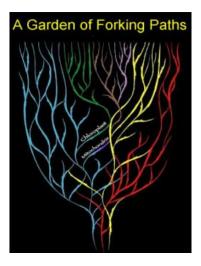
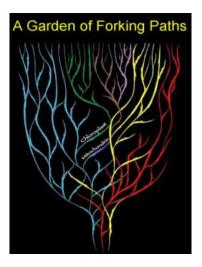
Learning Goals

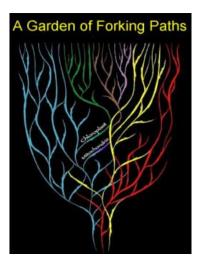
- Basic definitions of finite probabilities: sample space, probability, events
- State and apply union bound.
- Define independence, and apply its properties in probability calculations
- Contention resolution with random access, and analysis of its efficiency

イロト (得) (王) (王) (王)





• Leaves are realizations of the world.



- Leaves are realizations of the world.
- "Sample space" is the set of those realizations.

- Leaves are realizations of the world.
- "Sample space" is the set of those realizations.
- A probability space is defined by weights on those realizations.

• Finite sample space: Ω (intuitively, the set of all realizable outcomes)

- Finite sample space: Ω (intuitively, the set of all realizable outcomes)
- Each point (outcome) $i \in \Omega$ has a *probability mass* $p(i) \ge 0$. We require $\sum_{i} p(i) = 1$.

- Finite sample space: Ω (intuitively, the set of all realizable outcomes)
- Each point (outcome) $i \in \Omega$ has a *probability mass* $p(i) \ge 0$. We require $\sum_{i} p(i) = 1$.
- An event \mathcal{E} is a subset of Ω .

- Finite sample space: Ω (intuitively, the set of all realizable outcomes)
- Each point (outcome) i ∈ Ω has a probability mass p(i) ≥ 0. We require ∑_i p(i) = 1.
- An event \mathcal{E} is a subset of Ω .
- $\Pr[\mathcal{E}] = \sum_{i \in \mathcal{E}} p(i).$

Example

• Let Ω be the set of outcomes of two rolls of a die. Then $|\Omega| = 36$.

(日) (同) (三) (三)

- Finite sample space: Ω (intuitively, the set of all realizable outcomes)
- Each point (outcome) i ∈ Ω has a probability mass p(i) ≥ 0. We require ∑_i p(i) = 1.
- An event \mathcal{E} is a subset of Ω .
- $\Pr[\mathcal{E}] = \sum_{i \in \mathcal{E}} p(i).$

Example

- Let Ω be the set of outcomes of two rolls of a die. Then $|\Omega| = 36$.
- If everything is fair, then each outcome has probability mass 1/36.

< □ > < 同 > < 回 > < 回 > < 回 >

- Finite sample space: Ω (intuitively, the set of all realizable outcomes)
- Each point (outcome) i ∈ Ω has a probability mass p(i) ≥ 0. We require ∑_i p(i) = 1.
- An event \mathcal{E} is a subset of Ω .
- $\Pr[\mathcal{E}] = \sum_{i \in \mathcal{E}} p(i).$

Example

- Let Ω be the set of outcomes of two rolls of a die. Then $|\Omega| = 36$.
- If everything is fair, then each outcome has probability mass 1/36.
- Let \mathcal{E} be the event that the sum of the two numbers is 11, then $\mathcal{E} = \{(6,5), (5,6)\}$, so $\Pr[\mathcal{E}] = 1/18$.

イロト イポト イヨト イヨト 二日

• Let A and B be two events of a probability space.

- Let A and B be two events of a probability space.
- A
 A, the complement of A, is the event that event A does not happen, and Pr[A] = 1 - Pr[A].

- Let A and B be two events of a probability space.
- A
 A, the complement of A, is the event that event A does not happen, and Pr[A] = 1 - Pr[A].
- $A \cup B$ is the event that at least one of A and B happens.

