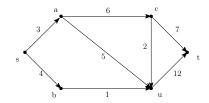
- Dijkstra algorithm: the problem it solves and the description of the algorithm
- Analysis: an inductive proof of correctness
- Running time of Dijkstra's algorithm
- (Optional) Implementation of Dijkstra's algorithm using priority queues

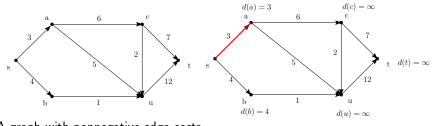
- Input: a directed graph G = (V, E), with nonnegative cost $c_e \ge 0$ for each edge $e \in E$. A node $s \in V$.
- Output: for each node v ∈ V, a minimum-cost path from s to v, and its cost.

- Input: a directed graph G = (V, E), with nonnegative cost $c_e \ge 0$ for each edge $e \in E$. A node $s \in V$.
- Output: for each node v ∈ V, a minimum-cost path from s to v, and its cost.
- Dijkstra's algorithm: a greedy approach

- Input: a directed graph G = (V, E), with nonnegative cost $c_e \ge 0$ for each edge $e \in E$. A node $s \in V$.
- Output: for each node v ∈ V, a minimum-cost path from s to v, and its cost.
- Dijkstra's algorithm: a greedy approach
- Idea: Find a minimum-cost path to a new node in each step, and then use the cost to reach this node to update the cost to reach the other nodes one step further.

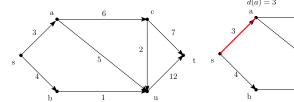


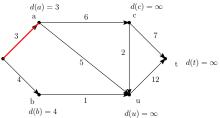
A graph with nonnegative edge costs



A graph with nonnegative edge costs

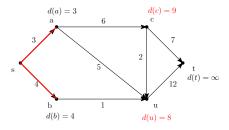
Dijkstra Step 1



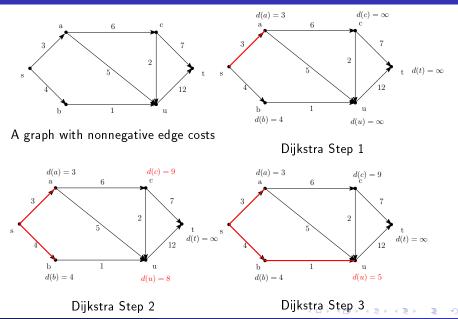


A graph with nonnegative edge costs

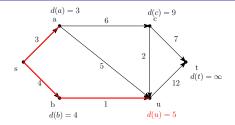
Dijkstra Step 1



Dijkstra Step 2



Dijkstra example cont.

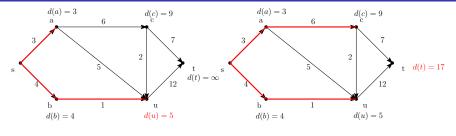


Dijkstra Step 3

September 9, 2019 4 / 8

э

Dijkstra example cont.

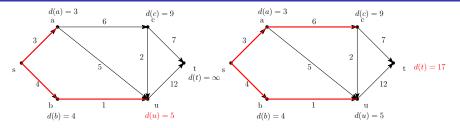


Dijkstra Step 3

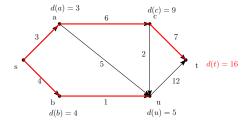
Dijkstra Step 4

< □ > < 凸

Dijkstra example cont.



Dijkstra Step 3



Dijkstra Step 5

Dijkstra algorithm

- Initialize: for each $v \in V$, if $(s, v) \in E$, let $d(v) \leftarrow c_{(s,v)}$, $p(v) \leftarrow s$, otherwise $d(v) \leftarrow \infty$, $p(v) \leftarrow \bot$. Let S be $\{s\}$.
- Meaning: d(v): cost of the min-cost path to v found so far; p(v): the node preceding v in the minimum-cost path to v.

Dijkstra algorithm

- Initialize: for each $v \in V$, if $(s, v) \in E$, let $d(v) \leftarrow c_{(s,v)}$, $p(v) \leftarrow s$, otherwise $d(v) \leftarrow \infty$, $p(v) \leftarrow \bot$. Let S be $\{s\}$.
- Meaning: d(v): cost of the min-cost path to v found so far; p(v): the node preceding v in the minimum-cost path to v.
- Iterate: while $S \neq V$ and there exists $v \in V \setminus S$ such that $d(v) \neq \infty$:
 - let u be the minimizer of $d(\cdot)$ among nodes not in S;
 - add *u* to *S*
 - for each $(u, v) \in E$ with $v \notin S$, if $d(v) > d(u) + c_{(u,v)}$

• update
$$d(v) \leftarrow d(u) + c_{(u,v)}$$

• $p(v) \leftarrow u$.

