Learning Goals

- Dijkstra algorithm: the problem it solves and the description of the algorithm
- Analysis: an inductive proof of correctness
- Running time of Dijkstra's algorithm
- (Optional) Implementation of Dijkstra's algorithm using priority queues

Finding minimum-cost paths in a graph

- Input: a directed graph $G=(V, E)$, with nonnegative cost $c_{e} \geq 0$ for each edge $e \in E$. A node $s \in V$.
- Output: for each node $v \in V$, a minimum-cost path from s to v, and its cost.

Finding minimum-cost paths in a graph

- Input: a directed graph $G=(V, E)$, with nonnegative cost $c_{e} \geq 0$ for each edge $e \in E$. A node $s \in V$.
- Output: for each node $v \in V$, a minimum-cost path from s to v, and its cost.
- Dijkstra's algorithm: a greedy approach

Finding minimum-cost paths in a graph

- Input: a directed graph $G=(V, E)$, with nonnegative cost $c_{e} \geq 0$ for each edge $e \in E$. A node $s \in V$.
- Output: for each node $v \in V$, a minimum-cost path from s to v, and its cost.
- Dijkstra's algorithm: a greedy approach
- Idea: Find a minimum-cost path to a new node in each step, and then use the cost to reach this node to update the cost to reach the other nodes one step further.

Dijkstra example

A graph with nonnegative edge costs

Dijkstra example

A graph with nonnegative edge costs

Dijkstra Step 1

Dijkstra example

A graph with nonnegative edge costs

Dijkstra Step 1

Dijkstra Step 2

Dijkstra example

A graph with nonnegative edge costs

Dijkstra Step 1

Dijkstra Step 2
Dijkstra Step 3

Dijkstra example cont.

Dijkstra Step 3

Dijkstra example cont.

Dijkstra Step 3

Dijkstra Step 4

Dijkstra example cont.

Dijkstra Step 3

Dijkstra Step 4

Dijkstra Step 5

Dijkstra algorithm

- Initialize: for each $v \in V$, if $(s, v) \in E$, let $d(v) \leftarrow c_{(s, v)}, p(v) \leftarrow s$, otherwise $d(v) \leftarrow \infty, p(v) \leftarrow \perp$. Let S be $\{s\}$.
- Meaning: $d(v)$: cost of the min-cost path to v found so far; $p(v)$: the node preceding v in the minimum-cost path to v.

Dijkstra algorithm

- Initialize: for each $v \in V$, if $(s, v) \in E$, let $d(v) \leftarrow c_{(s, v)}, p(v) \leftarrow s$, otherwise $d(v) \leftarrow \infty, p(v) \leftarrow \perp$. Let S be $\{s\}$.
- Meaning: $d(v)$: cost of the min-cost path to v found so far; $p(v)$: the node preceding v in the minimum-cost path to v.
- Iterate: while $S \neq V$ and there exists $v \in V \backslash S$ such that $d(v) \neq \infty$:
- let u be the minimizer of $d(\cdot)$ among nodes not in S;
- add u to S
- for each $(u, v) \in E$ with $v \notin S$, if $d(v)>d(u)+c_{(u, v)}$
- update $d(v) \leftarrow d(u)+c_{(u, v)}$
- $p(v) \leftarrow u$.

Dijkstra algorithm

- Initialize: for each $v \in V$, if $(s, v) \in E$, let $d(v) \leftarrow c_{(s, v)}, p(v) \leftarrow s$, otherwise $d(v) \leftarrow \infty, p(v) \leftarrow \perp$. Let S be $\{s\}$.
- Meaning: $d(v)$: cost of the min-cost path to v found so far; $p(v)$: the node preceding v in the minimum-cost path to v.
- Iterate: while $S \neq V$ and there exists $v \in V \backslash S$ such that $d(v) \neq \infty$:
- let u be the minimizer of $d(\cdot)$ among nodes not in S;
- add u to S
- for each $(u, v) \in E$ with $v \notin S$, if $d(v)>d(u)+c_{(u, v)}$
- update $d(v) \leftarrow d(u)+c_{(u, v)}$
- $p(v) \leftarrow u$.
- Output:
- For each $v \in S, d(v)$ is the cost of the min-cost path from s to v; the path is traced back to s using $p(\cdot)$.
- For $v \notin S$, there is no path from s to v.

Proof of Correctness

- Proof by induction.

Proof of Correctness

- Proof by induction.
- Induction hypothesis: at each stage of the algorithm, for any node $u \in S, d(u)$ is the cost of the minimum-cost path from s to u.

Proof of Correctness

- Proof by induction.
- Induction hypothesis: at each stage of the algorithm, for any node $u \in S, d(u)$ is the cost of the minimum-cost path from s to u.
- Base case: $|S|=1: S=\{s\}, d(s)=0$, trivial.

Proof of Correctness

- Proof by induction.
- Induction hypothesis: at each stage of the algorithm, for any node $u \in S, d(u)$ is the cost of the minimum-cost path from s to u.
- Base case: $|S|=1: S=\{s\}, d(s)=0$, trivial.
- Inductive step: suppose the induction hypothesis when $|S| \leq k$. Show that, when the $(k+1)^{\text {-st }}$ node u is added to S, the hypothesis remains true.