Proposition (Union Bound)

 $\Pr[A \cup B] \leq \Pr[A] + \Pr[B].$

イロト イポト イヨト イヨト 二日

- Let A and B be two events of a probability space.
- A
 A, the complement of A, is the event that event A does not happen, and Pr[A] = 1 - Pr[A].
- $A \cup B$ is the event that at least one of A and B happens.

Proposition (Union Bound)

 $\Pr[A \cup B] \le \Pr[A] + \Pr[B].$

• $A \cap B$ is the event that both A and B happen.

Definition

A and B are said to be *independent* if $\Pr[A \cap B] = \Pr[A] \cdot \Pr[B]$.

< □ > < @ > < 글 > < 글 > 글 December 7, 2019

4 / 10

- Let A and B be two events of a probability space.
- A
 A, the complement of A, is the event that event A does not happen, and Pr[A] = 1 - Pr[A].
- $A \cup B$ is the event that at least one of A and B happens.

Proposition (Union Bound)

 $\Pr[A \cup B] \le \Pr[A] + \Pr[B].$

• $A \cap B$ is the event that both A and B happen.

Definition

A and B are said to be *independent* if $\Pr[A \cap B] = \Pr[A] \cdot \Pr[B]$.

Exercise: If A and B are independent, then so are \overline{A} and B, and so are \overline{A} and \overline{B} .

イロト 不得 トイヨト イヨト 二日

• Set up: one server, *n* tasks

- Set up: one server, *n* tasks
- Tasks all want to use the server for a time step (we have discrete time steps)
- At each time step, each task may request the server:
 - If exactly one task requests the server, the task gets served successfully;
 - If more than one tasks request the server, clash and no task gets served in that step (but later steps are not affected).

(日) (同) (三) (三)

- Set up: one server, *n* tasks
- Tasks all want to use the server for a time step (we have discrete time steps)
- At each time step, each task may request the server:
 - If exactly one task requests the server, the task gets served successfully;
 - If more than one tasks request the server, clash and no task gets served in that step (but later steps are not affected).
- We would like that all tasks to get served fast.
- Trivial if the tasks can agree on some ordering and requests the service one by one.

< □ > < 同 > < 回 > < 回 > < 回 >

- Set up: one server, *n* tasks
- Tasks all want to use the server for a time step (we have discrete time steps)
- At each time step, each task may request the server:
 - If exactly one task requests the server, the task gets served successfully;
 - If more than one tasks request the server, clash and no task gets served in that step (but later steps are not affected).
- We would like that all tasks to get served fast.
- Trivial if the tasks can agree on some ordering and requests the service one by one.
- Problem: The tasks cannot talk with each other and there is no central authority.

< ロ ト (同 ト (三 ト (三 ト

- Set up: one server, *n* tasks
- Tasks all want to use the server for a time step (we have discrete time steps)
- At each time step, each task may request the server:
 - If exactly one task requests the server, the task gets served successfully;
 - If more than one tasks request the server, clash and no task gets served in that step (but later steps are not affected).
- We would like that all tasks to get served fast.
- Trivial if the tasks can agree on some ordering and requests the service one by one.
- Problem: The tasks cannot talk with each other and there is no central authority.
- **Randomized strategy:** In each time step, each task requests with some small probability *p*, *independently*.

< □ > < 同 > < 回 > < 回 > < 回 >

 Let A[i, t] denote the event that task i sends a request at time t. Then Pr[A[i, t]] = p.

- Let A[i, t] denote the event that task i sends a request at time t. Then Pr[A[i, t]] = p.
- Then $\overline{A[i, t]}$ is the event that task *i* does not request service at time *t*, and $\Pr[\overline{A[i, t]}] = 1 p$.

- Let A[i, t] denote the event that task i sends a request at time t. Then Pr[A[i, t]] = p.
- Then A[i, t] is the event that task *i* does not request service at time *t*, and $\Pr[A[i, t]] = 1 p$.
- Let S[i, t] denote the event that task i sends a request at time t and gets served, then

$$\Pr[S[i,t]] = \Pr\left[A[i,t] \cap \bigcap_{j \neq i} \overline{A[j,t]}\right] = p(1-p)^{n-1}.$$

The last equality comes from independence.

