The modified Bellman-Ford algorithm reports a negative cycle if and only if there is one reachable from s.

Proof.

(\Leftarrow) : If there is a negative cycle reachable from s, the algorithm cannot terminate before n iterations finish. Proof by contradiction:

- Key observation: if in some iteration $i, d_{i}(v)=d_{i-1}(v)$ for all v, then $d_{k}(v)=d_{i}(v)$ for any $k>i$, including any $k \geq n$ (if we let the algorithm keep running).
- By First Lemma, no path to v (of any length) can have cost $<d_{i}(v)$.
- But for any v on the reachable negative cycle, there must be a path to v with cost $<d_{i}(v)$, by going through the cycle for enough rounds. This is a contradiction.

Space Consideration

- In Bellman-Ford, we seem to use an $n \times n$ array: an entry per node for at most n rounds.

Space Consideration

- In Bellman-Ford, we seem to use an $n \times n$ array: an entry per node for at most n rounds.
- This is unnecessary, because after the $i^{- \text {th }}$ iteration, we never use the contents of the array from iterations $1, \ldots, i-1$.

Space Consideration

- In Bellman-Ford, we seem to use an $n \times n$ array: an entry per node for at most n rounds.
- This is unnecessary, because after the $i^{\text {-th }}$ iteration, we never use the contents of the array from iterations $1, \ldots, i-1$.
- It suffices to use a $2 \times n$ array, using the first row to keep results from the last iteration, and the second for current iteration computation.

Space Consideration

- In Bellman-Ford, we seem to use an $n \times n$ array: an entry per node for at most n rounds.
- This is unnecessary, because after the $i^{\text {-th }}$ iteration, we never use the contents of the array from iterations $1, \ldots, i-1$.
- It suffices to use a $2 \times n$ array, using the first row to keep results from the last iteration, and the second for current iteration computation.
- In fact it suffices to use an array with only n entries, one per each node, and the update rule in each iteration is simply

$$
d(v) \leftarrow \min \left\{d(v), \min _{(u, v) \in E} d(u)+c_{(u, v)}\right\} .
$$

Exercise: Why is this OK?

