- Bellman-Ford algorithm: a dynamic programming that
 - Reports a negative cycle when one exists;
 - Inds min-cost paths when no negative cycle exists.
- Running time: O(mn): *m* operations per iteration, O(n) iterations.
- Proof ideas:
 - first *i* iterations find out min-cost paths with at most *i* edges
 - Ø Min-cost paths must be simple when there is no negative cycle

- Definition of flow network and flows
- Motivation and definition of Residual graphs
- Ford-Fulkerson algorithm description
- Running time of Ford-Fulkerson

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Flow Networks

A flow network is a directed graph G = (V, E), which includes two special nodes: s, called the *source*, and t, called the *sink*. Each edge e is associated with a capacity $c_e > 0$.

We assume there is no incoming edge to s and no outgoing edge from t.

イロト 不得下 イヨト イヨト 二日

Flow Networks

A flow network is a directed graph G = (V, E), which includes two special nodes: s, called the *source*, and t, called the *sink*. Each edge e is associated with a capacity $c_e > 0$.

We assume there is no incoming edge to s and no outgoing edge from t.

Flow Networks

A flow network is a directed graph G = (V, E), which includes two special nodes: s, called the *source*, and t, called the *sink*. Each edge e is associated with a capacity $c_e > 0$.

We assume there is no incoming edge to s and no outgoing edge from t.

Notation: for $v \in V$, $\delta_{in}(v)$ is the set of edges going into v, and $\delta_{out}(v)$ the set of edges going out of v.

Flows

Definition

- A flow is a function $f: E \to \mathbb{R}^+$ satisfying:
 - Capacity conditions: $\forall e \in E, 0 \leq f(e) \leq c_e$.
 - 2 Conservation conditions: $\forall v \in V \setminus \{s, t\}$,

$$\sum_{e \in \delta_{\mathrm{in}}(v)} f(e) = \sum_{e \in \delta_{\mathrm{out}}(v)} f(e).$$

イロト 不得下 イヨト イヨト 二日

Flows

Definition

- A flow is a function $f : E \to \mathbb{R}^+$ satisfying:
 - Capacity conditions: $\forall e \in E, 0 \leq f(e) \leq c_e$.
 - 2 Conservation conditions: $\forall v \in V \setminus \{s, t\}$,

$$\sum_{e\in \delta_{\mathrm{in}}(v)} f(e) = \sum_{e\in \delta_{\mathrm{out}}(v)} f(e).$$

< □ > < @ > < \overline > < \overline > \overline \

4 / 15

The value of a flow f is $\sum_{e \in \delta_{out}(s)} f(e)$, denoted as |f|.

Flows

Definition

- A flow is a function $f: E \to \mathbb{R}^+$ satisfying:
 - Capacity conditions: $\forall e \in E, 0 \leq f(e) \leq c_e$.
 - 2 Conservation conditions: $\forall v \in V \setminus \{s, t\}$,

$$\sum_{e\in \delta_{\mathrm{in}}(v)} f(e) = \sum_{e\in \delta_{\mathrm{out}}(v)} f(e).$$

The value of a flow f is $\sum_{e \in \delta_{out}(s)} f(e)$, denoted as |f|.

The maximum flow problem: given a flow network, compute a flow with maximum value.

> ◆□▶ ◆□▶ ◆□▶ ◆□▶ = 三 ののの September 13, 2019

4 / 15

Flow Example

Example of a flow (in red).

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Flow Example

Example of a flow (in red).

The value of the flow is 20.

3

Flow Example

Example of a flow (in red).

The value of the flow is 20. Is this a maximum flow?

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

September 13, 2019

3

6 / 15

Flow Example Cont.

Flow from previous page.

Flow Example Cont.

Flow from previous page.

Maximum flow.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

v

u

10

30

20

s

20

10

10

September 13, 2019 6 / 15

3

10

20

+

Flow from previous page.

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Flow from previous page.

How much capacity is left on each edge?

< 口 > < 円

Flow from previous page.

How much capacity is left on each edge?

Flow from previous page.

A flow pushed in the residual graph along a path.

9/15

September 13, 2019

< 口 > < 円

The Residual Graph

Definition

Given a flow f in a flow network G, the residual graph G_f is defined as:

- G_f has the same set of nodes as G (including s and t);
- for each e = (u, v) of G on which $f(e) < c_e$, e is in G_f and is called a *forward edge*; its capacity in G_f is $c_e f(e)$;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

10/15

• for each e = (u, v) of G on which f(e) > 0, (v, u) is in G_f and is called a *backward edge*; its capacity in G_f is f(e).

The Residual Graph

Definition

Given a flow f in a flow network G, the residual graph G_f is defined as:

- G_f has the same set of nodes as G (including s and t);
- for each e = (u, v) of G on which $f(e) < c_e$, e is in G_f and is called a *forward edge*; its capacity in G_f is $c_e f(e)$;
- for each e = (u, v) of G on which f(e) > 0, (v, u) is in G_f and is called a *backward edge*; its capacity in G_f is f(e).

The capacities in G_f are called the *residual capacities*. Note that the residual capacities are all strictly positive.

Augmenting paths

Definition

Any (simple) s-t path in the residual graph G_f is called an *augmenting* path. In an augmenting path P in the residual graph G_f , the minimum residual capacity is called the *bottleneck*, denoted as bottleneck(P, f).

