
Min-Cost Paths Problems

Learning Goals

Minimum-cost Path problem with general edge costs

Bellman-Ford algorithm

Running time of Bellman-Ford algorithm

Polynomial-time algorithm to detect a negative cycle

September 12, 2019 1 / 13



Min-Cost Paths Problems

Finding minimum-cost paths in a graph

Input: a directed graph G = (V ,E ), with cost ce ∈ R for each edge

e ∈ E . A node s ∈ V .

Output: If a negative cycle exists, report so. If not, for each node

v ∈ V , a minimum-cost path from s to v , and its cost.

The two cases (with negative cycle or not) needs to be separate

With a negative cycle, minimum-cost paths are generally not de�ned.

A path can go around such a cycle inde�nitely to reduce its cost!

s u

v

t1 1

2 −3

September 12, 2019 2 / 13



Min-Cost Paths Problems

Finding minimum-cost paths in a graph

Input: a directed graph G = (V ,E ), with cost ce ∈ R for each edge

e ∈ E . A node s ∈ V .

Output: If a negative cycle exists, report so. If not, for each node

v ∈ V , a minimum-cost path from s to v , and its cost.

The two cases (with negative cycle or not) needs to be separate

With a negative cycle, minimum-cost paths are generally not de�ned.

A path can go around such a cycle inde�nitely to reduce its cost!

s u

v

t1 1

2 −3

September 12, 2019 2 / 13



Min-Cost Paths Problems

Finding minimum-cost paths in a graph

Input: a directed graph G = (V ,E ), with cost ce ∈ R for each edge

e ∈ E . A node s ∈ V .

Output: If a negative cycle exists, report so. If not, for each node

v ∈ V , a minimum-cost path from s to v , and its cost.

The two cases (with negative cycle or not) needs to be separate

With a negative cycle, minimum-cost paths are generally not de�ned.

A path can go around such a cycle inde�nitely to reduce its cost!

s u

v

t1 1

2 −3

September 12, 2019 2 / 13



Min-Cost Paths Problems

Why Dijkstra fails

Even without negative cycles, Dijkstra's algorithm may fail when there

are negative edge costs.

s

u

v

t

1

3

1

−2

Ds = 0

Du = 1

Dv = 3

Dt = 2

dt = 1

Example of Dijkstra failure

D: Dijkstra results

dt is correct answer

Dt = 2 is incorrect

Lesson: Nodes �discov-

ered� later may lead to

better paths to nodes

�discovered� earlier

September 12, 2019 3 / 13



Min-Cost Paths Problems

Why Dijkstra fails

Even without negative cycles, Dijkstra's algorithm may fail when there

are negative edge costs.

s

u

v

t

1

3

1

−2

Ds = 0

Du = 1

Dv = 3

Dt = 2

dt = 1

Example of Dijkstra failure

D: Dijkstra results

dt is correct answer

Dt = 2 is incorrect

Lesson: Nodes �discov-

ered� later may lead to

better paths to nodes

�discovered� earlier

September 12, 2019 3 / 13



Min-Cost Paths Problems

Why Dijkstra fails

Even without negative cycles, Dijkstra's algorithm may fail when there

are negative edge costs.

s

u

v

t

1

3

1

−2

Ds = 0

Du = 1

Dv = 3

Dt = 2

dt = 1

Example of Dijkstra failure

D: Dijkstra results

dt is correct answer

Dt = 2 is incorrect

Lesson: Nodes �discov-

ered� later may lead to

better paths to nodes

�discovered� earlier

September 12, 2019 3 / 13



Min-Cost Paths Problems

Why Dijkstra fails

Even without negative cycles, Dijkstra's algorithm may fail when there

are negative edge costs.

s

u

v

t

1

3

1

−2

Ds = 0

Du = 1

Dv = 3

Dt = 2

dt = 1

Example of Dijkstra failure

D: Dijkstra results

dt is correct answer

Dt = 2 is incorrect

Lesson: Nodes �discov-

ered� later may lead to

better paths to nodes

�discovered� earlier

September 12, 2019 3 / 13



Min-Cost Paths Problems

Review of Last Lecture

Min-cost paths are not well de�ned

when there is a negative cycle.