イロト イポト イヨト イヨト 二日

- Let A[i, t] denote the event that task i sends a request at time t. Then Pr[A[i, t]] = p.
- Then A[i, t] is the event that task *i* does not request service at time *t*, and $\Pr[A[i, t]] = 1 p$.
- Let S[i, t] denote the event that task i sends a request at time t and gets served, then

$$\Pr[S[i,t]] = \Pr\left[A[i,t] \cap \bigcap_{j \neq i} \overline{A[j,t]}\right] = p(1-p)^{n-1}.$$

The last equality comes from independence.

• To maximize $\Pr[S[i, t]]$, set p = 1/n.

イロト イポト イヨト イヨト 二日

Rate of success at each time step

We set p to maximize $\Pr[S[i, t]]$ to $\frac{1}{n}(1 - \frac{1}{n})^{n-1}$. How good is this?

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Rate of success at each time step

We set p to maximize $\Pr[S[i, t]]$ to $\frac{1}{n}(1 - \frac{1}{n})^{n-1}$. How good is this?

Proposition

- The function $(1 \frac{1}{n})^n$ converges monotonically from $\frac{1}{4}$ up to $\frac{1}{e}$ as n increases from 2.
- The function $(1 \frac{1}{n})^{n-1}$ converges monotonically from $\frac{1}{2}$ down to $\frac{1}{e}$ as *n* increases from 2.

Rate of success at each time step

We set p to maximize $\Pr[S[i, t]]$ to $\frac{1}{n}(1 - \frac{1}{n})^{n-1}$. How good is this?

Proposition

- The function $(1 \frac{1}{n})^n$ converges monotonically from $\frac{1}{4}$ up to $\frac{1}{e}$ as n increases from 2.
- The function $(1 \frac{1}{n})^{n-1}$ converges monotonically from $\frac{1}{2}$ down to $\frac{1}{e}$ as *n* increases from 2.

So $1/(en) \leq \Pr[S[i, t]] \leq 1/(2n)$. Therefore $\Pr[S[i, t]]$ is asymtotically $\Theta(1/n)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ = 三 ののの

• In each round, task *i* succeeds with probability $\Pr[S[i, t]]$. Roughly what is the waiting time for task *i* to succeed (for the first time)?

イロト イヨト イヨト イヨト

- In each round, task *i* succeeds with probability $\Pr[S[i, t]]$. Roughly what is the waiting time for task *i* to succeed (for the first time)?
- Answers to "roughly what is X" where X is a random quantity:
 - Give the *expectation* of X (think of it as the average): next week

(日) (同) (三) (三)

- In each round, task *i* succeeds with probability $\Pr[S[i, t]]$. Roughly what is the waiting time for task *i* to succeed (for the first time)?
- Answers to "roughly what is X" where X is a random quantity:
 - Give the *expectation* of X (think of it as the average): next week
 - Give a range [a, b], and show that X is in [a, b] with "high probability": today

(日) (周) (ヨ) (ヨ)

- In each round, task *i* succeeds with probability $\Pr[S[i, t]]$. Roughly what is the waiting time for task *i* to succeed (for the first time)?
- Answers to "roughly what is X" where X is a random quantity:
 - Give the *expectation* of X (think of it as the average): next week
 - Give a range [a, b], and show that X is in [a, b] with "high probability": today
 - Remark: in many situations, the two give answers that are close: sometimes one may show that the random quantity *concentrates* around its expectation. *Tail bounds* are used to prove this.

