Center Selection

Learning Goals

Definition of metrics
Definition of Center Selection (a.k.a. k-center) Problem

Understand the greedy algorithm

Analyze the approximation ratio of the greedy algorithm
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Center Selection

The center selection problem

@ We are given a set S of n sites, an integer k, and also distances
d(s, z) between every two sites s and z.
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The center selection problem
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Center Selection

The center selection problem

@ We are given a set S of n sites, an integer k, and also distances
d(s, z) between every two sites s and z.
@ The distances satisfy:
e V¥se§, d(s,s)=0;
e Vs,z€ S, d(s,z) = d(z,5).
o Vs,z,he S, d(s,z) + d(z,h) > d(s, h).

@ For a set C C S of centers, the distance from a site s to C is
d(s, C) := mincec d(s, c).
@ The covering radius of C is maxscs d(s, C).

@ We are asked to choose a set of k centers to minimize its covering
radius.

@ The problem is also known as the metric k-center problem.
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Metrics

Given a set S and function d : S x § — R, if d satisfies
e Vse S, d(s,s)=0;
e Vs,ze 5, d(s,z) = d(z,s).
e Vs,z,he S, d(s,z)+ d(z, h) > d(s, h).

then d is called a pseudometric.
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Metrics

Given a set S and function d : S x § — R, if d satisfies
e Vse S, d(s,s)=0;
e Vs,ze 5, d(s,z) = d(z,s).
e Vs,z,he S, d(s,z)+ d(z, h) > d(s, h).

then d is called a pseudometric.

If d further satisfies d(s,z) =0 = s = z, then d is called a metric.
Example: S C R™,

o d(x,y) =[x —ylla = />;(x; — y;)? the Euclidean distance;

o d(x,y) =[x —yll1 = X2 | — y;| the £y distance, a.k.a. Manhattan
distance;

o d(x,y) =|Ix—pllp =[x — y;)P1M/P, for p > 1, the ¢, distance.
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A Greedy Algorithm

@ The problem is NP-hard. (Reduction?)
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A Greedy Algorithm

@ The problem is NP-hard. (Reduction?)

@ A natural, intuitive greedy approach: find a site that is “central” to
many sites, set up a center there, remove all sites close to it (i.e.,
consider them as covered), and repeat the procedure.
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with covering radius < r for some r.
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A Greedy Algorithm

@ The problem is NP-hard. (Reduction?)

@ A natural, intuitive greedy approach: find a site that is “central” to
many sites, set up a center there, remove all sites close to it (i.e.,
consider them as covered), and repeat the procedure.

@ Which sites should be considered “covered”?

@ Suppose we are interested in whether it is possible to choose k centers
with covering radius < r for some r.

o Alternatively, we may think of having guessed a covering radius r.
Later we can look for an appropriate r by binary search.
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A Greedy Algorithm

@ The greedy procedure:

o ltialize R+ S, C + 0. (R will be the set of sites “not covered” yet,
and C will be the set of centers we choose.)
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Center Selection

A Greedy Algorithm

@ The greedy procedure:
o ltialize R+ S, C + 0. (R will be the set of sites “not covered” yet,

and C will be the set of centers we choose.)
o While R is nonempty and |C| < k, do: add an arbitrary site s € R
to C, remove from R any site within distance r to s.
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A Greedy Algorithm

@ The greedy procedure:
o ltialize R+ S, C + 0. (R will be the set of sites “not covered” yet,
and C will be the set of centers we choose.)
o While R is nonempty and |C| < k, do: add an arbitrary site s € R
to C, remove from R any site within distance r to s.
o If we terminate with a non-empty R, declare failure; otherwise we find
aset C, |C| < k, with a covering radius < r.

. TR



A Greedy Algorithm

@ The greedy procedure:
o ltialize R+ S, C + 0. (R will be the set of sites “not covered” yet,
and C will be the set of centers we choose.)
o While R is nonempty and |C| < k, do: add an arbitrary site s € R
to C, remove from R any site within distance r to s.
o If we terminate with a non-empty R, declare failure; otherwise we find
aset C, |C| < k, with a covering radius < r.

@ Note that the algorithm is not fully “greedy”: in each step s is chosen
arbitrarily. It turns out that being more selective in that step does not
help with the approximation ratio.
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Analysis

The terminating condition does not (and cannot) say that, if the algorithm
fails, there is no C, |C| < k, with covering radius < r. (Otherwise we can
just try all r's and have a polynomial-time algorithm for the problem.)
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If the above greedy algorithm fails, for any C* C S with |C*| < k, the
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Analysis

The terminating condition does not (and cannot) say that, if the algorithm
fails, there is no C, |C| < k, with covering radius < r. (Otherwise we can
just try all r's and have a polynomial-time algorithm for the problem.)

Theorem

If the above greedy algorithm fails, for any C* C S with |C*| < k, the
covering radius of C* is strictly greater than r/2.

Proof.
Let C* be any subset of S with covering radius < 7, we show |C*| > k.
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Analysis

The terminating condition does not (and cannot) say that, if the algorithm
fails, there is no C, |C| < k, with covering radius < r. (Otherwise we can
just try all r's and have a polynomial-time algorithm for the problem.)

Theorem

If the above greedy algorithm fails, for any C* C S with |C*| < k, the
covering radius of C* is strictly greater than r/2.

Proof.

Let C* be any subset of S with covering radius < 7, we show |C*| > k.
Recall our algorithm terminated with a set of centers C, |C| = k, without
covering all sites within distance r.
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Center Selection

Proof (continued..)

