Learning Goals

- Define the class co-NP
- Understand the conceptual difference between NP and co-NP
- Show that NP \neq co-NP $\Rightarrow P \neq N P$

Complement problems

Definition

For a decision problem A, its complement \bar{A} is the following problem: an instance of A has answer YES if and only if the same instance has answer NO as an instance of \bar{A}.

Complement problems

Definition

For a decision problem A, its complement \bar{A} is the following problem: an instance of A has answer YES if and only if the same instance has answer NO as an instance of \bar{A}.

Example
SAT: given a boolean formula in conjunctive normal form, the answer is YES if and only if the formula has no satsifying assignment.

The class co-NP

Definition

The class co-NP is the set of complement problems of problems in NP.

The class co-NP

Definition

The class co-NP is the set of complement problems of problems in NP.
Alternatively, a problem is in co-NP if and only if there is a polynomial verifier and a polynomial $p(\cdot)$, such that for a NO instance, there exists a certificate of length $\leq p(\cdot)$ accepted by the verifier, and for a YES instance, no certificate of length $\leq p(\cdot)$ can make the verifier accept.

Relationship between P and NP

Proposition

$P \subseteq N P \cap$ co-NP.

Relationship between P and NP

Proposition

$P \subseteq N P \cap c o-N P$.

- If co-NP $\subseteq N P$, there should be short certificates for boolean formulas having no satisfying assignment. Intuitively this doesn't sound likely.

Relationship between P and NP

Proposition

$P \subseteq N P \cap c o-N P$.

- If co-NP $\subseteq N P$, there should be short certificates for boolean formulas having no satisfying assignment. Intuitively this doesn't sound likely.
- It is widely conjectured that co-NP $\neq N P$.

Relationship between P and NP

Proposition

$P \subseteq N P \cap c o-N P$.

- If co-NP $\subseteq N P$, there should be short certificates for boolean formulas having no satisfying assignment. Intuitively this doesn't sound likely.
- It is widely conjectured that co-NP $\neq N P$.
- This is a stronger conjecture than $\mathrm{P} \neq \mathrm{NP}$:

Proposition

$N P \neq c o-N P \Rightarrow P \neq N P$.

Relationship between P and NP

Proposition

$P \subseteq N P \cap c o-N P$.

- If co-NP $\subseteq N P$, there should be short certificates for boolean formulas having no satisfying assignment. Intuitively this doesn't sound likely.
- It is widely conjectured that co-NP $\neq N P$.
- This is a stronger conjecture than $\mathrm{P} \neq \mathrm{NP}$:

Proposition

$N P \neq c o-N P \Rightarrow P \neq N P$.

Proof.

If $P=N P$, then one can solve problems in NP by solving their complement problems in NP, in polynomial time.

Final Remarks (optional)

- Note that the distinction between NP and co-NP is possible only under Karp reduction and not under Turing reduction.

Final Remarks (optional)

- Note that the distinction between NP and co-NP is possible only under Karp reduction and not under Turing reduction.
- In other words, with Turing reduction, any problem in co-NP is easily reducible to its complement in NP, and vice versa.

Final Remarks (optional)

- Note that the distinction between NP and co-NP is possible only under Karp reduction and not under Turing reduction.
- In other words, with Turing reduction, any problem in co-NP is easily reducible to its complement in NP, and vice versa.
- The problem SAT is a complete problem in co-NP. This is a direct consequence of Cook-Levin theorem.

