Learning Goals

- Define Hamiltonian Cycles and Paths
- State the HAMILTONIAN CYCLE/PATH problem
- Understand the reduction from HAMILTONIAN CYCLE to HAMILTONIAN PATH
- Understand the reduction from 3-SAT to HAMILTONIAN CYCLE
- State the TRAVELING SALESMAN problem
- Understand the reduction from HAMILTONIAN PATH to TRAVELING SALESMAN
- Definition of Eulerian paths and cycles
- Criterion for existence of Eulerian path/cycle

(日) (同) (三) (三) (三)

Classical NP-complete problems

• Richard Karp (1972): Many combinatorial problems commonly encountered are NP-complete!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Classical NP-complete problems

- Richard Karp (1972): Many combinatorial problems commonly encountered are NP-complete!
- Since then, new problems are shown to be NP complete almost every week (if not every day).

Classical NP-complete problems

- Richard Karp (1972): Many combinatorial problems commonly encountered are NP-complete!
- Since then, new problems are shown to be NP complete almost every week (if not every day).
- Different classes of NP-complete problems enable us to recognize other NP-complete problems faster.
- Reductions to these problems are exemplary for coming up with reductions.

Hamiltonian Cycles

Definition

In a directed graph, a *Hamiltonian path* is a path that visits each vertex exactly once. A *Hamiltonian cycle* is a cycle that visits each vertex exactly once.

Hamiltonian Cycles

Definition

In a directed graph, a *Hamiltonian path* is a path that visits each vertex exactly once. A *Hamiltonian cycle* is a cycle that visits each vertex exactly once.

Definition

In the HAMILTONIAN CYCLE problem, we are given a directed graph and must decide whether there exists a Hamiltonian cycle. In the HAMILTONIAN PATH problem, we are given a directed graph and must decide whether there exists a Hamiltonian path.

October 21, 2019 3/21

HAMILTONIAN CYCLE is NP-complete.

HAMILTONIAN CYCLE is NP-complete.

Proof.

HAMILTONIAN CYCLE is in NP. Certificate for a YES instance: a Hamiltonian cycle. Verifier: verify it is a cycle that visits every node exactly once.

HAMILTONIAN CYCLE is NP-complete.

Proof.

"Gadget": a fragment of a problem that encodes a fragment from another problem.

HAMILTONIAN CYCLE is NP-complete.

Proof.

HAMILTONIAN CYCLE is in NP. Certificate for a YES instance: a Hamiltonian cycle. Verifier: verify it is a cycle that visits every node exactly once.

We show 3-SAT \leq_P HAMILTONIAN CYCLE.

"Gadget": a fragment of a problem that encodes a fragment from another problem.

Example: the 3-cycles in the reduction from 3-SAT to INDEPENDENT SET represent clauses.

HAMILTONIAN CYCLE is NP-complete.

Proof.

HAMILTONIAN CYCLE is in NP. Certificate for a YES instance: a Hamiltonian cycle. Verifier: verify it is a cycle that visits every node exactly once.

We show 3-SAT \leq_P HAMILTONIAN CYCLE.

"Gadget": a fragment of a problem that encodes a fragment from another problem.

Example: the 3-cycles in the reduction from 3-SAT to INDEPENDENT SET represent clauses.

In HAMILTONIAN CYCLE, what is a gadget to represent the TRUE or FALSE assignment to a variable in 3-SAT?

イロト 不得下 イヨト イヨト 二日

Gadget representing variables

A gadget for a variable. Starting from s_i there is one way to traverse all nodes and arrive at t_i (TRUE); starting from t_i , there is one way to traverse all nodes and arrive at s_i (FALSE).

Gadget representing variables

A gadget for a variable. Starting from s_i there is one way to traverse all nodes and arrive at t_i (TRUE); starting from t_i , there is one way to traverse all nodes and arrive at s_i (FALSE).

Connection of two variable gadgets.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Adding Clauses

Adding a positive literal to a clause.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Adding Clauses

Adding a negative literal to a clause.

- 2

イロト イヨト イヨト イヨト

Adding starting and ending points

Given a 3-SAT formula, construct a directed graph G:

- Nodes of G:
 - **1** Add node $s = s_0$, $t = t_{n+1}$;
 - 2 For each variable x_i , add node $s_i = u_{i,0}$, $t_i = u_{i,m+1}$, $u_{i,1}$, ..., $u_{i,m}$;
 - **3** For each clause j, add node v_j .

