Review of last lecture

@ Bellman-Ford algorithm: a dynamic programming that

© Reports a negative cycle when one exists;

© Finds min-cost paths when no negative cycle exists.
@ Running time: O(mn): m operations per iteration, O(n) iterations.
@ Proof ideas:

@ first / iterations find out min-cost paths with at most / edges
© Min-cost paths must be simple when there is no negative cycle

. b B D DD

Learning Goals

Definition of flow network and flows
Motivation and definition of Residual graphs

Ford-Fulkerson algorithm description

Running time of Ford-Fulkerson

. L B D 24

Network Flow

Flow Networks

A flow network is a directed graph G = (V, E), which includes two special
nodes: s, called the source, and t, called the sink. Each edge e is
associated with a capacity c. > 0.

We assume there is no incoming edge to s and no outgoing edge from t.

September 13, 2019 3/15

Network Flow

Flow Networks

A flow network is a directed graph G = (V, E), which includes two special
nodes: s, called the source, and t, called the sink. Each edge e is
associated with a capacity c. > 0.

We assume there is no incoming edge to s and no outgoing edge from t.

September 13, 2019 3/15

Network Flow

Flow Networks

A flow network is a directed graph G = (V, E), which includes two special
nodes: s, called the source, and t, called the sink. Each edge e is
associated with a capacity c. > 0.

We assume there is no incoming edge to s and no outgoing edge from t.

Notation: for v € V, din(v) is the set of edges going into v, and Jou4(v)
the set of edges going out of v.

September 13, 2019 3/15

Network Flow

Flows

Definition

A flow is a function f : E — R satisfying:
Q Capacity conditions: Ve € E, 0 < f(e) < ce.
@ Conservation conditions: Yv € V \ {s, t},

Z f(e) = Z f(e).

ee‘sin(v) e€5out(v)

. N

Network Flow

Flows

Definition

A flow is a function f : E — R satisfying:
Q Capacity conditions: Ve € E, 0 < f(e) < ce.
@ Conservation conditions: Yv € V \ {s, t},

Yo ofle)=) f(e)

e€din(v) eEdout(v)

The value of a flow f is 3~ 5 (s f(e), denoted as |f].

September 13, 2019 4/15

Network Flow

Flows

Definition

A flow is a function f : E — R satisfying:
Q Capacity conditions: Ve € E, 0 < f(e) < ce.
@ Conservation conditions: Yv € V \ {s, t},

Yo ofle)=) f(e)

e€din(v) eEdout(v)

The value of a flow f is 3~ 5 (s f(e), denoted as |f].

The maximum flow problem: given a flow network, compute a flow with
maximum value.

. L0 B D A4

Network Flow

Flow Example

Example of a flow (in red).

. b B D By

Network Flow

Flow Example

Example of a flow (in red).

The value of the flow is 20.

. b B D By

Network Flow

Flow Example

Example of a flow (in red).

The value of the flow is 20.
Is this a maximum flow?

. Snbe B D B4

Network Flow

Flow Example Cont.

Flow from previous page.

. b B D O

Network Flow

Flow Example Cont.

Flow from previous page. Maximum flow.

. Lo B D O

Residual Graph

Flow from previous page.

. b B D Dy

Residual Graph

Flow from previous page. How much capacity is left on each
edge?

. Snbe B D Dy

Residual Graph

Flow from previous page. How much capacity is left on each
edge?

. GO B, D D4

Residual Graph

Flow from previous page. A flow pushed in the residual graph
along a path.

. L B D O

The Residual Graph

Definition
Given a flow f in a flow network G, the residual graph Gy is defined as:
@ Gf has the same set of nodes as G (including s and t);
o for each e = (u, v) of G on which f(e) < c., e isin Gf and is called a
forward edge; its capacity in G is c. — f(e);
o for each e = (u, v) of G on which f(e) >0, (v,u) is in Gf and is
called a backward edge; its capacity in Gy is f(e).

. TR T

The Residual Graph

Definition
Given a flow f in a flow network G, the residual graph Gy is defined as:
@ Gf has the same set of nodes as G (including s and t);
o for each e = (u, v) of G on which f(e) < ce, e isin Gr and is called a
forward edge; its capacity in G is c. — f(e);
o for each e = (u, v) of G on which f(e) >0, (v,u) is in Gf and is
called a backward edge; its capacity in Gy is f(e).

The capacities in Gy are called the residual capacities.
Note that the residual capacities are all strictly positive.

. TR T

Augmenting paths

Any (simple) s-t path in the residual graph Gr is called an augmenting
path. In an augmenting path P in the residual graph Gf, the minimum
residual capacity is called the bottleneck, denoted as bottleneck(P, f).

(s, u, v, t) is an augmenting path; its bottleneck is 10.