s u

v

t1 1

2 −3

Dijkstra can fail when there are

negative edge costs.

s

u

v

t

1

3

1

−2

Ds = 0

Du = 1

Dv = 3

Dt = 2

dt = 1

September 12, 2019 4 / 13



Min-Cost Paths Problems

Bellman-Ford Algorithm

The example suggests: Keep updating everything, always

Bellman-Ford Algorithm, when the graph is guaranteed to have no

negative cycle:

Initialize: d0(s) = 0, d0(v) =∞ for all v 6= s.
Iterate: initialize i ← 1.

for each v ∈ V , di (v)← min{di−1(v),min(u,v)∈E di−1(u) + c(u,v)}.
If di (v) = di−1(v) for all v , terminate.

i ← i + 1.

Output di (v) for each v ∈ V .

Obvious question: Does the algorithm terminate at all?

September 12, 2019 5 / 13



Min-Cost Paths Problems

Bellman-Ford Algorithm

The example suggests: Keep updating everything, always

Bellman-Ford Algorithm, when the graph is guaranteed to have no

negative cycle:

Initialize: d0(s) = 0, d0(v) =∞ for all v 6= s.

Iterate: initialize i ← 1.

for each v ∈ V , di (v)← min{di−1(v),min(u,v)∈E di−1(u) + c(u,v)}.
If di (v) = di−1(v) for all v , terminate.

i ← i + 1.

Output di (v) for each v ∈ V .

Obvious question: Does the algorithm terminate at all?

September 12, 2019 5 / 13



Min-Cost Paths Problems

Bellman-Ford Algorithm

The example suggests: Keep updating everything, always

Bellman-Ford Algorithm, when the graph is guaranteed to have no

negative cycle:

Initialize: d0(s) = 0, d0(v) =∞ for all v 6= s.
Iterate: initialize i ← 1.

for each v ∈ V , di (v)← min{di−1(v),min(u,v)∈E di−1(u) + c(u,v)}.
If di (v) = di−1(v) for all v , terminate.

i ← i + 1.

Output di (v) for each v ∈ V .

Obvious question: Does the algorithm terminate at all?

September 12, 2019 5 / 13



Min-Cost Paths Problems

Bellman-Ford Algorithm

The example suggests: Keep updating everything, always

Bellman-Ford Algorithm, when the graph is guaranteed to have no

negative cycle:

Initialize: d0(s) = 0, d0(v) =∞ for all v 6= s.
Iterate: initialize i ← 1.

for each v ∈ V , di (v)← min{di−1(v),min(u,v)∈E di−1(u) + c(u,v)}.
If di (v) = di−1(v) for all v , terminate.

i ← i + 1.

Output di (v) for each v ∈ V .

Obvious question: Does the algorithm terminate at all?

September 12, 2019 5 / 13



Min-Cost Paths Problems

Bellman-Ford Algorithm

The example suggests: Keep updating everything, always

Bellman-Ford Algorithm, when the graph is guaranteed to have no

negative cycle:

Initialize: d0(s) = 0, d0(v) =∞ for all v 6= s.
Iterate: initialize i ← 1.

for each v ∈ V , di (v)← min{di−1(v),min(u,v)∈E di−1(u) + c(u,v)}.
If di (v) = di−1(v) for all v , terminate.

i ← i + 1.

Output di (v) for each v ∈ V .

Obvious question: Does the algorithm terminate at all?

