Learning Goals

- Definition of metrics
- Definition of Center Selection (a.k.a. k-center) Problem
- Understand the greedy algorithm
- Analyze the approximation ratio of the greedy algorithm

The center selection problem

- We are given a set S of n sites, an integer k, and also distances $d(s, z)$ between every two sites s and z.

The center selection problem

- We are given a set S of n sites, an integer k, and also distances $d(s, z)$ between every two sites s and z.
- The distances satisfy:
- $\forall s \in S, d(s, s)=0$;
- $\forall s, z \in S, d(s, z)=d(z, s)$.
- $\forall s, z, h \in S, d(s, z)+d(z, h) \geq d(s, h)$.

The center selection problem

- We are given a set S of n sites, an integer k, and also distances $d(s, z)$ between every two sites s and z.
- The distances satisfy:
- $\forall s \in S, d(s, s)=0$;
- $\forall s, z \in S, d(s, z)=d(z, s)$.
- $\forall s, z, h \in S, d(s, z)+d(z, h) \geq d(s, h)$.
- For a set $C \subseteq S$ of centers, the distance from a site s to C is $d(s, C):=\min _{c \in C} d(s, c)$.

The center selection problem

- We are given a set S of n sites, an integer k, and also distances $d(s, z)$ between every two sites s and z.
- The distances satisfy:
- $\forall s \in S, d(s, s)=0$;
- $\forall s, z \in S, d(s, z)=d(z, s)$.
- $\forall s, z, h \in S, d(s, z)+d(z, h) \geq d(s, h)$.
- For a set $C \subseteq S$ of centers, the distance from a site s to C is $d(s, C):=\min _{c \in C} d(s, c)$.
- The covering radius of C is $\max _{s \in S} d(s, C)$.

The center selection problem

- We are given a set S of n sites, an integer k, and also distances $d(s, z)$ between every two sites s and z.
- The distances satisfy:
- $\forall s \in S, d(s, s)=0$;
- $\forall s, z \in S, d(s, z)=d(z, s)$.
- $\forall s, z, h \in S, d(s, z)+d(z, h) \geq d(s, h)$.
- For a set $C \subseteq S$ of centers, the distance from a site s to C is $d(s, C):=\min _{c \in C} d(s, c)$.
- The covering radius of C is $\max _{s \in S} d(s, C)$.
- We are asked to choose a set of k centers to minimize its covering radius.

The center selection problem

- We are given a set S of n sites, an integer k, and also distances $d(s, z)$ between every two sites s and z.
- The distances satisfy:
- $\forall s \in S, d(s, s)=0$;
- $\forall s, z \in S, d(s, z)=d(z, s)$.
- $\forall s, z, h \in S, d(s, z)+d(z, h) \geq d(s, h)$.
- For a set $C \subseteq S$ of centers, the distance from a site s to C is $d(s, C):=\min _{c \in C} d(s, c)$.
- The covering radius of C is $\max _{s \in S} d(s, C)$.
- We are asked to choose a set of k centers to minimize its covering radius.
- The problem is also known as the metric k-center problem.

Metrics

Given a set S and function $d: S \times S \rightarrow \mathbb{R}_{+}$, if d satisfies

- $\forall s \in S, d(s, s)=0$;
- $\forall s, z \in S, d(s, z)=d(z, s)$.
- $\forall s, z, h \in S, d(s, z)+d(z, h) \geq d(s, h)$.
then d is called a pseudometric.

Metrics

Given a set S and function $d: S \times S \rightarrow \mathbb{R}_{+}$, if d satisfies

- $\forall s \in S, d(s, s)=0$;
- $\forall s, z \in S, d(s, z)=d(z, s)$.
- $\forall s, z, h \in S, d(s, z)+d(z, h) \geq d(s, h)$.
then d is called a pseudometric.
If d further satisfies $d(s, z)=0 \Rightarrow s=z$, then d is called a metric.