For any site s and radius d, let's denote by B(s,d) the set of sites within
distance 0 to s, i.e., B(s,0) ={t €S :d(s,t) <d}.
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Proof (continued..)

For any site s and radius d, let's denote by B(s,d) the set of sites within
distance 0 to s, i.e., B(s,0) ={t €S :d(s,t) <d}.
Consider any ¢ € C. There must be some o € C* that is in B(c, 5).
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Center Selection

Proof (continued..)

For any site s and radius d, let's denote by B(s,d) the set of sites within
distance 0 to s, i.e., B(s,0) ={t €S :d(s,t) <d}.

Consider any ¢ € C. There must be some o € C* that is in B(c, 5).
Key observation: B(oc, 5) € B(c,r).
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Proof by picture
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Proof by picture
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Center Selection

Proof by picture

¢’ ¢ B(c,r), so ¢’ ¢ B(oc, %), therefore o/ # oc.
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Center Selection

Proof (continued..)

For any site s and radius ¢, let's denote by B(s, d) the set of sites within

distance 0 to s, i.e., B(s,0) ={t € S :d(s,t) <d}.

Consider any ¢ € C. There must be some o € C* that is in B(c, 5).

Key observation: B(oc, 5) € B(c,r). This is because Vs € B(oc, 5),
d(S, C) S d(S, OC) + d(OCJ C) S

+—=r.

N~
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Center Selection

Proof (continued..)
For any site s and radius ¢, let's denote by B(s, d) the set of sites within
distance 0 to s, i.e., B(s,0) ={t € S :d(s,t) <d}.

Consider any ¢ € C. There must be some o € C* that is in B(c, 5).
Key observation: B(oc, 5) € B(c,r). This is because Vs € B(oc, 5),

d(s,c) < d(s,00) + d(0c,c) < = + = =r.

N~

r
2
Therefore, Vc,c’ € C, we know ¢’ ¢ B(c,r) = ¢’ ¢ B(oc, 5) = oc # oc'.
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Center Selection

Proof (continued..)
For any site s and radius ¢, let's denote by B(s, d) the set of sites within
distance 0 to s, i.e., B(s,0) ={t € S :d(s,t) <d}.

Consider any ¢ € C. There must be some o € C* that is in B(c, 5).
Key observation: B(oc, 5) € B(c,r). This is because Vs € B(oc, 5),

d(s,c) < d(s,00) + d(0c,c) < = + = =r.

N~

r
2
Therefore, Vc,c’ € C, we know ¢’ ¢ B(c,r) = ¢’ ¢ B(oc, 5) = oc # oc'.
Also, UcecB(oc, 5) € UcecB(c,r) € S;
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Center Selection

Proof (continued..)
For any site s and radius ¢, let's denote by B(s, d) the set of sites within
distance 0 to s, i.e., B(s,0) ={t € S :d(s,t) <d}.

Consider any ¢ € C. There must be some o € C* that is in B(c, 5).
Key observation: B(oc, 5) € B(c,r). This is because Vs € B(oc, 5),

d(s,c) < d(s,oc) + d(oc,¢) < =+

N~

Therefore, Vc,c’ € C, we know ¢’ ¢ B(c,r) = ¢’ ¢ B(oc, 5) = oc # oc'.
Also, UcecB(oc, 5) € UcecB(c,r) € S;
But, by assumption, Uoec+B(0, %) = S, so |C*| > |C| = k. n
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The final algorithm

o Getting rid of the dependance on r: a binary search would do.

o If the optimal solution has covering radius r*, the algorithm must
succeed when it tries any radius r > 2r*.
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e This gives rise to a 2-approximation algorithm.
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The final algorithm

o Getting rid of the dependance on r: a binary search would do.
o If the optimal solution has covering radius r*, the algorithm must
succeed when it tries any radius r > 2r*.
e This gives rise to a 2-approximation algorithm.
@ For this problem, we can do something a bit more clever:

o Pick an arbitrary site s and itinialize C + {s}.
o While |C| < k, do: pick a site ¢ that maximizes d(c, C), add c to C.

This new algorithm gives a 2-approximation to the minimum covering
radius. l.e., if C has covering radius r, then r < 2r*.
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Claim

This new algorithm gives a 2-approximation to the minimum covering
radius. l.e., if C has covering radius r, then r < 2r*.

Proof.

The new algorithm can be seen as an implementation of the previous
algorithm with a radius r. It can also be seen as a failed implementation of
the previous algorithm with a radius r’ < r! Therefore, we must have

r <2r*, O

| A\

v
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Claim

This new algorithm gives a 2-approximation to the minimum covering
radius. l.e., if C has covering radius r, then r < 2r*.
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Proof.

The new algorithm can be seen as an implementation of the previous
algorithm with a radius r. It can also be seen as a failed implementation of
the previous algorithm with a radius r’ < r! Therefore, we must have
r <2r*, O

Can we find an algorithm with better approximation ratio?
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Center Selection

Claim

This new algorithm gives a 2-approximation to the minimum covering
radius. l.e., if C has covering radius r, then r < 2r*.

| A\

Proof.

The new algorithm can be seen as an implementation of the previous
algorithm with a radius r. It can also be seen as a failed implementation of
the previous algorithm with a radius r’ < r! Therefore, we must have
r <2r*, O

Can we find an algorithm with better approximation ratio?

Answer: It's NP-hard to get (2 — €)-approximation for any € > 0. (Think
about the reduction from Vertex Cover.)
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