Dijkstra algorithm

- Initialize: for each $v \in V$, if $(s, v) \in E$, let $d(v) \leftarrow c_{(s,v)}$, $p(v) \leftarrow s$, otherwise $d(v) \leftarrow \infty$, $p(v) \leftarrow \bot$. Let S be $\{s\}$.
- Meaning: d(v): cost of the min-cost path to v found so far; p(v): the node preceding v in the minimum-cost path to v.
- Iterate: while $S \neq V$ and there exists $v \in V \setminus S$ such that $d(v) \neq \infty$:
 - let u be the minimizer of $d(\cdot)$ among nodes not in S;
 - add *u* to *S*
 - for each $(u, v) \in E$ with $v \notin S$, if $d(v) > d(u) + c_{(u,v)}$
 - update $d(v) \leftarrow d(u) + c_{(u,v)}$ • $p(v) \leftarrow u$.
- Output:
 - For each v ∈ S, d(v) is the cost of the min-cost path from s to v; the path is traced back to s using p(·).
 - For $v \notin S$, there is no path from s to v.

イロト イヨト イヨト

• Proof by induction.

3

< □ > < 四 >

- Proof by induction.
- Induction hypothesis: at each stage of the algorithm, for any node $u \in S$, d(u) is the cost of the minimum-cost path from s to u.

- Proof by induction.
- Induction hypothesis: at each stage of the algorithm, for any node $u \in S$, d(u) is the cost of the minimum-cost path from s to u.
- Base case: |S| = 1: $S = \{s\}$, d(s) = 0, trivial.

- Proof by induction.
- Induction hypothesis: at each stage of the algorithm, for any node $u \in S$, d(u) is the cost of the minimum-cost path from s to u.
- Base case: |S|=1: $S=\{s\}$, d(s)=0, trivial.
- Inductive step: suppose the induction hypothesis when $|S| \le k$. Show that, when the $(k + 1)^{-st}$ node u is added to S, the hypothesis remains true.

- Proof by induction.
- Induction hypothesis: at each stage of the algorithm, for any node $u \in S$, d(u) is the cost of the minimum-cost path from s to u.
- Base case: |S| = 1: $S = \{s\}$, d(s) = 0, trivial.
- Inductive step: suppose the induction hypothesis when $|S| \le k$. Show that, when the $(k + 1)^{-st}$ node u is added to S, the hypothesis remains true.
- Denote by P_u the path output by the algorithm for node u.

- Proof by induction.
- Induction hypothesis: at each stage of the algorithm, for any node $u \in S$, d(u) is the cost of the minimum-cost path from s to u.
- Base case: |S| = 1: $S = \{s\}$, d(s) = 0, trivial.
- Inductive step: suppose the induction hypothesis when $|S| \le k$. Show that, when the $(k + 1)^{-st}$ node u is added to S, the hypothesis remains true.
- Denote by P_u the path output by the algorithm for node u.
- We should show:
 - Among all paths within S, P_u has the minimum cost.

- Proof by induction.
- Induction hypothesis: at each stage of the algorithm, for any node $u \in S$, d(u) is the cost of the minimum-cost path from s to u.
- Base case: |S| = 1: $S = \{s\}$, d(s) = 0, trivial.
- Inductive step: suppose the induction hypothesis when $|S| \le k$. Show that, when the $(k + 1)^{-st}$ node u is added to S, the hypothesis remains true.
- Denote by P_u the path output by the algorithm for node u.
- We should show:
 - Among all paths within S, P_u has the minimum cost.
 - P_u has no more cost than any path from s to u that leaves S at some point.

We should show:

- Among all paths within S, P_u has the minimum cost.
- P_u has no more cost than any path from s to u that leaves S at some point.

We should show:

- Among all paths within S, P_u has the minimum cost.
- P_u has no more cost than any path from s to u that leaves S at some point.

- Let p(u) be $v \in S$.
 - By algorithm, we know $d(u) = d(v) + c_{(v,u)}$ and it is no larger than $d(w) + c_{(w,u)}$ for any $w \in S$.

We should show:

- Among all paths within S, P_u has the minimum cost.
- P_u has no more cost than any path from s to u that leaves S at some point.

- Let p(u) be $v \in S$.
 - By algorithm, we know $d(u) = d(v) + c_{(v,u)}$ and it is no larger than $d(w) + c_{(w,u)}$ for any $w \in S$.
 - By induction hypothesis, d(w) is the cost of the min-cost path to w, hence $d(w) + c_{(w,u)}$ is the cost of min-cost path to u with the second last node being w.

We should show:

- Among all paths within S, P_u has the minimum cost.
- P_u has no more cost than any path from s to u that leaves S at some point.

- Let p(u) be $v \in S$.
 - By algorithm, we know $d(u) = d(v) + c_{(v,u)}$ and it is no larger than $d(w) + c_{(w,u)}$ for any $w \in S$.
 - By induction hypothesis, d(w) is the cost of the min-cost path to w, hence $d(w) + c_{(w,u)}$ is the cost of min-cost path to u with the second last node being w.
- 3 For any path P' that leaves S by an edge (w, z), $w \in S$, $z \notin S$:
 - The cost of P' is at least d(w) + c_(w,z), because by induction hypothesis d(w) is the cost of min-cost path to w, and the part of P from z to u adds nonnegative cost.

We should show:

- Among all paths within S, P_u has the minimum cost.
- P_u has no more cost than any path from s to u that leaves S at some point.

