Min-Cost Paths Problems

Learning Goals

Minimum-cost Path problem with general edge costs
Bellman-Ford algorithm

Running time of Bellman-Ford algorithm

Polynomial-time algorithm to detect a negative cycle

. OGO B D D



Min-Cost Paths Problems

Finding minimum-cost paths in a graph

e Input: a directed graph G = (V, E), with cost ¢, € R for each edge
ecE. Anodese V.

e Output: If a negative cycle exists, report so. If not, for each node
v € V, a minimum-cost path from s to v, and its cost.

. GO B, D 240



Min-Cost Paths Problems

Finding minimum-cost paths in a graph

e Input: a directed graph G = (V, E), with cost ¢, € R for each edge
ecE. Anodese V.

e Output: If a negative cycle exists, report so. If not, for each node
v € V, a minimum-cost path from s to v, and its cost.

@ The two cases (with negative cycle or not) needs to be separate

e With a negative cycle, minimum-cost paths are generally not defined.

. St 1), B

2/13



Min-Cost Paths Problems

Finding minimum-cost paths in a graph

e Input: a directed graph G = (V, E), with cost ¢, € R for each edge
ecE. Anodese V.

e Output: If a negative cycle exists, report so. If not, for each node
v € V, a minimum-cost path from s to v, and its cost.

@ The two cases (with negative cycle or not) needs to be separate

e With a negative cycle, minimum-cost paths are generally not defined.
e A path can go around such a cycle indefinitely to reduce its cost!

. OGO B, D B4



Why Dijkstra fails

@ Even without negative cycles, Dijkstra's algorithm may fail when there
are negative edge costs.

. L 2, D Dy



Why Dijkstra fails

@ Even without negative cycles, Dijkstra's algorithm may fail when there

are negative edge costs.
Du =1 u 1 13
e D: Dijkstra results

1 dy = 1 @ d; is correct answer

D;=0 D, =3

Example of Dijkstra failure

. L 2, D Dy



Why Dijkstra fails

@ Even without negative cycles, Dijkstra's algorithm may fail when there
are negative edge costs.

Du =1 u 1 l
e D: Dijkstra results
D,{ = 2
1 dy = 1 @ d; is correct answer
@ D; = 2 is incorrect
s 3 Y
D=0 D, =3

Example of Dijkstra failure

. L 2, D Dy



Why Dijkstra fails

@ Even without negative cycles, Dijkstra's algorithm may fail when there

are negative edge costs.
Du =1 u 1 13
D: Dijkstra results

d; is correct answer
D; = 2 is incorrect

Lesson: Nodes “discov-
v ered” later may lead to
D,=0 D,=3

better paths to nodes

Example of Dijkstra failure “discovered” earlier

. L B D Dy



Min-Cost Paths Problems

Review of Last Lecture

Min-cost paths are not well defined Dijkstra can fail when there are
when there is a negative cycle. negative edge costs.

s 1 u 1 t

. GO B, D D4



Bellman-Ford Algorithm

@ The example suggests: Keep updating everything, always

. L B D By



Bellman-Ford Algorithm

@ The example suggests: Keep updating everything, always

@ Bellman-Ford Algorithm, when the graph is guaranteed to have no
negative cycle:
o Initialize: dy(s) =0, dy(v) = oo for all v # s.

. L B D By



Bellman-Ford Algorithm

@ The example suggests: Keep updating everything, always

@ Bellman-Ford Algorithm, when the graph is guaranteed to have no
negative cycle:
o Initialize: dy(s) =0, dy(v) = oo for all v # s.
o lterate: initialize / +— 1.
o for each v € V, di(v) < min{d;_1(v), ming, vyee di—1(u) + cu,v) }-
o If di(v) = di—1(v) for all v, terminate.
o i+ i+1.

. St 1), B

5/13



Bellman-Ford Algorithm

@ The example suggests: Keep updating everything, always
@ Bellman-Ford Algorithm, when the graph is guaranteed to have no
negative cycle:

o Initialize: dy(s) =0, dy(v) = oo for all v # s.
o lterate: initialize / +— 1.

e for each v € V, di(v) + min{di—1(v), min(v)ee di—1(u) + v}
o If di(v) = di—1(v) for all v, terminate.
o i+ i+1.

e Output di(v) for each v € V.

. b 5 D By



Bellman-Ford Algorithm

@ The example suggests: Keep updating everything, always

@ Bellman-Ford Algorithm, when the graph is guaranteed to have no
negative cycle:
o Initialize: dy(s) =0, dy(v) = oo for all v # s.
o lterate: initialize / +— 1.

e for each v € V, di(v) + min{di—1(v), min(v)ee di—1(u) + v}
o If di(v) = di—1(v) for all v, terminate.
o i+ i+1.

e Output di(v) for each v € V.