September 12, 2019 5 / 13



Min-Cost Paths Problems

Bellman-Ford example

s

u

v

t1

1

3

−2

s

u

v

t

d0(s) = 0

d0(u) = ∞

1

1

3

−2

d0(v) = ∞

d0(t) = ∞

s

u

v

t1

1

3

−2

d1(s) = 0

d1(u) = 1

d1(v) = 3

d1(t) = ∞

s

u

v

t1

1

3

−2

d2(s) = 0

d2(u) = 1

d2(v) = 3

d2(t) = 1

September 12, 2019 6 / 13



Min-Cost Paths Problems

Bellman-Ford example

s

u

v

t1

1

3

−2

s

u

v

t

d0(s) = 0

d0(u) = ∞

1

1

3

−2

d0(v) = ∞

d0(t) = ∞

s

u

v

t1

1

3

−2

d1(s) = 0

d1(u) = 1

d1(v) = 3

d1(t) = ∞

s

u

v

t1

1

3

−2

d2(s) = 0

d2(u) = 1

d2(v) = 3

d2(t) = 1

September 12, 2019 6 / 13



Min-Cost Paths Problems

Bellman-Ford example

s

u

v

t1

1

3

−2

s

u

v

t

d0(s) = 0

d0(u) = ∞

1

1

3

−2

d0(v) = ∞

d0(t) = ∞

s

u

v

t1

1

3

−2

d1(s) = 0

d1(u) = 1

d1(v) = 3

d1(t) = ∞

s

u

v

t1

1

3

−2

d2(s) = 0

d2(u) = 1

d2(v) = 3

d2(t) = 1

September 12, 2019 6 / 13



Min-Cost Paths Problems

Bellman-Ford example

s

u

v

t1

1

3

−2

s

u

v

t

d0(s) = 0

d0(u) = ∞

1

1

3

−2

d0(v) = ∞

d0(t) = ∞

s

u

v

t1

1

3

−2

d1(s) = 0

d1(u) = 1

d1(v) = 3

d1(t) = ∞

s

u

v

t1

1

3

−2

d2(s) = 0

d2(u) = 1

d2(v) = 3

d2(t) = 1

September 12, 2019 6 / 13



Min-Cost Paths Problems

Proof of Correctness and Termination

The correctness of the algorithm is a consequence of two lemmas.

Lemma

For each v ∈ V , after the i -th iteration, di (v) is the minimum cost among

all paths from s to v using at most i edges.

Lemma

In a graph containing no negative cycles, if there is a path from node s to

node t, then there is a minimum-cost path with at most n − 1 edges.

When the graph is guaranteed to have no negative cycle, the algorithm

terminates after at most n iterations, and di (v) contains the correct answer

for each v ∈ V .

Running time: O(m) per iteration, O(n) iterations, so O(mn) in total.

September 12, 2019 7 / 13



Min-Cost Paths Problems

Proof of Correctness and Termination

The correctness of the algorithm is a consequence of two lemmas.

Lemma

For each v ∈ V , after the i -th iteration, di (v) is the minimum cost among

all paths from s to v using at most i edges.

Lemma

In a graph containing no negative cycles, if there is a path from node s to

node t, then there is a minimum-cost path with at most n − 1 edges.

When the graph is guaranteed to have no negative cycle, the algorithm

terminates after at most n iterations, and di (v) contains the correct answer

for each v ∈ V .

Running time: O(m) per iteration, O(n) iterations, so O(mn) in total.

September 12, 2019 7 / 13



Min-Cost Paths Problems

Proof of Correctness and Termination

The correctness of the algorithm is a consequence of two lemmas.

Lemma

For each v ∈ V , after the i -th iteration, di (v) is the minimum cost among

all paths from s to v using at most i edges.

Lemma

In a graph containing no negative cycles, if there is a path from node s to

node t, then there is a minimum-cost path with at most n − 1 edges.

When the graph is guaranteed to have no negative cycle, the algorithm

terminates after at most n iterations, and di (v) contains the correct answer

for each v ∈ V .

Running time: O(m) per iteration, O(n) iterations, so O(mn) in total.

September 12, 2019 7 / 13



Min-Cost Paths Problems

Proof of Correctness and Termination

The correctness of the algorithm is a consequence of two lemmas.

Lemma

For each v ∈ V , after the i -th iteration, di (v) is the minimum cost among

all paths from s to v using at most i edges.

Lemma

In a graph containing no negative cycles, if there is a path from node s to

node t, then there is a minimum-cost path with at most n − 1 edges.

When the graph is guaranteed to have no negative cycle, the algorithm

terminates after at most n iterations, and di (v) contains the correct answer

for each v ∈ V .

Running time: O(m) per iteration, O(n) iterations, so O(mn) in total.

September 12, 2019 7 / 13



Min-Cost Paths Problems

Proof of First Lemma

Lemma

For each v ∈ V , after the i -th iteration, di (v) is minimum cost among all

paths from s to v using at most i edges.