(s, u, v, t) is an augmenting path; its bottleneck is 10.

September 13, 2019

11/15

Given a flow f in G, if there is an s-t path P in its residual graph G_f , the following operations on f is called an *augmentation along* P

• let b be bottleneck(P, f) > 0;

Given a flow f in G, if there is an s-t path P in its residual graph G_f , the following operations on f is called an *augmentation along* P

- let b be bottleneck(P, f) > 0;
- for each e in P that is forward, increase f(e) in G by b;

Given a flow f in G, if there is an s-t path P in its residual graph G_f , the following operations on f is called an *augmentation along* P

- let b be bottleneck(P, f) > 0;
- for each e in P that is forward, increase f(e) in G by b;
- for each e = (u, v) in P that is backward, decrease f((v, u)) in G by b.

Given a flow f in G, if there is an s-t path P in its residual graph G_f , the following operations on f is called an *augmentation along* P

- let b be bottleneck(P, f) > 0;
- for each e in P that is forward, increase f(e) in G by b;
- for each e = (u, v) in P that is backward, decrease f((v, u)) in G by b.

Proposition

The result of an augmentation, f', is a flow in G, with value |f| + b.

<ロ>< (回)<(日)</td>September 13, 2019

12 / 15

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

September 13, 2019 13 / 15

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

September 13, 2019 13 / 15

- 2

September 13, 2019 13 / 15

Proposition

The result of an augmentation, f', is a flow in G, with value |f| + b.

< □ > < @ > < \overline > < \overline > \overline \

14 / 15

Proposition

The result of an augmentation, f', is a flow in G, with value |f| + b.

Proof.

- To check f' is a flow, we check:
 - Capacity conditions:

Proposition

The result of an augmentation, f', is a flow in G, with value |f| + b.

Proof.

- To check f' is a flow, we check:
 - Capacity conditions:
 - If e is forward, its residual capacity is $c_e f(e)$, so $f'(e) = f(e) + b \le f(e) + (c_e f(e)) = c_e$;

Proposition

The result of an augmentation, f', is a flow in G, with value |f| + b.

Proof.

To check f' is a flow, we check:

- Capacity conditions:
 - If e is forward, its residual capacity is $c_e f(e)$, so $f'(e) = f(e) + b \le f(e) + (c_e f(e)) = c_e$;
 - If e = (u, v) is backward, its residual capacity is f((v, u)), so $f'((v, u)) = f((v, u)) b \ge f((v, u)) f((v, u)) = 0$.

Proposition

The result of an augmentation, f', is a flow in G, with value |f| + b.

Proof.

To check f' is a flow, we check:

- Capacity conditions:
 - If e is forward, its residual capacity is $c_e f(e)$, so $f'(e) = f(e) + b < f(e) + (c_e f(e)) = c_e$;
 - If e = (u, v) is backward, its residual capacity is f((v, u)), so $f'((v, u)) = f((v, u)) b \ge f((v, u)) f((v, u)) = 0$.

Conservation conditions: case study for each node on the augmenting path.

Proposition

The result of an augmentation, f', is a flow in G, with value |f| + b.

Proof.

To check f' is a flow, we check:

- Capacity conditions:
 - If e is forward, its residual capacity is $c_e f(e)$, so $f'(e) = f(e) + b < f(e) + (c_e f(e)) = c_e$;
 - If e = (u, v) is backward, its residual capacity is f((v, u)), so $f'((v, u)) = f((v, u)) b \ge f((v, u)) f((v, u)) = 0$.
- Conservation conditions: case study for each node on the augmenting path.

An augmenting path starts from s, and $\delta_{in}(s) = \emptyset$, so the first edge in the path is forward.

The Ford-Fulkerson algorithm:

• Initialize: $f(e) \leftarrow 0$ for all $e \in E$.

The Ford-Fulkerson algorithm:

- Initialize: $f(e) \leftarrow 0$ for all $e \in E$.
- Iterate: construct G_f and search for an augmenting path. If no augmenting path can be found, terminate and return f. Otherwise augment along the path found and repeat.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Ford-Fulkerson algorithm:

- Initialize: $f(e) \leftarrow 0$ for all $e \in E$.
- Iterate: construct G_f and search for an augmenting path. If no augmenting path can be found, terminate and return f. Otherwise augment along the path found and repeat.

Running time: each round takes O(m) time, but how many rounds?

The Ford-Fulkerson algorithm:

- Initialize: $f(e) \leftarrow 0$ for all $e \in E$.
- Iterate: construct G_f and search for an augmenting path. If no augmenting path can be found, terminate and return f. Otherwise augment along the path found and repeat.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

15 / 15

Running time: each round takes O(m) time, but how many rounds?

Proposition

Suppose all capacities are integers. Let C be $\sum_{e \in \delta_{out}(s)} c_e$. The Ford-Fulkerson algorithm terminates in at most C rounds.

The Ford-Fulkerson algorithm:

- Initialize: $f(e) \leftarrow 0$ for all $e \in E$.
- Iterate: construct G_f and search for an augmenting path. If no augmenting path can be found, terminate and return f. Otherwise augment along the path found and repeat.

Running time: each round takes O(m) time, but how many rounds?

Proposition

Suppose all capacities are integers. Let C be $\sum_{e \in \delta_{out}(s)} c_e$. The Ford-Fulkerson algorithm terminates in at most C rounds.

Running time O(Cm).

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨー わえぐ