Metrics

Given a set S and function $d: S \times S \rightarrow \mathbb{R}_{+}$, if d satisfies

- $\forall s \in S, d(s, s)=0$;
- $\forall s, z \in S, d(s, z)=d(z, s)$.
- $\forall s, z, h \in S, d(s, z)+d(z, h) \geq d(s, h)$.
then d is called a pseudometric.
If d further satisfies $d(s, z)=0 \Rightarrow s=z$, then d is called a metric. Example: $S \subseteq \mathbb{R}^{m}$,
- $d(x, y)=\|x-y\|_{2}=\sqrt{\sum_{j}\left(x_{j}-y_{j}\right)^{2}}$ the Euclidean distance;

Metrics

Given a set S and function $d: S \times S \rightarrow \mathbb{R}_{+}$, if d satisfies

- $\forall s \in S, d(s, s)=0$;
- $\forall s, z \in S, d(s, z)=d(z, s)$.
- $\forall s, z, h \in S, d(s, z)+d(z, h) \geq d(s, h)$.
then d is called a pseudometric.
If d further satisfies $d(s, z)=0 \Rightarrow s=z$, then d is called a metric.
Example: $S \subseteq \mathbb{R}^{m}$,
- $d(x, y)=\|x-y\|_{2}=\sqrt{\sum_{j}\left(x_{j}-y_{j}\right)^{2}}$ the Euclidean distance;
- $d(x, y)=\|x-y\|_{1}=\sum_{j}\left|x_{j}-y_{j}\right|$ the ℓ_{1} distance, a.k.a. Manhattan distance;

Metrics

Given a set S and function $d: S \times S \rightarrow \mathbb{R}_{+}$, if d satisfies

- $\forall s \in S, d(s, s)=0$;
- $\forall s, z \in S, d(s, z)=d(z, s)$.
- $\forall s, z, h \in S, d(s, z)+d(z, h) \geq d(s, h)$.
then d is called a pseudometric.
If d further satisfies $d(s, z)=0 \Rightarrow s=z$, then d is called a metric.
Example: $S \subseteq \mathbb{R}^{m}$,
- $d(x, y)=\|x-y\|_{2}=\sqrt{\sum_{j}\left(x_{j}-y_{j}\right)^{2}}$ the Euclidean distance;
- $d(x, y)=\|x-y\|_{1}=\sum_{j}\left|x_{j}-y_{j}\right|$ the ℓ_{1} distance, a.k.a. Manhattan distance;
- $d(x, y)=\|x-p\|_{p}=\left[\sum_{j}\left(x_{j}-y_{j}\right)^{p}\right]^{1 / p}$, for $p \geq 1$, the ℓ_{p} distance.

A Greedy Algorithm

- The problem is NP-hard. (Reduction?)

A Greedy Algorithm

- The problem is NP-hard. (Reduction?)
- A natural, intuitive greedy approach: find a site that is "central" to many sites, set up a center there, remove all sites close to it (i.e., consider them as covered), and repeat the procedure.

A Greedy Algorithm

- The problem is NP-hard. (Reduction?)
- A natural, intuitive greedy approach: find a site that is "central" to many sites, set up a center there, remove all sites close to it (i.e., consider them as covered), and repeat the procedure.
- Which sites should be considered "covered"?

A Greedy Algorithm

- The problem is NP-hard. (Reduction?)
- A natural, intuitive greedy approach: find a site that is "central" to many sites, set up a center there, remove all sites close to it (i.e., consider them as covered), and repeat the procedure.
- Which sites should be considered "covered"?
- Suppose we are interested in whether it is possible to choose k centers with covering radius $\leq r$ for some r.

A Greedy Algorithm

- The problem is NP-hard. (Reduction?)
- A natural, intuitive greedy approach: find a site that is "central" to many sites, set up a center there, remove all sites close to it (i.e., consider them as covered), and repeat the procedure.
- Which sites should be considered "covered"?
- Suppose we are interested in whether it is possible to choose k centers with covering radius $\leq r$ for some r.
- Alternatively, we may think of having guessed a covering radius r. Later we can look for an appropriate r by binary search.

A Greedy Algorithm

- The greedy procedure:
- Itialize $R \leftarrow S, C \leftarrow \emptyset$. (R will be the set of sites "not covered" yet, and C will be the set of centers we choose.)