Proof.

By induction. Induction hypothesis is the lemma statement. Base case:

i = 0, obvious. Inductive step:

For each v ∈ V , after the i -th iteration, di (v) is the cost of some path

from s to v with at most i edges.

Any path P from s to v with at most i edges either

reaches v with ≤ i − 1 edges, with cost ≥ di−1(v), by IH;

or �rst reaches some node u using at most i − 1 edges, and then takes

edge (u, v), with cost ≥ di−1(u) + c(u,v).

P has cost at least min{di−1(v),min(u,v)∈E di−1(u) + c(u,v)} = di (v).

September 12, 2019 8 / 13



Min-Cost Paths Problems

Proof of First Lemma

Lemma

For each v ∈ V , after the i -th iteration, di (v) is minimum cost among all

paths from s to v using at most i edges.

Proof.

By induction. Induction hypothesis is the lemma statement. Base case:

i = 0, obvious. Inductive step:

For each v ∈ V , after the i -th iteration, di (v) is the cost of some path

from s to v with at most i edges.

Any path P from s to v with at most i edges either

reaches v with ≤ i − 1 edges, with cost ≥ di−1(v), by IH;

or �rst reaches some node u using at most i − 1 edges, and then takes

edge (u, v), with cost ≥ di−1(u) + c(u,v).

P has cost at least min{di−1(v),min(u,v)∈E di−1(u) + c(u,v)} = di (v).

September 12, 2019 8 / 13



Min-Cost Paths Problems

Proof of First Lemma

Lemma

For each v ∈ V , after the i -th iteration, di (v) is minimum cost among all

paths from s to v using at most i edges.

Proof.

By induction. Induction hypothesis is the lemma statement. Base case:

i = 0, obvious. Inductive step:

For each v ∈ V , after the i -th iteration, di (v) is the cost of some path

from s to v with at most i edges.

Any path P from s to v with at most i edges either

reaches v with ≤ i − 1 edges, with cost ≥ di−1(v), by IH;

or �rst reaches some node u using at most i − 1 edges, and then takes

edge (u, v), with cost ≥ di−1(u) + c(u,v).

P has cost at least min{di−1(v),min(u,v)∈E di−1(u) + c(u,v)} = di (v).

September 12, 2019 8 / 13



Min-Cost Paths Problems

Proof of First Lemma

Lemma

For each v ∈ V , after the i -th iteration, di (v) is minimum cost among all

paths from s to v using at most i edges.

Proof.

By induction. Induction hypothesis is the lemma statement. Base case:

i = 0, obvious. Inductive step:

For each v ∈ V , after the i -th iteration, di (v) is the cost of some path

from s to v with at most i edges.

Any path P from s to v with at most i edges either

reaches v with ≤ i − 1 edges, with cost ≥ di−1(v), by IH;

or �rst reaches some node u using at most i − 1 edges, and then takes

edge (u, v), with cost ≥ di−1(u) + c(u,v).

P has cost at least min{di−1(v),min(u,v)∈E di−1(u) + c(u,v)} = di (v).

September 12, 2019 8 / 13



Min-Cost Paths Problems

Proof of First Lemma

Lemma

For each v ∈ V , after the i -th iteration, di (v) is minimum cost among all

paths from s to v using at most i edges.

Proof.

By induction. Induction hypothesis is the lemma statement. Base case:

i = 0, obvious. Inductive step:

For each v ∈ V , after the i -th iteration, di (v) is the cost of some path

from s to v with at most i edges.

Any path P from s to v with at most i edges either

reaches v with ≤ i − 1 edges, with cost ≥ di−1(v), by IH;

or �rst reaches some node u using at most i − 1 edges, and then takes

edge (u, v), with cost ≥ di−1(u) + c(u,v).

P has cost at least min{di−1(v),min(u,v)∈E di−1(u) + c(u,v)} = di (v).

September 12, 2019 8 / 13



Min-Cost Paths Problems

Proof of First Lemma

Lemma

For each v ∈ V , after the i -th iteration, di (v) is minimum cost among all

paths from s to v using at most i edges.

Proof.