@ Obvious question: Does the algorithm terminate at all?

. OGO 5 D By



Min-Cost Paths Problems

Bellman-Ford example

. OGO 5, D O



Min-Cost Paths Problems

Bellman-Ford example

do(u) = 0o do(t) = o0
u 1 t

do(s) =0 do(v) = 0o

. GO B D O



Min-Cost Paths Problems

Bellman-Ford example

do(u) = 00 dy(t) = 00
u 1 u 1 ot
1 1
-2
s 3 s 3 v
do(s) =0 do(v) = 0o
di(u) =1
U 1
1
s 3
di(s) =0

. GO B D O



Min-Cost Paths Problems

Bellman-Ford example

do(u) = o0 doft)

=00
u 1 u 1 ot
1 1
-2
s 3 s 3 v
do(s) =0 do(v) = 0o
di(u) =1 da(u) =1 dy(t) = 1
U 1 U 1
oy
/ l
-2
s 3 s 3 v
dy(s) =0 dy(s) = 0 dy(v) =3

September 12, 2019 6/13



Min-Cost Paths Problems

Proof of Correctness and Termination

The correctness of the algorithm is a consequence of two lemmas.

For each v € V, after the it" iteration, d;i(v) is the minimum cost among
all paths from s to v using at most | edges.

. L B D Dy



Min-Cost Paths Problems

Proof of Correctness and Termination

The correctness of the algorithm is a consequence of two lemmas.

For each v € V, after the it" iteration, d;i(v) is the minimum cost among
all paths from s to v using at most | edges.

v

In a graph containing no negative cycles, if there is a path from node s to
node t, then there is a minimum-cost path with at most n — 1 edges.

. b B AED | Dy



Min-Cost Paths Problems

Proof of Correctness and Termination

The correctness of the algorithm is a consequence of two lemmas.

For each v € V, after the it" iteration, d;i(v) is the minimum cost among
all paths from s to v using at most | edges.

In a graph containing no negative cycles, if there is a path from node s to
node t, then there is a minimum-cost path with at most n — 1 edges.

When the graph is guaranteed to have no negative cycle, the algorithm
terminates after at most n iterations, and d;(v) contains the correct answer

for each v € V.

. L B D Dy



Min-Cost Paths Problems

Proof of Correctness and Termination

The correctness of the algorithm is a consequence of two lemmas.

Lemma

For each v € V, after the it" iteration, d;i(v) is the minimum cost among
all paths from s to v using at most | edges.

Lemma

In a graph containing no negative cycles, if there is a path from node s to
node t, then there is a minimum-cost path with at most n — 1 edges.

When the graph is guaranteed to have no negative cycle, the algorithm
terminates after at most n iterations, and d;(v) contains the correct answer
for each v € V.

Running time: O(m) per iteration, O(n) iterations, so O(mn) in total.

. L B D Dy



Min-Cost Paths Problems

Proof of First Lemma

For each v € V, after the ith iteration, di(v) is minimum cost among all
paths from s to v using at most i edges.

. L B, D D4



Min-Cost Paths Problems

Proof of First Lemma

Lemma

For each v € V, after the ith iteration, di(v) is minimum cost among all
paths from s to v using at most i edges.

Proof.

By induction. Induction hypothesis is the lemma statement. Base case:
i = 0, obvious. Inductive step:

September 12, 2019 8/13



Min-Cost Paths Problems

Proof of First Lemma

Lemma

For each v € V, after the ith iteration, di(v) is minimum cost among all
paths from s to v using at most i edges.

Proof.

By induction. Induction hypothesis is the lemma statement. Base case:
i = 0, obvious. Inductive step:

o For each v € V, after the i"t" iteration, dj(v) is the cost of some path
from s to v with at most / edges.

September 12, 2019 8/13



Min-Cost Paths Problems

Proof of First Lemma

Lemma

For each v € V, after the ith iteration, di(v) is minimum cost among all
paths from s to v using at most i edges.

Proof.

By induction. Induction hypothesis is the lemma statement. Base case:
i = 0, obvious. Inductive step:

o For each v € V, after the i"t" iteration, dj(v) is the cost of some path
from s to v with at most / edges.

@ Any path P from s to v with at most / edges either
o reaches v with </ — 1 edges, with cost > d;_;(v), by IH;

September 12, 2019 8/13



Min-Cost Paths Problems

Proof of First Lemma

Lemma

For each v € V, after the ith iteration, di(v) is minimum cost among all
paths from s to v using at most i edges.