A Greedy Algorithm

- The greedy procedure:
- Itialize $R \leftarrow S, C \leftarrow \emptyset$. (R will be the set of sites "not covered" yet, and C will be the set of centers we choose.)
- While R is nonempty and $|C|<k$, do: add an arbitrary site $s \in R$ to C, remove from R any site within distance r to s.

A Greedy Algorithm

- The greedy procedure:
- Itialize $R \leftarrow S, C \leftarrow \emptyset$. (R will be the set of sites "not covered" yet, and C will be the set of centers we choose.)
- While R is nonempty and $|C|<k$, do: add an arbitrary site $s \in R$ to C, remove from R any site within distance r to s.
- If we terminate with a non-empty R, declare failure; otherwise we find a set $C,|C| \leq k$, with a covering radius $\leq r$.

A Greedy Algorithm

- The greedy procedure:
- Itialize $R \leftarrow S, C \leftarrow \emptyset$. (R will be the set of sites "not covered" yet, and C will be the set of centers we choose.)
- While R is nonempty and $|C|<k$, do: add an arbitrary site $s \in R$ to C, remove from R any site within distance r to s.
- If we terminate with a non-empty R, declare failure; otherwise we find a set $C,|C| \leq k$, with a covering radius $\leq r$.
- Note that the algorithm is not fully "greedy": in each step s is chosen arbitrarily. It turns out that being more selective in that step does not help with the approximation ratio.

Analysis

The terminating condition does not (and cannot) say that, if the algorithm fails, there is no $C,|C| \leq k$, with covering radius $\leq r$. (Otherwise we can just try all r 's and have a polynomial-time algorithm for the problem.)

Analysis

The terminating condition does not (and cannot) say that, if the algorithm fails, there is no $C,|C| \leq k$, with covering radius $\leq r$. (Otherwise we can just try all r 's and have a polynomial-time algorithm for the problem.)

Theorem

If the above greedy algorithm fails, for any $C^{*} \subseteq S$ with $\left|C^{*}\right| \leq k$, the covering radius of C^{*} is strictly greater than $r / 2$.

Analysis

The terminating condition does not (and cannot) say that, if the algorithm fails, there is no $C,|C| \leq k$, with covering radius $\leq r$. (Otherwise we can just try all r 's and have a polynomial-time algorithm for the problem.)

Theorem

If the above greedy algorithm fails, for any $C^{*} \subseteq S$ with $\left|C^{*}\right| \leq k$, the covering radius of C^{*} is strictly greater than $r / 2$.

Proof.

Let C^{*} be any subset of S with covering radius $\leq \frac{r}{2}$, we show $\left|C^{*}\right|>k$.

Analysis

The terminating condition does not (and cannot) say that, if the algorithm fails, there is no $C,|C| \leq k$, with covering radius $\leq r$. (Otherwise we can just try all r 's and have a polynomial-time algorithm for the problem.)

Theorem

If the above greedy algorithm fails, for any $C^{*} \subseteq S$ with $\left|C^{*}\right| \leq k$, the covering radius of C^{*} is strictly greater than $r / 2$.

Proof.

Let C^{*} be any subset of S with covering radius $\leq \frac{r}{2}$, we show $\left|C^{*}\right|>k$. Recall our algorithm terminated with a set of centers $C,|C|=k$, without covering all sites within distance r.

Proof (continued..)

For any site s and radius δ, let's denote by $B(s, \delta)$ the set of sites within distance δ to s, i.e., $B(s, \delta):=\{t \in S: d(s, t) \leq \delta\}$.

Proof (continued..)

For any site s and radius δ, let's denote by $B(s, \delta)$ the set of sites within distance δ to s, i.e., $B(s, \delta):=\{t \in S: d(s, t) \leq \delta\}$. Consider any $c \in C$. There must be some $o_{c} \in C^{*}$ that is in $B\left(c, \frac{r}{2}\right)$.

Proof (continued..)

For any site s and radius δ, let's denote by $B(s, \delta)$ the set of sites within distance δ to s, i.e., $B(s, \delta):=\{t \in S: d(s, t) \leq \delta\}$. Consider any $c \in C$. There must be some $o_{c} \in C^{*}$ that is in $B\left(c, \frac{r}{2}\right)$. Key observation: $B\left(o_{c}, \frac{r}{2}\right) \subseteq B(c, r)$.

