
Center Selection

Learning Goals

De�nition of metrics

De�nition of Center Selection (a.k.a. k-center) Problem

Understand the greedy algorithm

Analyze the approximation ratio of the greedy algorithm
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Center Selection

The center selection problem

We are given a set S of n sites, an integer k , and also distances

d(s, z) between every two sites s and z .

The distances satisfy:

∀s ∈ S , d(s, s) = 0;
∀s, z ∈ S , d(s, z) = d(z , s).
∀s, z , h ∈ S , d(s, z) + d(z , h) ≥ d(s, h).

For a set C ⊆ S of centers, the distance from a site s to C is

d(s,C ) := minc∈C d(s, c).

The covering radius of C is maxs∈S d(s,C ).

We are asked to choose a set of k centers to minimize its covering

radius.

The problem is also known as the metric k-center problem.
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Center Selection

Metrics

Given a set S and function d : S × S → R+, if d satis�es

∀s ∈ S , d(s, s) = 0;

∀s, z ∈ S , d(s, z) = d(z , s).

∀s, z , h ∈ S , d(s, z) + d(z , h) ≥ d(s, h).

then d is called a pseudometric.

If d further satis�es d(s, z) = 0⇒ s = z , then d is called a metric.

Example: S ⊆ Rm,

d(x , y) = ||x − y ||2 =
√∑

j(xj − yj)2 the Euclidean distance;

d(x , y) = ||x − y ||1 =
∑

j |xj − yj | the `1 distance, a.k.a. Manhattan

distance;

d(x , y) = ||x − p||p = [
∑

j(xj − yj)
p]1/p, for p ≥ 1, the `p distance.
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Center Selection

A Greedy Algorithm

The problem is NP-hard. (Reduction?)

A natural, intuitive greedy approach: �nd a site that is �central� to

many sites, set up a center there, remove all sites close to it (i.e.,

consider them as covered), and repeat the procedure.

Which sites should be considered �covered�?

Suppose we are interested in whether it is possible to choose k centers

with covering radius ≤ r for some r .

Alternatively, we may think of having guessed a covering radius r .
Later we can look for an appropriate r by binary search.
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Center Selection

A Greedy Algorithm

The greedy procedure:

Itialize R ← S , C ← ∅. (R will be the set of sites �not covered� yet,
and C will be the set of centers we choose.)

While R is nonempty and |C | < k, do: add an arbitrary site s ∈ R
to C , remove from R any site within distance r to s.
If we terminate with a non-empty R, declare failure; otherwise we �nd
a set C , |C | ≤ k , with a covering radius ≤ r .

Note that the algorithm is not fully �greedy�: in each step s is chosen

arbitrarily. It turns out that being more selective in that step does not

help with the approximation ratio.
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Center Selection

Analysis

The terminating condition does not (and cannot) say that, if the algorithm

fails, there is no C , |C | ≤ k , with covering radius ≤ r . (Otherwise we can

just try all r 's and have a polynomial-time algorithm for the problem.)

Theorem

If the above greedy algorithm fails, for any C ∗ ⊆ S with |C ∗| ≤ k , the
covering radius of C ∗ is strictly greater than r/2.

Proof.

Let C ∗ be any subset of S with covering radius ≤ r
2
, we show |C ∗| > k .

Recall our algorithm terminated with a set of centers C , |C | = k , without
covering all sites within distance r .
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Center Selection

Proof (continued..)

For any site s and radius δ, let's denote by B(s, δ) the set of sites within

distance δ to s, i.e., B(s, δ) := {t ∈ S : d(s, t) ≤ δ}.

Consider any c ∈ C . There must be some oc ∈ C ∗ that is in B(c , r
2
).

Key observation: B(oc ,
r
2
) ⊆ B(c , r).
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Center Selection

Proof by picture

c

r
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Proof by picture

c

r
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r

2
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′
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′
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2

c ′ /∈ B(c , r), so c ′ /∈ B(oc ,
r
2
), therefore oc′ 6= oc .
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Center Selection

Proof (continued..)

For any site s and radius δ, let's denote by B(s, δ) the set of sites within
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).
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) ⊆ B(c , r). This is because ∀s ∈ B(oc ,

r
2
),

d(s, c) ≤ d(s, oc) + d(oc , c) ≤
r

2
+

r

2
= r .

Therefore, ∀c , c ′ ∈ C , we know c ′ /∈ B(c , r)⇒ c ′ /∈ B(oc ,
r
2
)⇒ oc 6= oc ′ .

Also, ∪c∈CB(oc , r2) ⊆ ∪c∈CB(c , r) ( S ;
But, by assumption, ∪o∈C∗B(o, r2) = S , so |C ∗| > |C | = k .
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Center Selection

The �nal algorithm

Getting rid of the dependance on r : a binary search would do.

If the optimal solution has covering radius r∗, the algorithm must
succeed when it tries any radius r ≥ 2r∗.

This gives rise to a 2-approximation algorithm.

For this problem, we can do something a bit more clever:

Pick an arbitrary site s and itinialize C ← {s}.
While |C | < k, do: pick a site c that maximizes d(c ,C ), add c to C .

Claim

This new algorithm gives a 2-approximation to the minimum covering

radius. I.e., if C has covering radius r , then r ≤ 2r∗.
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Claim

This new algorithm gives a 2-approximation to the minimum covering

radius. I.e., if C has covering radius r , then r ≤ 2r∗.

Proof.

The new algorithm can be seen as an implementation of the previous

algorithm with a radius r . It can also be seen as a failed implementation of

the previous algorithm with a radius r ′ < r ! Therefore, we must have

r ≤ 2r∗.

Question

Can we �nd an algorithm with better approximation ratio?

Answer: It's NP-hard to get (2− ε)-approximation for any ε > 0. (Think

about the reduction from Vertex Cover.)
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