By induction. Induction hypothesis is the lemma statement. Base case:

i = 0, obvious. Inductive step:

For each v ∈ V , after the i -th iteration, di (v) is the cost of some path

from s to v with at most i edges.

Any path P from s to v with at most i edges either

reaches v with ≤ i − 1 edges, with cost ≥ di−1(v), by IH;

or �rst reaches some node u using at most i − 1 edges, and then takes

edge (u, v), with cost ≥ di−1(u) + c(u,v).

P has cost at least min{di−1(v),min(u,v)∈E di−1(u) + c(u,v)} = di (v).

September 12, 2019 8 / 13



Min-Cost Paths Problems

Proof of Second Lemma

Lemma

In a graph containing no negative cycles, if there is a path from node s to

node t, then there is a minimum-cost path from s to t with at most n − 1

edges.

Proof.

Take any path P from s to t. If P passes a node v twice, the part of the

path between these is a cycle. �Skipping� the cycle does not increase the

cost of P because the cycle has nonnegative cost. Keep removing cycles

this way until P is simple (i.e., passes each node at most once); its cost

never increased. A simple path has at most n − 1 edges.

September 12, 2019 9 / 13



Min-Cost Paths Problems

Proof of Second Lemma

Lemma

In a graph containing no negative cycles, if there is a path from node s to

node t, then there is a minimum-cost path from s to t with at most n − 1

edges.

Proof.

Take any path P from s to t. If P passes a node v twice, the part of the

path between these is a cycle.

�Skipping� the cycle does not increase the

cost of P because the cycle has nonnegative cost. Keep removing cycles

this way until P is simple (i.e., passes each node at most once); its cost

never increased. A simple path has at most n − 1 edges.

September 12, 2019 9 / 13



Min-Cost Paths Problems

Proof of Second Lemma

Lemma

In a graph containing no negative cycles, if there is a path from node s to

node t, then there is a minimum-cost path from s to t with at most n − 1

edges.

Proof.

Take any path P from s to t. If P passes a node v twice, the part of the

path between these is a cycle. �Skipping� the cycle does not increase the

cost of P because the cycle has nonnegative cost.

Keep removing cycles

this way until P is simple (i.e., passes each node at most once); its cost

never increased. A simple path has at most n − 1 edges.

September 12, 2019 9 / 13



Min-Cost Paths Problems

Proof of Second Lemma

Lemma

In a graph containing no negative cycles, if there is a path from node s to

node t, then there is a minimum-cost path from s to t with at most n − 1

edges.

Proof.

Take any path P from s to t. If P passes a node v twice, the part of the

path between these is a cycle. �Skipping� the cycle does not increase the

cost of P because the cycle has nonnegative cost. Keep removing cycles

this way until P is simple (i.e., passes each node at most once); its cost

never increased.

A simple path has at most n − 1 edges.

September 12, 2019 9 / 13



Min-Cost Paths Problems

Proof of Second Lemma

Lemma

In a graph containing no negative cycles, if there is a path from node s to

node t, then there is a minimum-cost path from s to t with at most n − 1

edges.

Proof.

Take any path P from s to t. If P passes a node v twice, the part of the

path between these is a cycle. �Skipping� the cycle does not increase the

cost of P because the cycle has nonnegative cost. Keep removing cycles

this way until P is simple (i.e., passes each node at most once); its cost

never increased. A simple path has at most n − 1 edges.

September 12, 2019 9 / 13



Min-Cost Paths Problems

What if there is negative cycle?

Modi�ed Bellman-Ford Algorithm, without guarantee of no negative cycle:

Initialize: d0(s) = 0, d0(v) =∞ for v 6= s.

Iterate: initialize i ← 1.

for each v ∈ V , di (v)← min{di−1(v),min(u,v)∈E di−1(u) + c(u,v)}.
If di (v) = di−1(v) for all v , terminate and output the di (v)'s.
i ← i + 1.

If i > n, terminate, report there is a negative cycle.

September 12, 2019 10 / 13



Min-Cost Paths Problems

What if there is negative cycle?

Modi�ed Bellman-Ford Algorithm, without guarantee of no negative cycle:

Initialize: d0(s) = 0, d0(v) =∞ for v 6= s.