Proof by picture

Proof by picture

Proof by picture

$c^{\prime} \notin B(c, r)$, so $c^{\prime} \notin B\left(o_{c}, \frac{r}{2}\right)$, therefore $o_{c^{\prime}} \neq o_{c}$.

Proof (continued..)

For any site s and radius δ, let's denote by $B(s, \delta)$ the set of sites within distance δ to s, i.e., $B(s, \delta):=\{t \in S: d(s, t) \leq \delta\}$.
Consider any $c \in C$. There must be some $o_{c} \in C^{*}$ that is in $B\left(c, \frac{r}{2}\right)$. Key observation: $B\left(o_{c}, \frac{r}{2}\right) \subseteq B(c, r)$. This is because $\forall s \in B\left(o_{c}, \frac{r}{2}\right)$,

$$
d(s, c) \leq d\left(s, o_{c}\right)+d\left(o_{c}, c\right) \leq \frac{r}{2}+\frac{r}{2}=r .
$$

Proof (continued..)

For any site s and radius δ, let's denote by $B(s, \delta)$ the set of sites within distance δ to s, i.e., $B(s, \delta):=\{t \in S: d(s, t) \leq \delta\}$. Consider any $c \in C$. There must be some $o_{c} \in C^{*}$ that is in $B\left(c, \frac{r}{2}\right)$. Key observation: $B\left(o_{c}, \frac{r}{2}\right) \subseteq B(c, r)$. This is because $\forall s \in B\left(o_{c}, \frac{r}{2}\right)$,

$$
d(s, c) \leq d\left(s, o_{c}\right)+d\left(o_{c}, c\right) \leq \frac{r}{2}+\frac{r}{2}=r .
$$

Therefore, $\forall c, c^{\prime} \in C$, we know $c^{\prime} \notin B(c, r) \Rightarrow c^{\prime} \notin B\left(o_{c}, \frac{r}{2}\right) \Rightarrow o_{c} \neq o_{c^{\prime}}$.

Proof (continued..)

For any site s and radius δ, let's denote by $B(s, \delta)$ the set of sites within distance δ to s, i.e., $B(s, \delta):=\{t \in S: d(s, t) \leq \delta\}$. Consider any $c \in C$. There must be some $o_{c} \in C^{*}$ that is in $B\left(c, \frac{r}{2}\right)$. Key observation: $B\left(o_{c}, \frac{r}{2}\right) \subseteq B(c, r)$. This is because $\forall s \in B\left(o_{c}, \frac{r}{2}\right)$,

$$
d(s, c) \leq d\left(s, o_{c}\right)+d\left(o_{c}, c\right) \leq \frac{r}{2}+\frac{r}{2}=r .
$$

Therefore, $\forall c, c^{\prime} \in C$, we know $c^{\prime} \notin B(c, r) \Rightarrow c^{\prime} \notin B\left(o_{c}, \frac{r}{2}\right) \Rightarrow o_{c} \neq o_{c^{\prime}}$. Also, $\cup_{c \in C} B\left(o_{c}, \frac{r}{2}\right) \subseteq \cup_{c \in C} B(c, r) \subsetneq S$;

Proof (continued..)

For any site s and radius δ, let's denote by $B(s, \delta)$ the set of sites within distance δ to s, i.e., $B(s, \delta):=\{t \in S: d(s, t) \leq \delta\}$.
Consider any $c \in C$. There must be some $o_{c} \in C^{*}$ that is in $B\left(c, \frac{r}{2}\right)$. Key observation: $B\left(o_{c}, \frac{r}{2}\right) \subseteq B(c, r)$. This is because $\forall s \in B\left(o_{c}, \frac{r}{2}\right)$,

$$
d(s, c) \leq d\left(s, o_{c}\right)+d\left(o_{c}, c\right) \leq \frac{r}{2}+\frac{r}{2}=r .
$$

Therefore, $\forall c, c^{\prime} \in C$, we know $c^{\prime} \notin B(c, r) \Rightarrow c^{\prime} \notin B\left(o_{c}, \frac{r}{2}\right) \Rightarrow o_{c} \neq o_{c^{\prime}}$. Also, $\cup_{c \in C} B\left(o_{c}, \frac{r}{2}\right) \subseteq \cup_{c \in C} B(c, r) \subsetneq S$; But, by assumption, $\cup_{o \in C *} B\left(o, \frac{r}{2}\right)=S$, so $\left|C^{*}\right|>|C|=k$.