Proof.

By induction. Induction hypothesis is the lemma statement. Base case:
i = 0, obvious. Inductive step:

o For each v € V, after the i"t" iteration, dj(v) is the cost of some path
from s to v with at most / edges.
@ Any path P from s to v with at most / edges either
o reaches v with </ — 1 edges, with cost > d;_;(v), by IH;

e or first reaches some node u using at most i — 1 edges, and then takes
edge (u, v), with cost > d;_1(u) + ().

. L B D D)0



Min-Cost Paths Problems

Proof of First Lemma

Lemma

For each v € V, after the ith iteration, di(v) is minimum cost among all
paths from s to v using at most i edges.

Proof.

By induction. Induction hypothesis is the lemma statement. Base case:
i = 0, obvious. Inductive step:

o For each v € V, after the i"t" iteration, dj(v) is the cost of some path
from s to v with at most / edges.
@ Any path P from s to v with at most / edges either
o reaches v with </ — 1 edges, with cost > d;_;(v), by IH;

e or first reaches some node u using at most i — 1 edges, and then takes
edge (u, v), with cost > d;_1(u) + ().

® P has cost at least min{d;_1(v), min(, v)ee di-1(v) + c(uv)} = di(v).

. GO 5 D D



Min-Cost Paths Problems

Proof of Second Lemma

In a graph containing no negative cycles, if there is a path from node s to
node t, then there is a minimum-cost path from s to t with at most n — 1
edges.

. GO B D Oy



Min-Cost Paths Problems

Proof of Second Lemma

Lemma

In a graph containing no negative cycles, if there is a path from node s to
node t, then there is a minimum-cost path from s to t with at most n — 1
edges.

Proof.

Take any path P from s to t. If P passes a node v twice, the part of the
path between these is a cycle.

. OGO B, D O



Min-Cost Paths Problems

Proof of Second Lemma

Lemma

In a graph containing no negative cycles, if there is a path from node s to
node t, then there is a minimum-cost path from s to t with at most n — 1
edges.

Proof.

Take any path P from s to t. If P passes a node v twice, the part of the
path between these is a cycle. “Skipping” the cycle does not increase the
cost of P because the cycle has nonnegative cost.

. OGO B, D O



Min-Cost Paths Problems

Proof of Second Lemma

Lemma

In a graph containing no negative cycles, if there is a path from node s to
node t, then there is a minimum-cost path from s to t with at most n — 1
edges.

Proof.

Take any path P from s to t. If P passes a node v twice, the part of the
path between these is a cycle. “Skipping” the cycle does not increase the
cost of P because the cycle has nonnegative cost. Keep removing cycles
this way until P is simple (i.e., passes each node at most once); its cost

never increased.

. OGO B, D O



Min-Cost Paths Problems

Proof of Second Lemma

Lemma

In a graph containing no negative cycles, if there is a path from node s to
node t, then there is a minimum-cost path from s to t with at most n — 1
edges.

Proof.

Take any path P from s to t. If P passes a node v twice, the part of the
path between these is a cycle. “Skipping” the cycle does not increase the
cost of P because the cycle has nonnegative cost. Keep removing cycles
this way until P is simple (i.e., passes each node at most once); its cost
never increased. A simple path has at most n — 1 edges. O

. GO B, D Oy



What if there is negative cycle?

Modified Bellman-Ford Algorithm, without guarantee of no negative cycle:
o Initialize: do(s) =0, dp(v) = oo for v # s.

. TR T



What if there is negative cycle?

Modified Bellman-Ford Algorithm, without guarantee of no negative cycle:

o Initialize: do(s) =0, dp(v) = oo for v # s.
o lterate: initialize / «+ 1.
o for each v € V, di(v) = min{d;_1(v), min,)ee di—1(t) + c(uv)}-
o If di(v) = d;i—1(v) for all v, terminate and output the d;(v)'s.
o i+ i+1.
e If i > n, terminate, report there is a negative cycle.

September 12, 2019 10/13



Min-Cost Paths Problems

Correctness of Modified Bellman-Ford Algorithm

The modified Bellman-Ford algorithm reports a negative cycle if and only if
there is one reachable from s.

. TR TR



Min-Cost Paths Problems

Correctness of Modified Bellman-Ford Algorithm

Claim

The modified Bellman-Ford algorithm reports a negative cycle if and only if
there is one reachable from s.

Proof.

(=): If the algorithm does not terminate after n iterations, there must be
a negative cycle, because

@ For some v € V, dp(v) < dp_1(v);

September 12, 2019 11/13



Min-Cost Paths Problems

Correctness of Modified Bellman-Ford Algorithm

Claim

The modified Bellman-Ford algorithm reports a negative cycle if and only if
there is one reachable from s.