Iterate: initialize i ← 1.

for each v ∈ V , di (v)← min{di−1(v),min(u,v)∈E di−1(u) + c(u,v)}.
If di (v) = di−1(v) for all v , terminate and output the di (v)'s.
i ← i + 1.

If i > n, terminate, report there is a negative cycle.

September 12, 2019 10 / 13



Min-Cost Paths Problems

Correctness of Modi�ed Bellman-Ford Algorithm

Claim

The modi�ed Bellman-Ford algorithm reports a negative cycle if and only if

there is one reachable from s.

Proof.

(⇒): If the algorithm does not terminate after n iterations, there must be

a negative cycle, because

For some v ∈ V , dn(v) < dn−1(v);

By First Lemma, dn−1(v) is the cost of min-cost path to v with at

most n − 1 edges.

By Second Lemma, if any path has strictly less cost than dn−1(v),
there must be a negative cycle.

September 12, 2019 11 / 13



Min-Cost Paths Problems

Correctness of Modi�ed Bellman-Ford Algorithm

Claim

The modi�ed Bellman-Ford algorithm reports a negative cycle if and only if

there is one reachable from s.

Proof.

(⇒): If the algorithm does not terminate after n iterations, there must be

a negative cycle, because

For some v ∈ V , dn(v) < dn−1(v);

By First Lemma, dn−1(v) is the cost of min-cost path to v with at

most n − 1 edges.

By Second Lemma, if any path has strictly less cost than dn−1(v),
there must be a negative cycle.

September 12, 2019 11 / 13



Min-Cost Paths Problems

Correctness of Modi�ed Bellman-Ford Algorithm

Claim

The modi�ed Bellman-Ford algorithm reports a negative cycle if and only if

there is one reachable from s.

Proof.

(⇒): If the algorithm does not terminate after n iterations, there must be

a negative cycle, because

For some v ∈ V , dn(v) < dn−1(v);

By First Lemma, dn−1(v) is the cost of min-cost path to v with at

most n − 1 edges.

By Second Lemma, if any path has strictly less cost than dn−1(v),
there must be a negative cycle.

September 12, 2019 11 / 13



Min-Cost Paths Problems

Correctness of Modi�ed Bellman-Ford Algorithm

Claim

The modi�ed Bellman-Ford algorithm reports a negative cycle if and only if

there is one reachable from s.

Proof.

(⇒): If the algorithm does not terminate after n iterations, there must be

a negative cycle, because

For some v ∈ V , dn(v) < dn−1(v);

By First Lemma, dn−1(v) is the cost of min-cost path to v with at

most n − 1 edges.

By Second Lemma, if any path has strictly less cost than dn−1(v),
there must be a negative cycle.

September 12, 2019 11 / 13



Min-Cost Paths Problems

Correctness of Modi�ed Bellman-Ford Algorithm Cont.

Claim

The modi�ed Bellman-Ford algorithm reports a negative cycle if and only if

there is one reachable from s.

Proof.

(⇐): If there is a negative cycle reachable from s, the algorithm cannot

terminate before n iterations �nish. Proof by contradiction:

Key observation: if in some iteration i , di (v) = di−1(v) for all v , then
dk(v) = di (v) for any k > i , including any k ≥ n (if we let the

algorithm keep running).

By First Lemma, no path to v (of any length) can have cost < di (v).

But for any v on the reachable negative cycle, there must be a path

to v with cost < di (v), by going through the cycle for enough rounds.

This is a contradiction.

September 12, 2019 12 / 13



Min-Cost Paths Problems

Correctness of Modi�ed Bellman-Ford Algorithm Cont.

Claim

The modi�ed Bellman-Ford algorithm reports a negative cycle if and only if

there is one reachable from s.

Proof.

(⇐): If there is a negative cycle reachable from s, the algorithm cannot

terminate before n iterations �nish. Proof by contradiction:

Key observation: if in some iteration i , di (v) = di−1(v) for all v , then
dk(v) = di (v) for any k > i , including any k ≥ n (if we let the

algorithm keep running).

By First Lemma, no path to v (of any length) can have cost < di (v).

But for any v on the reachable negative cycle, there must be a path

to v with cost < di (v), by going through the cycle for enough rounds.

