Learning Goals

- Minimum-cost Path problem with general edge costs
- Bellman-Ford algorithm
- Running time of Bellman-Ford algorithm
- Polynomial-time algorithm to detect a negative cycle

Finding minimum-cost paths in a graph

- Input: a directed graph G = (V, E), with cost $c_e \in \mathbb{R}$ for each edge $e \in E$. A node $s \in V$.
- Output: If a negative cycle exists, report so. If not, for each node v ∈ V, a minimum-cost path from s to v, and its cost.

Finding minimum-cost paths in a graph

- Input: a directed graph G = (V, E), with cost $c_e \in \mathbb{R}$ for each edge $e \in E$. A node $s \in V$.
- Output: If a negative cycle exists, report so. If not, for each node v ∈ V, a minimum-cost path from s to v, and its cost.
- The two cases (with negative cycle or not) needs to be separate
 - With a negative cycle, minimum-cost paths are generally not defined.

Finding minimum-cost paths in a graph

- Input: a directed graph G = (V, E), with cost $c_e \in \mathbb{R}$ for each edge $e \in E$. A node $s \in V$.
- Output: If a negative cycle exists, report so. If not, for each node v ∈ V, a minimum-cost path from s to v, and its cost.
- The two cases (with negative cycle or not) needs to be separate
 - With a negative cycle, minimum-cost paths are generally not defined.
 - A path can go around such a cycle indefinitely to reduce its cost!

• Even without negative cycles, Dijkstra's algorithm may fail when there are negative edge costs.

• Even without negative cycles, Dijkstra's algorithm may fail when there are negative edge costs.

- D: Dijkstra results
- *d_t* is correct answer

September 12, 2019

3 / 13

Example of Dijkstra failure

• Even without negative cycles, Dijkstra's algorithm may fail when there are negative edge costs.

- D: Dijkstra results
- d_t is correct answer
- $D_t = 2$ is incorrect

September 12, 2019

3 / 13

Example of Dijkstra failure

 Even without negative cycles, Dijkstra's algorithm may fail when there are negative edge costs.

Example of Dijkstra failure

- D: Dijkstra results
- d_t is correct answer
- $D_t = 2$ is incorrect

Image: Image:

• Lesson: Nodes "discovered" later may lead to better paths to nodes "discovered" earlier

Review of Last Lecture

Min-cost paths are not well defined when there is a negative cycle.

Dijkstra can fail when there are negative edge costs.

September 12, 2019

4 / 13

• The example suggests: Keep updating everything, always

- The example suggests: Keep updating everything, always
- Bellman-Ford Algorithm, when the graph is guaranteed to have no negative cycle:
 - Initialize: $d_0(s) = 0$, $d_0(v) = \infty$ for all $v \neq s$.

イロト 不得下 イヨト イヨト 二日

- The example suggests: Keep updating everything, always
- Bellman-Ford Algorithm, when the graph is guaranteed to have no negative cycle:
 - Initialize: $d_0(s) = 0$, $d_0(v) = \infty$ for all $v \neq s$.
 - Iterate: initialize $i \leftarrow 1$.
 - for each $v \in V$, $d_i(v) \leftarrow \min\{d_{i-1}(v), \min_{(u,v) \in E} d_{i-1}(u) + c_{(u,v)}\}$.
 - If $d_i(v) = d_{i-1}(v)$ for all v, terminate.
 - $i \leftarrow i + 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- The example suggests: Keep updating everything, always
- Bellman-Ford Algorithm, when the graph is guaranteed to have no negative cycle:
 - Initialize: $d_0(s) = 0$, $d_0(v) = \infty$ for all $v \neq s$.
 - Iterate: initialize $i \leftarrow 1$.
 - for each $v \in V$, $d_i(v) \leftarrow \min\{d_{i-1}(v), \min_{(u,v) \in E} d_{i-1}(u) + c_{(u,v)}\}$.
 - If $d_i(v) = d_{i-1}(v)$ for all v, terminate.
 - $i \leftarrow i + 1$.
- Output $d_i(v)$ for each $v \in V$.