Proof.

(=): If the algorithm does not terminate after n iterations, there must be
a negative cycle, because

@ For some v € V, dp(v) < dp_1(v);

@ By First Lemma, d,—1(v) is the cost of min-cost path to v with at
most n — 1 edges.

September 12, 2019 11/13



Correctness of Modified Bellman-Ford Algorithm

Claim

The modified Bellman-Ford algorithm reports a negative cycle if and only if
there is one reachable from s.

Proof.

(=): If the algorithm does not terminate after n iterations, there must be
a negative cycle, because

@ For some v € V, dp(v) < dp_1(v);

@ By First Lemma, d,—1(v) is the cost of min-cost path to v with at
most n — 1 edges.

@ By Second Lemma, if any path has strictly less cost than d,_1(v),
there must be a negative cycle.

. R T



Min-Cost Paths Problems

Correctness of Modified Bellman-Ford Algorithm Cont.

Claim

The modified Bellman-Ford algorithm reports a negative cycle if and only if
there is one reachable from s.

Proof.

(«<=): If there is a negative cycle reachable from s, the algorithm cannot
terminate before n iterations finish. Proof by contradiction:

September 12, 2019 12/13



Min-Cost Paths Problems

Correctness of Modified Bellman-Ford Algorithm Cont.

Claim

The modified Bellman-Ford algorithm reports a negative cycle if and only if
there is one reachable from s.

Proof.

(«<=): If there is a negative cycle reachable from s, the algorithm cannot
terminate before n iterations finish. Proof by contradiction:

o Key observation: if in some iteration i, di(v) = di_1(v) for all v, then
dik(v) = di(v) for any k > i, including any k > n (if we let the
algorithm keep running).

September 12, 2019 12/13



Min-Cost Paths Problems

Correctness of Modified Bellman-Ford Algorithm Cont.

Claim

The modified Bellman-Ford algorithm reports a negative cycle if and only if
there is one reachable from s.

Proof.

(«<=): If there is a negative cycle reachable from s, the algorithm cannot
terminate before n iterations finish. Proof by contradiction:

o Key observation: if in some iteration i, di(v) = di_1(v) for all v, then
dik(v) = di(v) for any k > i, including any k > n (if we let the
algorithm keep running).

@ By First Lemma, no path to v (of any length) can have cost < d;(v).

September 12, 2019 12/13



Correctness of Modified Bellman-Ford Algorithm Cont.

Claim

The modified Bellman-Ford algorithm reports a negative cycle if and only if
there is one reachable from s.

Proof.

(«<=): If there is a negative cycle reachable from s, the algorithm cannot
terminate before n iterations finish. Proof by contradiction:

o Key observation: if in some iteration i, d;j(v) = di_1(v) for all v, then
dik(v) = di(v) for any k > i, including any k > n (if we let the
algorithm keep running).

@ By First Lemma, no path to v (of any length) can have cost < d;(v).

@ But for any v on the reachable negative cycle, there must be a path
to v with cost < d;(v), by going through the cycle for enough rounds.
This is a contradiction.

L]
] September 12, 2019 12/13



Min-Cost Paths Problems

Space Consideration

@ In Bellman-Ford, we seem to use an n x n array: an entry per node for
at most n rounds.

. R T



Min-Cost Paths Problems

Space Consideration

@ In Bellman-Ford, we seem to use an n x n array: an entry per node for
at most n rounds.

@ This is unnecessary, because after the ith iteration, we never use the
contents of the array from iterations 1,...,/ — 1.

. R T



Min-Cost Paths Problems

Space Consideration

@ In Bellman-Ford, we seem to use an n x n array: an entry per node for
at most n rounds.
-th

@ This is unnecessary, because after the /"' iteration, we never use the

contents of the array from iterations 1,...,/ — 1.

o It suffices to use a 2 x n array, using the first row to keep results from
the last iteration, and the second for current iteration computation.

. R T



Min-Cost Paths Problems

Space Consideration

@ In Bellman-Ford, we seem to use an n x n array: an entry per node for
at most n rounds.

@ This is unnecessary, because after the ith iteration, we never use the
contents of the array from iterations 1,...,/ — 1.

o It suffices to use a 2 x n array, using the first row to keep results from
the last iteration, and the second for current iteration computation.

@ In fact it suffices to use an array with only n entries, one per each
node, and the update rule in each iteration is simply

d(v) < min{d(v), (UT;EE d(u) + c(uv)}-

Exercise: Why is this OK?

. R T



	Min-Cost Paths Problems