This is a contradiction.

September 12, 2019 12 / 13



Min-Cost Paths Problems

Correctness of Modi�ed Bellman-Ford Algorithm Cont.

Claim

The modi�ed Bellman-Ford algorithm reports a negative cycle if and only if

there is one reachable from s.

Proof.

(⇐): If there is a negative cycle reachable from s, the algorithm cannot

terminate before n iterations �nish. Proof by contradiction:

Key observation: if in some iteration i , di (v) = di−1(v) for all v , then
dk(v) = di (v) for any k > i , including any k ≥ n (if we let the

algorithm keep running).

By First Lemma, no path to v (of any length) can have cost < di (v).

But for any v on the reachable negative cycle, there must be a path

to v with cost < di (v), by going through the cycle for enough rounds.

This is a contradiction.

September 12, 2019 12 / 13



Min-Cost Paths Problems

Correctness of Modi�ed Bellman-Ford Algorithm Cont.

Claim

The modi�ed Bellman-Ford algorithm reports a negative cycle if and only if

there is one reachable from s.

Proof.

(⇐): If there is a negative cycle reachable from s, the algorithm cannot

terminate before n iterations �nish. Proof by contradiction:

Key observation: if in some iteration i , di (v) = di−1(v) for all v , then
dk(v) = di (v) for any k > i , including any k ≥ n (if we let the

algorithm keep running).

By First Lemma, no path to v (of any length) can have cost < di (v).

But for any v on the reachable negative cycle, there must be a path

to v with cost < di (v), by going through the cycle for enough rounds.

This is a contradiction.

September 12, 2019 12 / 13



Min-Cost Paths Problems

Space Consideration

In Bellman-Ford, we seem to use an n× n array: an entry per node for

at most n rounds.

This is unnecessary, because after the i -th iteration, we never use the

contents of the array from iterations 1, . . . , i − 1.

It su�ces to use a 2× n array, using the �rst row to keep results from

the last iteration, and the second for current iteration computation.

In fact it su�ces to use an array with only n entries, one per each

node, and the update rule in each iteration is simply

d(v)← min{d(v), min
(u,v)∈E

d(u) + c(u,v)}.

Exercise: Why is this OK?

September 12, 2019 13 / 13



Min-Cost Paths Problems

Space Consideration

In Bellman-Ford, we seem to use an n× n array: an entry per node for

at most n rounds.

This is unnecessary, because after the i -th iteration, we never use the

contents of the array from iterations 1, . . . , i − 1.

It su�ces to use a 2× n array, using the �rst row to keep results from

the last iteration, and the second for current iteration computation.

In fact it su�ces to use an array with only n entries, one per each

node, and the update rule in each iteration is simply

d(v)← min{d(v), min
(u,v)∈E

d(u) + c(u,v)}.

Exercise: Why is this OK?

September 12, 2019 13 / 13



Min-Cost Paths Problems

Space Consideration

In Bellman-Ford, we seem to use an n× n array: an entry per node for

at most n rounds.

This is unnecessary, because after the i -th iteration, we never use the

contents of the array from iterations 1, . . . , i − 1.

It su�ces to use a 2× n array, using the �rst row to keep results from

the last iteration, and the second for current iteration computation.

In fact it su�ces to use an array with only n entries, one per each

node, and the update rule in each iteration is simply

d(v)← min{d(v), min
(u,v)∈E

d(u) + c(u,v)}.

Exercise: Why is this OK?

September 12, 2019 13 / 13



Min-Cost Paths Problems

Space Consideration

In Bellman-Ford, we seem to use an n× n array: an entry per node for

at most n rounds.

This is unnecessary, because after the i -th iteration, we never use the

contents of the array from iterations 1, . . . , i − 1.

It su�ces to use a 2× n array, using the �rst row to keep results from

the last iteration, and the second for current iteration computation.

In fact it su�ces to use an array with only n entries, one per each

node, and the update rule in each iteration is simply

d(v)← min{d(v), min
(u,v)∈E

d(u) + c(u,v)}.

Exercise: Why is this OK?

September 12, 2019 13 / 13


	Min-Cost Paths Problems