イロト (周) (ヨ) (ヨ) ヨー つのの

- The example suggests: Keep updating everything, always
- Bellman-Ford Algorithm, when the graph is guaranteed to have no • negative cycle:
 - Initialize: $d_0(s) = 0$, $d_0(v) = \infty$ for all $v \neq s$.
 - Iterate: initialize $i \leftarrow 1$
 - for each $v \in V$, $d_i(v) \leftarrow \min\{d_{i-1}(v), \min_{(u,v) \in E} d_{i-1}(u) + c_{(u,v)}\}$.

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨー わえぐ September 12, 2019

5 / 13

- If $d_i(v) = d_{i-1}(v)$ for all v, terminate.
- $i \leftarrow i + 1$.
- Output $d_i(v)$ for each $v \in V$.
- Obvious question: Does the algorithm terminate at all?

September 12, 2019 6 / 13

September 12, 2019 6 / 13

6 / 13

The correctness of the algorithm is a consequence of two lemmas.

Lemma

For each $v \in V$, after the *i*^{-th} iteration, $d_i(v)$ is the minimum cost among all paths from s to v using at most i edges.

The correctness of the algorithm is a consequence of two lemmas.

Lemma

For each $v \in V$, after the *i*^{-th} iteration, $d_i(v)$ is the minimum cost among all paths from s to v using at most i edges.

Lemma

In a graph containing no negative cycles, if there is a path from node s to node t, then there is a minimum-cost path with at most n - 1 edges.

The correctness of the algorithm is a consequence of two lemmas.

Lemma

For each $v \in V$, after the *i*^{-th} iteration, $d_i(v)$ is the minimum cost among all paths from s to v using at most i edges.

Lemma

In a graph containing no negative cycles, if there is a path from node s to node t, then there is a minimum-cost path with at most n - 1 edges.

When the graph is guaranteed to have no negative cycle, the algorithm terminates after at most n iterations, and $d_i(v)$ contains the correct answer for each $v \in V$.

イロト 不得下 イヨト イヨト 二日

The correctness of the algorithm is a consequence of two lemmas.

Lemma

For each $v \in V$, after the *i*^{-th} iteration, $d_i(v)$ is the minimum cost among all paths from s to v using at most i edges.

Lemma

In a graph containing no negative cycles, if there is a path from node s to node t, then there is a minimum-cost path with at most n - 1 edges.

When the graph is guaranteed to have no negative cycle, the algorithm terminates after at most n iterations, and $d_i(v)$ contains the correct answer for each $v \in V$. Running time: O(m) per iteration, O(n) iterations, so O(mn) in total.

Lemma

For each $v \in V$, after the *i*^{-th} iteration, $d_i(v)$ is minimum cost among all paths from s to v using at most *i* edges.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

8 / 13

Lemma

For each $v \in V$, after the *i*-th iteration, $d_i(v)$ is minimum cost among all paths from s to v using at most i edges.

Proof.

By induction. Induction hypothesis is the lemma statement. Base case: i = 0, obvious. Inductive step:

Lemma

For each $v \in V$, after the *i*-th iteration, $d_i(v)$ is minimum cost among all paths from s to v using at most i edges.

Proof.

By induction. Induction hypothesis is the lemma statement. Base case: i = 0, obvious. Inductive step:

• For each $v \in V$, after the *i*-th iteration, $d_i(v)$ is the cost of *some* path from *s* to *v* with at most *i* edges.

Lemma

For each $v \in V$, after the *i*-th iteration, $d_i(v)$ is minimum cost among all paths from s to v using at most i edges.

Proof.

By induction. Induction hypothesis is the lemma statement. Base case: i = 0, obvious. Inductive step:

- For each v ∈ V, after the i^{-th} iteration, d_i(v) is the cost of some path from s to v with at most i edges.
- Any path P from s to v with at most i edges either
 - reaches v with $\leq i 1$ edges, with cost $\geq d_{i-1}(v)$, by IH;

Lemma

For each $v \in V$, after the *i*-th iteration, $d_i(v)$ is minimum cost among all paths from s to v using at most i edges.

Proof.