Proof of Correctness

- Proof by induction.
- Induction hypothesis: at each stage of the algorithm, for any node $u \in S, d(u)$ is the cost of the minimum-cost path from s to u.
- Base case: $|S|=1: S=\{s\}, d(s)=0$, trivial.
- Inductive step: suppose the induction hypothesis when $|S| \leq k$. Show that, when the $(k+1)^{\text {-st }}$ node u is added to S, the hypothesis remains true.
- Denote by P_{u} the path output by the algorithm for node u.

Proof of Correctness

- Proof by induction.
- Induction hypothesis: at each stage of the algorithm, for any node $u \in S, d(u)$ is the cost of the minimum-cost path from s to u.
- Base case: $|S|=1: S=\{s\}, d(s)=0$, trivial.
- Inductive step: suppose the induction hypothesis when $|S| \leq k$. Show that, when the $(k+1)^{\text {-st }}$ node u is added to S, the hypothesis remains true.
- Denote by P_{u} the path output by the algorithm for node u.
- We should show:
(1) Among all paths within S, P_{u} has the minimum cost.

Proof of Correctness

- Proof by induction.
- Induction hypothesis: at each stage of the algorithm, for any node $u \in S, d(u)$ is the cost of the minimum-cost path from s to u.
- Base case: $|S|=1: S=\{s\}, d(s)=0$, trivial.
- Inductive step: suppose the induction hypothesis when $|S| \leq k$. Show that, when the $(k+1)^{\text {-st }}$ node u is added to S, the hypothesis remains true.
- Denote by P_{u} the path output by the algorithm for node u.
- We should show:
(1) Among all paths within S, P_{u} has the minimum cost.
(2) P_{u} has no more cost than any path from s to u that leaves S at some point.

Proof of Correctness Cont.

We should show:
(1) Among all paths within S, P_{u} has the minimum cost.
(2) P_{u} has no more cost than any path from s to u that leaves S at some point.

Proof of Correctness Cont.

We should show:
(1) Among all paths within S, P_{u} has the minimum cost.
(2) P_{u} has no more cost than any path from s to u that leaves S at some point.
Proof of each statement:
(1) Let $p(u)$ be $v \in S$.

- By algorithm, we know $d(u)=d(v)+c_{(v, u)}$ and it is no larger than $d(w)+c_{(w, u)}$ for any $w \in S$.

Proof of Correctness Cont.

We should show:
(1) Among all paths within S, P_{u} has the minimum cost.
(2) P_{u} has no more cost than any path from s to u that leaves S at some point.
Proof of each statement:
(1) Let $p(u)$ be $v \in S$.

- By algorithm, we know $d(u)=d(v)+c_{(v, u)}$ and it is no larger than $d(w)+c_{(w, u)}$ for any $w \in S$.
- By induction hypothesis, $d(w)$ is the cost of the min-cost path to w, hence $d(w)+c_{(w, u)}$ is the cost of min-cost path to u with the second last node being w.

Proof of Correctness Cont.

We should show:
(1) Among all paths within S, P_{u} has the minimum cost.
(2) P_{u} has no more cost than any path from s to u that leaves S at some point.
Proof of each statement:
(1) Let $p(u)$ be $v \in S$.

- By algorithm, we know $d(u)=d(v)+c_{(v, u)}$ and it is no larger than $d(w)+c_{(w, u)}$ for any $w \in S$.
- By induction hypothesis, $d(w)$ is the cost of the min-cost path to w, hence $d(w)+c_{(w, u)}$ is the cost of min-cost path to u with the second last node being w.
(2) For any path P^{\prime} that leaves S by an edge $(w, z), w \in S, z \notin S$:
- The cost of P^{\prime} is at least $d(w)+c_{(w, z)}$, because by induction hypothesis $d(w)$ is the cost of min-cost path to w, and the part of P from z to u adds nonnegative cost.

Proof of Correctness Cont.

We should show:
(1) Among all paths within S, P_{u} has the minimum cost.
(2) P_{u} has no more cost than any path from s to u that leaves S at some point.
Proof of each statement:
(1) Let $p(u)$ be $v \in S$.

- By algorithm, we know $d(u)=d(v)+c_{(v, u)}$ and it is no larger than $d(w)+c_{(w, u)}$ for any $w \in S$.
- By induction hypothesis, $d(w)$ is the cost of the min-cost path to w, hence $d(w)+c_{(w, u)}$ is the cost of min-cost path to u with the second last node being w.
(2) For any path P^{\prime} that leaves S by an edge $(w, z), w \in S, z \notin S$:
- The cost of P^{\prime} is at least $d(w)+c_{(w, z)}$, because by induction hypothesis $d(w)$ is the cost of min-cost path to w, and the part of P from z to u adds nonnegative cost.
- $d(u) \leq d(w)+c_{(w, z)}$, because when $d(u)$ is added to S, $d(z) \leq d(w)+c_{(w, z)}$, and $d(u) \leq d(z)$.