. R T

Augmenting along a path

Given a flow f in G, if there is an s-t path P in its residual graph Gy, the
following operations on f is called an augmentation along P

o let b be bottleneck(P,f) > 0;

. R T

Augmenting along a path

Given a flow f in G, if there is an s-t path P in its residual graph Gy, the
following operations on f is called an augmentation along P

o let b be bottleneck(P,f) > 0;

o for each e in P that is forward, increase f(e) in G by b;

. R T

Augmenting along a path

Given a flow f in G, if there is an s-t path P in its residual graph Gy, the
following operations on f is called an augmentation along P

o let b be bottleneck(P,f) > 0;
o for each e in P that is forward, increase f(e) in G by b;

o for each e = (u, v) in P that is backward, decrease f((v,u)) in G
by b.

. R T

Network Flow

Augmenting along a path

Given a flow f in G, if there is an s-t path P in its residual graph Gy, the
following operations on f is called an augmentation along P

o let b be bottleneck(P,f) > 0;
o for each e in P that is forward, increase f(e) in G by b;

e for each e = (u,v) in P that is backward, decrease f((v,u)) in G
by b.

The result of an augmentation, f', is a flow in G, with value |f| + b. \

. TR T

Network Flow

Augmentation example

. R T

Network Flow

Augmentation example

. R T

Network Flow

Augmentation example

September 13, 2019 13 /15

Network Flow

Augmentation example

September 13, 2019 13 /15

Network Flow

Proof of the proposition

The result of an augmentation, f', is a flow in G, with value |f| + b. I

. R TR

Proof of the proposition
Proposition
The result of an augmentation, f', is a flow in G, with value |f| + b.

Proof.
To check f’ is a flow, we check:

© Capacity conditions:

September 13, 2019 14 /15

Network Flow

Proof of the proposition

Proposition

The result of an augmentation, f', is a flow in G, with value |f| + b.

Proof.
To check ' is a flow, we check:
© Capacity conditions:

o If e is forward, its residual capacity is c. — f(e), so
f'(e) =f(e)+ b < f(e)+ (ce — f(e)) = ce;

September 13, 2019 14 /15

Network Flow

Proof of the proposition

Proposition

The result of an augmentation, f', is a flow in G, with value |f| + b.

Proof.
To check ' is a flow, we check:
© Capacity conditions:

o If e is forward, its residual capacity is c. — f(e), so
f'(e) =f(e)+ b < f(e)+ (ce — f(e)) = ce:
o If e =(u,v) is backward, its residual capacity is f((v, u)), so

F'((v, u)) = f((v,u)) = b > f((v,u)) = f((v, u)) = 0.

September 13, 2019

14 /15

Network Flow

Proof of the proposition

Proposition

The result of an augmentation, f', is a flow in G, with value |f| + b.

Proof.
To check ' is a flow, we check:
© Capacity conditions:

o If e is forward, its residual capacity is c. — f(e), so
f'(e) =f(e)+ b < f(e)+ (ce — f(e)) = ce;
o If e =(u,v) is backward, its residual capacity is f((v, u)), so
F'((v,u)) = £((v,u)) = b= f((v, u)) = f((v,u)) = 0.
@ Conservation conditions: case study for each node on the augmenting
path.

September 13, 2019 14 /15

Network Flow

Proof of the proposition

Proposition

The result of an augmentation, f', is a flow in G, with value |f| + b.

Proof.
To check f’ is a flow, we check:

© Capacity conditions:
o If e is forward, its residual capacity is c. — f(e), so
f'(e) =f(e)+ b < f(e)+ (ce — f(e)) = ce;
o If e =(u,v) is backward, its residual capacity is f((v, u)), so
F'((v,u)) = £((v,u)) = b= f((v, u)) = f((v,u)) = 0.
@ Conservation conditions: case study for each node on the augmenting
path.

An augmenting path starts from s, and diy(s) = 0, so the first edge in the
path is forward.
]
] September 13, 2019 14/15

Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm:
o Initialize: f(e) <~ 0 forall e € E.

. D TBY, B

15/ 15

Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm:
o Initialize: f(e) <~ 0 forall e € E.

@ Iterate: construct Gf and search for an augmenting path. If no
augmenting path can be found, terminate and return f. Otherwise
augment along the path found and repeat.

. R T

Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm:
o Initialize: f(e) <~ 0 forall e € E.

@ Iterate: construct Gf and search for an augmenting path. If no
augmenting path can be found, terminate and return f. Otherwise
augment along the path found and repeat.

Running time: each round takes O(m) time, but how many rounds?

. R T

Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm:
o Initialize: f(e) <~ 0 forall e € E.

@ Iterate: construct Gf and search for an augmenting path. If no
augmenting path can be found, terminate and return f. Otherwise
augment along the path found and repeat.

Running time: each round takes O(m) time, but how many rounds?

Suppose all capacities are integers. Let C be) . Sout(s) Ce- The
Ford-Fulkerson algorithm terminates in at most C rounds.

. R T

Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm:
o Initialize: f(e) <~ 0 forall e € E.

@ Iterate: construct Gf and search for an augmenting path. If no
augmenting path can be found, terminate and return f. Otherwise
augment along the path found and repeat.

Running time: each round takes O(m) time, but how many rounds?

Proposition

Suppose all capacities are integers. Let C be Zee&m(s) Ce. The
Ford-Fulkerson algorithm terminates in at most C rounds.

Running time O(Cm).

. R T

	Network Flow