By induction. Induction hypothesis is the lemma statement. Base case: i = 0, obvious. Inductive step:

- For each v ∈ V, after the i^{-th} iteration, d_i(v) is the cost of some path from s to v with at most i edges.
- Any path P from s to v with at most i edges either
 - reaches v with $\leq i 1$ edges, with cost $\geq d_{i-1}(v)$, by IH;
 - or first reaches some node u using at most i − 1 edges, and then takes edge (u, v), with cost ≥ d_{i−1}(u) + c_(u,v).

Lemma

For each $v \in V$, after the *i*-th iteration, $d_i(v)$ is minimum cost among all paths from s to v using at most i edges.

Proof.

By induction. Induction hypothesis is the lemma statement. Base case: i = 0, obvious. Inductive step:

For each v ∈ V, after the i^{-th} iteration, d_i(v) is the cost of some path from s to v with at most i edges.

• Any path P from s to v with at most i edges either

- reaches v with $\leq i 1$ edges, with cost $\geq d_{i-1}(v)$, by IH;
- or first reaches some node u using at most i 1 edges, and then takes edge (u, v), with cost $\geq d_{i-1}(u) + c_{(u,v)}$.

• P has cost at least $\min\{d_{i-1}(v), \min_{(u,v)\in E} d_{i-1}(u) + c_{(u,v)}\} = d_i(v)$.

Lemma

In a graph containing no negative cycles, if there is a path from node s to node t, then there is a minimum-cost path from s to t with at most n - 1 edges.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Lemma

In a graph containing no negative cycles, if there is a path from node s to node t, then there is a minimum-cost path from s to t with at most n-1 edges.

Proof.

Take any path P from s to t. If P passes a node v twice, the part of the path between these is a cycle.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma

In a graph containing no negative cycles, if there is a path from node s to node t, then there is a minimum-cost path from s to t with at most n - 1 edges.

Proof.

Take any path P from s to t. If P passes a node v twice, the part of the path between these is a cycle. "Skipping" the cycle does not increase the cost of P because the cycle has nonnegative cost.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma

In a graph containing no negative cycles, if there is a path from node s to node t, then there is a minimum-cost path from s to t with at most n - 1 edges.

Proof.

Take any path P from s to t. If P passes a node v twice, the part of the path between these is a cycle. "Skipping" the cycle does not increase the cost of P because the cycle has nonnegative cost. Keep removing cycles this way until P is simple (i.e., passes each node at most once); its cost never increased.

Lemma

In a graph containing no negative cycles, if there is a path from node s to node t, then there is a minimum-cost path from s to t with at most n - 1 edges.

Proof.

Take any path P from s to t. If P passes a node v twice, the part of the path between these is a cycle. "Skipping" the cycle does not increase the cost of P because the cycle has nonnegative cost. Keep removing cycles this way until P is simple (i.e., passes each node at most once); its cost never increased. A simple path has at most n - 1 edges.

What if there is negative cycle?

Modified Bellman-Ford Algorithm, without guarantee of no negative cycle:

10 / 13

• Initialize: $d_0(s) = 0, d_0(v) = \infty$ for $v \neq s$.

What if there is negative cycle?

Modified Bellman-Ford Algorithm, without guarantee of no negative cycle:

- Initialize: $d_0(s) = 0, d_0(v) = \infty$ for $v \neq s$.
- Iterate: initialize $i \leftarrow 1$.
 - for each $v \in V$, $d_i(v) \leftarrow \min\{d_{i-1}(v), \min_{(u,v) \in E} d_{i-1}(u) + c_{(u,v)}\}$.

イロト (周) (ヨ) (ヨ) ヨー つのの September 12, 2019

10/13

- If $d_i(v) = d_{i-1}(v)$ for all v, terminate and output the $d_i(v)$'s.
- $i \leftarrow i + 1$
- If i > n, terminate, report there is a negative cycle.

Claim

The modified Bellman-Ford algorithm reports a negative cycle if and only if there is one reachable from *s*.

< □ > < @ > < \alpha \equiv \equ

11/13

Claim

The modified Bellman-Ford algorithm reports a negative cycle if and only if there is one reachable from *s*.

Proof.

 (\Rightarrow) : If the algorithm does not terminate after *n* iterations, there must be a negative cycle, because

• For some $v \in V$, $d_n(v) < d_{n-1}(v)$;

3

Image: A matrix

Claim

The modified Bellman-Ford algorithm reports a negative cycle if and only if there is one reachable from *s*.