Implementation of Dijkstra

- Implementation with an array that stores $d(\cdot)$:

Implementation of Dijkstra

- Implementation with an array that stores $d(\cdot)$:
- Each time we look for a minimum $d(\cdot)$, search the array in $O(n)$ time; this is done n times, so this takes $O\left(n^{2}\right)$ time.

Implementation of Dijkstra

- Implementation with an array that stores $d(\cdot)$:
- Each time we look for a minimum $d(\cdot)$, search the array in $O(n)$ time; this is done n times, so this takes $O\left(n^{2}\right)$ time.
- Each edge is traversed at most once, each involving constant time; so overall this takes $O(m)$ times.

Implementation of Dijkstra

- Implementation with an array that stores $d(\cdot)$:
- Each time we look for a minimum $d(\cdot)$, search the array in $O(n)$ time; this is done n times, so this takes $O\left(n^{2}\right)$ time.
- Each edge is traversed at most once, each involving constant time; so overall this takes $O(m)$ times.
- Altogether $O\left(n^{2}+m\right)=O\left(n^{2}\right)$ time.

Implementation of Dijkstra

- Implementation with an array that stores $d(\cdot)$:
- Each time we look for a minimum $d(\cdot)$, search the array in $O(n)$ time; this is done n times, so this takes $O\left(n^{2}\right)$ time.
- Each edge is traversed at most once, each involving constant time; so overall this takes $O(m)$ times.
- Altogether $O\left(n^{2}+m\right)=O\left(n^{2}\right)$ time.
- Implementation using priority queue

Implementation of Dijkstra

- Implementation with an array that stores $d(\cdot)$:
- Each time we look for a minimum $d(\cdot)$, search the array in $O(n)$ time; this is done n times, so this takes $O\left(n^{2}\right)$ time.
- Each edge is traversed at most once, each involving constant time; so overall this takes $O(m)$ times.
- Altogether $O\left(n^{2}+m\right)=O\left(n^{2}\right)$ time.
- Implementation using priority queue
- Store $d(\cdot)$ using a priority queue, which allows us to find and delete a minimum element in $O(\log n)$ time

Implementation of Dijkstra

- Implementation with an array that stores $d(\cdot)$:
- Each time we look for a minimum $d(\cdot)$, search the array in $O(n)$ time; this is done n times, so this takes $O\left(n^{2}\right)$ time.
- Each edge is traversed at most once, each involving constant time; so overall this takes $O(m)$ times.
- Altogether $O\left(n^{2}+m\right)=O\left(n^{2}\right)$ time.
- Implementation using priority queue
- Store $d(\cdot)$ using a priority queue, which allows us to find and delete a minimum element in $O(\log n)$ time
- Updating an element now also needs $O(\log n)$ time

Implementation of Dijkstra

- Implementation with an array that stores $d(\cdot)$:
- Each time we look for a minimum $d(\cdot)$, search the array in $O(n)$ time; this is done n times, so this takes $O\left(n^{2}\right)$ time.
- Each edge is traversed at most once, each involving constant time; so overall this takes $O(m)$ times.
- Altogether $O\left(n^{2}+m\right)=O\left(n^{2}\right)$ time.
- Implementation using priority queue
- Store $d(\cdot)$ using a priority queue, which allows us to find and delete a minimum element in $O(\log n)$ time
- Updating an element now also needs $O(\log n)$ time
- We may update elements in the queue at most m times.

Implementation of Dijkstra

- Implementation with an array that stores $d(\cdot)$:
- Each time we look for a minimum $d(\cdot)$, search the array in $O(n)$ time; this is done n times, so this takes $O\left(n^{2}\right)$ time.
- Each edge is traversed at most once, each involving constant time; so overall this takes $O(m)$ times.
- Altogether $O\left(n^{2}+m\right)=O\left(n^{2}\right)$ time.
- Implementation using priority queue
- Store $d(\cdot)$ using a priority queue, which allows us to find and delete a minimum element in $O(\log n)$ time
- Updating an element now also needs $O(\log n)$ time
- We may update elements in the queue at most m times.
- Total Running time: $O(m \log n)$.

Implementation of Dijkstra

- Implementation with an array that stores $d(\cdot)$:
- Each time we look for a minimum $d(\cdot)$, search the array in $O(n)$ time; this is done n times, so this takes $O\left(n^{2}\right)$ time.
- Each edge is traversed at most once, each involving constant time; so overall this takes $O(m)$ times.
- Altogether $O\left(n^{2}+m\right)=O\left(n^{2}\right)$ time.
- Implementation using priority queue
- Store $d(\cdot)$ using a priority queue, which allows us to find and delete a minimum element in $O(\log n)$ time
- Updating an element now also needs $O(\log n)$ time
- We may update elements in the queue at most m times.
- Total Running time: $O(m \log n)$.
- Choose the better one depending on how dense the graph is. Overall running time $O\left(\min \left(n^{2}, m \log n\right)\right)$.