The final algorithm

- Getting rid of the dependance on r : a binary search would do.
- If the optimal solution has covering radius r^{*}, the algorithm must succeed when it tries any radius $r \geq 2 r^{*}$.

The final algorithm

- Getting rid of the dependance on r : a binary search would do.
- If the optimal solution has covering radius r^{*}, the algorithm must succeed when it tries any radius $r \geq 2 r^{*}$.
- This gives rise to a 2-approximation algorithm.

The final algorithm

- Getting rid of the dependance on r : a binary search would do.
- If the optimal solution has covering radius r^{*}, the algorithm must succeed when it tries any radius $r \geq 2 r^{*}$.
- This gives rise to a 2 -approximation algorithm.
- For this problem, we can do something a bit more clever:

The final algorithm

- Getting rid of the dependance on r : a binary search would do.
- If the optimal solution has covering radius r^{*}, the algorithm must succeed when it tries any radius $r \geq 2 r^{*}$.
- This gives rise to a 2 -approximation algorithm.
- For this problem, we can do something a bit more clever:
- Pick an arbitrary site s and itinialize $C \leftarrow\{s\}$.

The final algorithm

- Getting rid of the dependance on r : a binary search would do.
- If the optimal solution has covering radius r^{*}, the algorithm must succeed when it tries any radius $r \geq 2 r^{*}$.
- This gives rise to a 2 -approximation algorithm.
- For this problem, we can do something a bit more clever:
- Pick an arbitrary site s and itinialize $C \leftarrow\{s\}$.
- While $|C|<k$, do: pick a site c that maximizes $d(c, C)$, add c to C.

The final algorithm

- Getting rid of the dependance on r : a binary search would do.
- If the optimal solution has covering radius r^{*}, the algorithm must succeed when it tries any radius $r \geq 2 r^{*}$.
- This gives rise to a 2 -approximation algorithm.
- For this problem, we can do something a bit more clever:
- Pick an arbitrary site s and itinialize $C \leftarrow\{s\}$.
- While $|C|<k$, do: pick a site c that maximizes $d(c, C)$, add c to C.

Claim

This new algorithm gives a 2-approximation to the minimum covering radius. I.e., if C has covering radius r, then $r \leq 2 r^{*}$.

Claim

This new algorithm gives a 2-approximation to the minimum covering radius. I.e., if C has covering radius r, then $r \leq 2 r^{*}$.

Proof.

The new algorithm can be seen as an implementation of the previous algorithm with a radius r. It can also be seen as a failed implementation of the previous algorithm with a radius $r^{\prime}<r$! Therefore, we must have $r \leq 2 r^{*}$.

Claim

This new algorithm gives a 2-approximation to the minimum covering radius. I.e., if C has covering radius r, then $r \leq 2 r^{*}$.

Proof.

The new algorithm can be seen as an implementation of the previous algorithm with a radius r. It can also be seen as a failed implementation of the previous algorithm with a radius $r^{\prime}<r$! Therefore, we must have $r \leq 2 r^{*}$.

Question

Can we find an algorithm with better approximation ratio?

Claim

This new algorithm gives a 2-approximation to the minimum covering radius. I.e., if C has covering radius r, then $r \leq 2 r^{*}$.

Proof.

The new algorithm can be seen as an implementation of the previous algorithm with a radius r. It can also be seen as a failed implementation of the previous algorithm with a radius $r^{\prime}<r$! Therefore, we must have $r \leq 2 r^{*}$.

Question

Can we find an algorithm with better approximation ratio?
Answer: It's NP-hard to get $(2-\epsilon)$-approximation for any $\epsilon>0$. (Think about the reduction from Vertex Cover.)