- Let p(u) be $v \in S$.
 - By algorithm, we know $d(u) = d(v) + c_{(v,u)}$ and it is no larger than $d(w) + c_{(w,u)}$ for any $w \in S$.
 - By induction hypothesis, d(w) is the cost of the min-cost path to w, hence $d(w) + c_{(w,u)}$ is the cost of min-cost path to u with the second last node being w.
- 3 For any path P' that leaves S by an edge (w, z), $w \in S$, $z \notin S$:
 - The cost of P' is at least $d(w) + c_{(w,z)}$, because by induction hypothesis d(w) is the cost of min-cost path to w, and the part of P from z to u adds nonnegative cost.
 - $d(u) \leq d(w) + c_{(w,z)}$, because when d(u) is added to S, $d(z) \leq d(w) + c_{(w,z)}$, and $d(u) \leq d(z)$.

Implementation of Dijkstra

• Implementation with an array that stores $d(\cdot)$:

- Implementation with an array that stores $d(\cdot)$:
 - Each time we look for a minimum $d(\cdot)$, search the array in O(n) time; this is done *n* times, so this takes $O(n^2)$ time.

- Implementation with an array that stores $d(\cdot)$:
 - Each time we look for a minimum $d(\cdot)$, search the array in O(n) time; this is done *n* times, so this takes $O(n^2)$ time.
 - Each edge is traversed at most once, each involving constant time; so overall this takes O(m) times.

- Implementation with an array that stores $d(\cdot)$:
 - Each time we look for a minimum $d(\cdot)$, search the array in O(n) time; this is done *n* times, so this takes $O(n^2)$ time.
 - Each edge is traversed at most once, each involving constant time; so overall this takes O(m) times.
 - Altogether $O(n^2 + m) = O(n^2)$ time.

- Implementation with an array that stores $d(\cdot)$:
 - Each time we look for a minimum $d(\cdot)$, search the array in O(n) time; this is done *n* times, so this takes $O(n^2)$ time.
 - Each edge is traversed at most once, each involving constant time; so overall this takes O(m) times.
 - Altogether $O(n^2 + m) = O(n^2)$ time.
- Implementation using priority queue

- Implementation with an array that stores $d(\cdot)$:
 - Each time we look for a minimum $d(\cdot)$, search the array in O(n) time; this is done *n* times, so this takes $O(n^2)$ time.
 - Each edge is traversed at most once, each involving constant time; so overall this takes O(m) times.
 - Altogether $O(n^2 + m) = O(n^2)$ time.
- Implementation using priority queue
 - Store $d(\cdot)$ using a priority queue, which allows us to find and delete a minimum element in $O(\log n)$ time

- Implementation with an array that stores $d(\cdot)$:
 - Each time we look for a minimum $d(\cdot)$, search the array in O(n) time; this is done *n* times, so this takes $O(n^2)$ time.
 - Each edge is traversed at most once, each involving constant time; so overall this takes O(m) times.
 - Altogether $O(n^2 + m) = O(n^2)$ time.
- Implementation using priority queue
 - Store $d(\cdot)$ using a priority queue, which allows us to find and delete a minimum element in $O(\log n)$ time
 - Updating an element now also needs $O(\log n)$ time

- Implementation with an array that stores $d(\cdot)$:
 - Each time we look for a minimum $d(\cdot)$, search the array in O(n) time; this is done *n* times, so this takes $O(n^2)$ time.
 - Each edge is traversed at most once, each involving constant time; so overall this takes O(m) times.
 - Altogether $O(n^2 + m) = O(n^2)$ time.
- Implementation using priority queue
 - Store $d(\cdot)$ using a priority queue, which allows us to find and delete a minimum element in $O(\log n)$ time
 - Updating an element now also needs $O(\log n)$ time
 - We may update elements in the queue at most *m* times.

- Implementation with an array that stores $d(\cdot)$:
 - Each time we look for a minimum $d(\cdot)$, search the array in O(n) time; this is done *n* times, so this takes $O(n^2)$ time.
 - Each edge is traversed at most once, each involving constant time; so overall this takes O(m) times.
 - Altogether $O(n^2 + m) = O(n^2)$ time.
- Implementation using priority queue
 - Store $d(\cdot)$ using a priority queue, which allows us to find and delete a minimum element in $O(\log n)$ time
 - Updating an element now also needs $O(\log n)$ time
 - We may update elements in the queue at most *m* times.
 - Total Running time: $O(m \log n)$.

- Implementation with an array that stores $d(\cdot)$:
 - Each time we look for a minimum $d(\cdot)$, search the array in O(n) time; this is done *n* times, so this takes $O(n^2)$ time.
 - Each edge is traversed at most once, each involving constant time; so overall this takes O(m) times.
 - Altogether $O(n^2 + m) = O(n^2)$ time.
- Implementation using priority queue
 - Store $d(\cdot)$ using a priority queue, which allows us to find and delete a minimum element in $O(\log n)$ time
 - Updating an element now also needs $O(\log n)$ time
 - We may update elements in the queue at most *m* times.
 - Total Running time: $O(m \log n)$.
- Choose the better one depending on how dense the graph is. Overall running time O(min(n², m log n)).