- In each round, task *i* succeeds with probability $\Pr[S[i, t]]$. Roughly what is the waiting time for task *i* to succeed (for the first time)?
- Answers to "roughly what is X" where X is a random quantity:
 - Give the *expectation* of X (think of it as the average): next week
 - Give a range [a, b], and show that X is in [a, b] with "high probability": today
 - Remark: in many situations, the two give answers that are close: sometimes one may show that the random quantity *concentrates* around its expectation. *Tail bounds* are used to prove this.
- Probability with which task *i* does not succeed in the first *t* steps:

$$\Pr\left[\bigcap_{r=1}^{t}\overline{S[i,r]}\right] = \prod_{r=1}^{t} [1 - \Pr\left[S[i,r]\right]] = \left[1 - \frac{1}{n}\left(1 - \frac{1}{n}\right)^{n-1}\right]^{t}$$

< ロ ト (同 ト (三 ト (三 ト

• Probability that a task fails in the first t steps: $\left[1 - \frac{1}{n}(1 - \frac{1}{n})^{n-1}\right]^t$.

- Probability that a task fails in the first t steps: $[1 \frac{1}{n}(1 \frac{1}{n})^{n-1}]^t$.
- We'd like to upper bound this probability:

$$\Pr\left[\bigcap_{r=1}^{t}\overline{S[i,r]}\right] \leq \left[1-\frac{1}{en}\right]^{t} = \left[1-\frac{1}{en}\right]^{en\cdot\frac{t}{en}} \leq e^{-t/en}.$$

イロト イポト イヨト イヨト 二日

Probability that a task fails in the first t steps: [1 - 1/n (1 - 1/n)ⁿ⁻¹]^t.
We'd like to upper bound this probability:

$$\Pr\left[\cap_{r=1}^{t}\overline{S[i,r]}\right] \leq \left[1-\frac{1}{en}\right]^{t} = \left[1-\frac{1}{en}\right]^{en\cdot\frac{t}{en}} \leq e^{-t/en}.$$

• Setting t to be enc ln n for some c > 0, the probability of failure for the first t steps is at most n^{-c} , which vanishes as n grows.

Probability that a task fails in the first t steps: [1 - 1/n (1 - 1/n)ⁿ⁻¹]^t.
We'd like to upper bound this probability:

$$\Pr\left[\bigcap_{r=1}^{t}\overline{S[i,r]}\right] \leq \left[1-\frac{1}{en}\right]^{t} = \left[1-\frac{1}{en}\right]^{en\cdot\frac{t}{en}} \leq e^{-t/en}.$$

- Setting t to be enc ln n for some c > 0, the probability of failure for the first t steps is at most n^{-c} , which vanishes as n grows.
- Big picture (useful rough estimations): if we have a biased coin that gives Heads with probability 1/k:
 - In about k independent tosses, one "expects" to see a Heads;
 - However, with constant probability, a Heads doesn't show in k tosses;
 - But if one tosses the coin Θ(k log k) times, the probability that no Heads shows up quickly tends to 0.

イロト 不得下 イヨト イヨト 二日

Waiting time for all tasks to succeed

• Let F[i, t] denote the event that task *i* fails in the first *t* steps, we have shown $\Pr[F[i, t]] \leq e^{-t/en} \leq n^{-c}$ for $t = \lceil en \cdot c \ln n \rceil$.

Waiting time for all tasks to succeed

- Let F[i, t] denote the event that task *i* fails in the first *t* steps, we have shown $\Pr[F[i, t]] \leq e^{-t/en} \leq n^{-c}$ for $t = \lceil en \cdot c \ln n \rceil$.
- The event that some task keeps failing in the first t steps is then $\bigcup_{i=1}^{n} F[i, t]$.

Waiting time for all tasks to succeed

- Let F[i, t] denote the event that task *i* fails in the first *t* steps, we have shown $\Pr[F[i, t]] \leq e^{-t/en} \leq n^{-c}$ for $t = \lceil en \cdot c \ln n \rceil$.
- The event that some task keeps failing in the first t steps is then $\bigcup_{i=1}^{n} F[i, t]$.

By the union bound, we have

$$\Pr\left[\bigcup_{i=1}^{n} F[i,t]\right] \leq \sum_{i=1}^{n} e^{-t/en} = n e^{-\frac{t}{en}}.$$

So for $t = \lceil 2en \ln n \rceil$, this is at most $\frac{1}{n}$.