Proof.

 (\Rightarrow) : If the algorithm does not terminate after *n* iterations, there must be a negative cycle, because

- For some $v \in V$, $d_n(v) < d_{n-1}(v)$;
- By First Lemma, d_{n-1}(v) is the cost of min-cost path to v with at most n-1 edges.

3

(a)

Claim

The modified Bellman-Ford algorithm reports a negative cycle if and only if there is one reachable from *s*.

Proof.

 (\Rightarrow) : If the algorithm does not terminate after *n* iterations, there must be a negative cycle, because

- For some $v \in V$, $d_n(v) < d_{n-1}(v)$;
- By First Lemma, d_{n-1}(v) is the cost of min-cost path to v with at most n-1 edges.
- By Second Lemma, if any path has strictly less cost than $d_{n-1}(v)$, there must be a negative cycle.

- 34

(a)

Claim

The modified Bellman-Ford algorithm reports a negative cycle if and only if there is one reachable from *s*.

Proof.

(\Leftarrow): If there is a negative cycle reachable from *s*, the algorithm cannot terminate before *n* iterations finish. Proof by contradiction:

Claim

The modified Bellman-Ford algorithm reports a negative cycle if and only if there is one reachable from *s*.

Proof.

(\Leftarrow): If there is a negative cycle reachable from *s*, the algorithm cannot terminate before *n* iterations finish. Proof by contradiction:

• Key observation: if in some iteration *i*, $d_i(v) = d_{i-1}(v)$ for all *v*, then $d_k(v) = d_i(v)$ for any k > i, including any $k \ge n$ (if we let the algorithm keep running).

Claim

The modified Bellman-Ford algorithm reports a negative cycle if and only if there is one reachable from *s*.

Proof.

(\Leftarrow): If there is a negative cycle reachable from *s*, the algorithm cannot terminate before *n* iterations finish. Proof by contradiction:

- Key observation: if in some iteration *i*, $d_i(v) = d_{i-1}(v)$ for all *v*, then $d_k(v) = d_i(v)$ for any k > i, including any $k \ge n$ (if we let the algorithm keep running).
- By First Lemma, no path to v (of any length) can have cost $< d_i(v)$.

Claim

The modified Bellman-Ford algorithm reports a negative cycle if and only if there is one reachable from *s*.

Proof.

(\Leftarrow): If there is a negative cycle reachable from *s*, the algorithm cannot terminate before *n* iterations finish. Proof by contradiction:

- Key observation: if in some iteration *i*, $d_i(v) = d_{i-1}(v)$ for all *v*, then $d_k(v) = d_i(v)$ for any k > i, including any $k \ge n$ (if we let the algorithm keep running).
- By First Lemma, no path to v (of any length) can have cost $< d_i(v)$.
- But for any v on the reachable negative cycle, there must be a path to v with cost $< d_i(v)$, by going through the cycle for enough rounds. This is a contradiction.

• In Bellman-Ford, we seem to use an *n* × *n* array: an entry per node for at most *n* rounds.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

- In Bellman-Ford, we seem to use an n × n array: an entry per node for at most n rounds.
- This is unnecessary, because after the $i^{\text{-th}}$ iteration, we never use the contents of the array from iterations $1, \ldots, i 1$.

- In Bellman-Ford, we seem to use an n × n array: an entry per node for at most n rounds.
- This is unnecessary, because after the i^{-th} iteration, we never use the contents of the array from iterations $1, \ldots, i-1$.
- It suffices to use a $2 \times n$ array, using the first row to keep results from the last iteration, and the second for current iteration computation.

- In Bellman-Ford, we seem to use an n × n array: an entry per node for at most n rounds.
- This is unnecessary, because after the *i*^{-th} iteration, we never use the contents of the array from iterations $1, \ldots, i-1$.
- It suffices to use a $2 \times n$ array, using the first row to keep results from the last iteration, and the second for current iteration computation.
- In fact it suffices to use an array with only n entries, one per each node, and the update rule in each iteration is simply

$$d(v) \leftarrow \min\{d(v), \min_{(u,v)\in E} d(u) + c_{(u,v)}\}.$$

Exercise: Why is this OK?