
Review of last lecture

Bellman-Ford algorithm: a dynamic programming that
1 Reports a negative cycle when one exists;
2 Finds min-cost paths when no negative cycle exists.

Running time: O(mn): m operations per iteration, O(n) iterations.

Proof ideas:
1 �rst i iterations �nd out min-cost paths with at most i edges
2 Min-cost paths must be simple when there is no negative cycle
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Learning Goals

De�nition of �ow network and �ows

Motivation and de�nition of Residual graphs

Ford-Fulkerson algorithm description

Running time of Ford-Fulkerson
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Network Flow

Flow Networks

A �ow network is a directed graph G = (V ,E ), which includes two special

nodes: s, called the source, and t, called the sink. Each edge e is

associated with a capacity ce > 0.

We assume there is no incoming edge to s and no outgoing edge from t.
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Notation: for v ∈ V , δin(v) is the set of edges going into v , and δout(v)
the set of edges going out of v .
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Network Flow

Flows

De�nition

A �ow is a function f : E → R+ satisfying:

1 Capacity conditions: ∀e ∈ E , 0 ≤ f (e) ≤ ce .

2 Conservation conditions: ∀v ∈ V \ {s, t},∑
e∈δin(v)

f (e) =
∑

e∈δout(v)

f (e).

The value of a �ow f is
∑

e∈δout(s) f (e), denoted as |f |.

The maximum �ow problem: given a �ow network, compute a �ow with

maximum value.
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Network Flow

Flow Example
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Example of a �ow (in red).

The value of the �ow is 20.

Is this a maximum �ow?
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Network Flow

Flow Example Cont.
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Network Flow

Residual Graph
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Network Flow

Residual Graph
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Network Flow

Residual Graph
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A �ow pushed in the residual graph
along a path.
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Network Flow

The Residual Graph

De�nition

Given a �ow f in a �ow network G , the residual graph Gf is de�ned as:

Gf has the same set of nodes as G (including s and t);

for each e = (u, v) of G on which f (e) < ce , e is in Gf and is called a

forward edge; its capacity in Gf is ce − f (e);

for each e = (u, v) of G on which f (e) > 0, (v , u) is in Gf and is

called a backward edge; its capacity in Gf is f (e).

The capacities in Gf are called the residual capacities.

Note that the residual capacities are all strictly positive.
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Network Flow

Augmenting paths

De�nition

Any (simple) s-t path in the residual graph Gf is called an augmenting

path. In an augmenting path P in the residual graph Gf , the minimum

residual capacity is called the bottleneck, denoted as bottleneck(P, f ).

s

u

v

t

20

10

10 20

10

10

10

20
10

(s, u, v , t) is an augmenting path; its bottleneck is 10.
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Network Flow

Augmenting along a path

Given a �ow f in G , if there is an s-t path P in its residual graph Gf , the

following operations on f is called an augmentation along P

let b be bottleneck(P, f ) > 0;

for each e in P that is forward, increase f (e) in G by b;

for each e = (u, v) in P that is backward, decrease f ((v , u)) in G
by b.

Proposition

The result of an augmentation, f ′, is a �ow in G , with value |f |+ b.
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Network Flow

Augmentation example
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Network Flow

Proof of the proposition

Proposition

The result of an augmentation, f ′, is a �ow in G , with value |f |+ b.

Proof.

To check f ′ is a �ow, we check:

1 Capacity conditions:

If e is forward, its residual capacity is ce − f (e), so
f ′(e) = f (e) + b ≤ f (e) + (ce − f (e)) = ce ;
If e = (u, v) is backward, its residual capacity is f ((v , u)), so
f ′((v , u)) = f ((v , u))− b ≥ f ((v , u))− f ((v , u)) = 0.

2 Conservation conditions: case study for each node on the augmenting

path.

An augmenting path starts from s, and δin(s) = ∅, so the �rst edge in the

path is forward.
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Network Flow

Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm:

Initialize: f (e)← 0 for all e ∈ E .

Iterate: construct Gf and search for an augmenting path. If no

augmenting path can be found, terminate and return f . Otherwise
augment along the path found and repeat.

Running time: each round takes O(m) time, but how many rounds?

Proposition

Suppose all capacities are integers. Let C be
∑

e∈δout(s) ce . The

Ford-Fulkerson algorithm terminates in at most C rounds.

Running time O(Cm).

September 13, 2019 15 / 15



Network Flow

Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm:

Initialize: f (e)← 0 for all e ∈ E .

Iterate: construct Gf and search for an augmenting path. If no

augmenting path can be found, terminate and return f . Otherwise
augment along the path found and repeat.

Running time: each round takes O(m) time, but how many rounds?

Proposition

Suppose all capacities are integers. Let C be
∑

e∈δout(s) ce . The

Ford-Fulkerson algorithm terminates in at most C rounds.

Running time O(Cm).

September 13, 2019 15 / 15



Network Flow

Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm:

Initialize: f (e)← 0 for all e ∈ E .

Iterate: construct Gf and search for an augmenting path. If no

augmenting path can be found, terminate and return f . Otherwise
augment along the path found and repeat.

Running time: each round takes O(m) time, but how many rounds?

Proposition

Suppose all capacities are integers. Let C be
∑

e∈δout(s) ce . The

Ford-Fulkerson algorithm terminates in at most C rounds.

Running time O(Cm).

September 13, 2019 15 / 15



Network Flow

Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm:

Initialize: f (e)← 0 for all e ∈ E .

Iterate: construct Gf and search for an augmenting path. If no

augmenting path can be found, terminate and return f . Otherwise
augment along the path found and repeat.

Running time: each round takes O(m) time, but how many rounds?

Proposition

Suppose all capacities are integers. Let C be
∑

e∈δout(s) ce . The

Ford-Fulkerson algorithm terminates in at most C rounds.

Running time O(Cm).

September 13, 2019 15 / 15



Network Flow

Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm:

Initialize: f (e)← 0 for all e ∈ E .

Iterate: construct Gf and search for an augmenting path. If no

augmenting path can be found, terminate and return f . Otherwise
augment along the path found and repeat.

Running time: each round takes O(m) time, but how many rounds?

Proposition

Suppose all capacities are integers. Let C be
∑

e∈δout(s) ce . The

Ford-Fulkerson algorithm terminates in at most C rounds.

Running time O(Cm).

September 13, 2019 15 / 15


	Network Flow