Given a 3-SAT formula, construct a directed graph G:

- Nodes of G:
 - **1** Add node $s = s_0$, $t = t_{n+1}$;
 - 2 For each variable x_i , add node $s_i = u_{i,0}$, $t_i = u_{i,m+1}$, $u_{i,1}$, \dots , $u_{i,m}$;
 - 3 For each clause j, add node v_j .
- Edges of *G*:

• For $i = 0, \ldots, n$, connect both s_i and t_i to both s_{i+1} and t_{i+1} ;

Given a 3-SAT formula, construct a directed graph G:

- Nodes of G:
 - **1** Add node $s = s_0$, $t = t_{n+1}$;
 - 2 For each variable x_i , add node $s_i = u_{i,0}, t_i = u_{i,m+1}, u_{i,1}, \ldots, u_{i,m}$;
 - **3** For each clause j, add node v_j .
- Edges of *G*:
 - For i = 0,..., n, connect both s_i and t_i to both s_{i+1} and t_{i+1};
 For i = 1,..., n, j = 0, 1, ..., m, connect u_{i,j} to u_{i,j+1} and u_{i,j+1} to u_{i,j};

イロト 不得下 イヨト イヨト 二日

Given a 3-SAT formula, construct a directed graph G:

- Nodes of G:
 - **1** Add node $s = s_0$, $t = t_{n+1}$;
 - 2 For each variable x_i , add node $s_i = u_{i,0}, t_i = u_{i,m+1}, u_{i,1}, \ldots, u_{i,m}$;
 - **3** For each clause j, add node v_j .
- Edges of *G*:
 - For $i = 0, \ldots, n$, connect both s_i and t_i to both s_{i+1} and t_{i+1} ;
 - Por i = 1,..., n, j = 0, 1, ..., m, connect u_{i,j} to u_{i,j+1} and u_{i,j+1} to u_{i,j};
 - Sor each clause j that includes literal x_i, connect u_{i,j} to v_j and v_j to u_{i,j+1};

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨー わえの

Given a 3-SAT formula, construct a directed graph G:

- Nodes of *G*:
 - **1** Add node $s = s_0$, $t = t_{n+1}$;
 - 2 For each variable x_i , add node $s_i = u_{i,0}$, $t_i = u_{i,m+1}$, $u_{i,1}$, ..., $u_{i,m}$;
 - **3** For each clause j, add node v_j .
- Edges of *G*:
 - For $i = 0, \ldots, n$, connect both s_i and t_i to both s_{i+1} and t_{i+1} ;
 - 2 For i = 1, ..., n, j = 0, 1, ..., m, connect $u_{i,j}$ to $u_{i,j+1}$ and $u_{i,j+1}$ to $u_{i,j}$;
 - Sor each clause j that includes literal x_i, connect u_{i,j} to v_j and v_j to u_{i,j+1};
 - For each cluase j that includes literals ¬x_i, connect u_{i,j+1} to v_j and v_j to u_{i,j};

Given a 3-SAT formula, construct a directed graph G:

- Nodes of *G*:
 - **1** Add node $s = s_0$, $t = t_{n+1}$;
 - 2 For each variable x_i , add node $s_i = u_{i,0}, t_i = u_{i,m+1}, u_{i,1}, \ldots, u_{i,m}$;
 - **3** For each clause j, add node v_j .
- Edges of G:
 - For $i = 0, \ldots, n$, connect both s_i and t_i to both s_{i+1} and t_{i+1} ;
 - 2 For i = 1, ..., n, j = 0, 1, ..., m, connect $u_{i,j}$ to $u_{i,j+1}$ and $u_{i,j+1}$ to $u_{i,j}$;
 - Sor each clause j that includes literal x_i, connect u_{i,j} to v_j and v_j to u_{i,j+1};
 - For each cluase j that includes literals ¬x_i, connect u_{i,j+1} to v_j and v_j to u_{i,j};
 - Onnect t to s.

イロト (周) (ヨ) (ヨ) ヨー つのの

Claim

The given 3-SAT formula has a satisfying truth assignment if and only if G has a Hamiltonian cycle.

(日) (同) (三) (三) (三)

October 21, 2019

Claim

The given 3-SAT formula has a satisfying truth assignment if and only if G has a Hamiltonian cycle.

Proof.

Given a satisfying truth assignment, there is a corresponding Hamiltonian cycle in G; (easy direction)

Image: A math a math

Claim

The given 3-SAT formula has a satisfying truth assignment if and only if G has a Hamiltonian cycle.

Proof.

Given a satisfying truth assignment, there is a corresponding Hamiltonian cycle in G; (easy direction) Given a Hamiltonian cycle in G, there is a satisfying truth assignment: we run into a problem!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Claim

The given 3-SAT formula has a satisfying truth assignment if and only if G has a Hamiltonian cycle.

Proof.

Given a satisfying truth assignment, there is a corresponding Hamiltonian cycle in G; (easy direction) Given a Hamiltonian cycle in G, there is a satisfying truth assignment: we run into a problem!

What if the cycle, after going from $u_{i,j}$ to v_j , then jumps to $u_{i',j+1}$? $u_{i,j+1}$ may still be covered by clause j + 1 when the cycle jumps back from v_{j+1} ?

イロト 不得下 イヨト イヨト 二日

Claim

The given 3-SAT formula has a satisfying truth assignment if and only if G has a Hamiltonian cycle.

Proof.

Given a satisfying truth assignment, there is a corresponding Hamiltonian cycle in G; (easy direction)

Given a Hamiltonian cycle in G, there is a satisfying truth assignment: we run into a problem!

What if the cycle, after going from $u_{i,j}$ to v_j , then jumps to $u_{i',j+1}$? $u_{i,j+1}$ may still be covered by clause j + 1 when the cycle jumps back from v_{j+1} ? This does not easily correspond to a truth assignment.

イロト 不得下 イヨト イヨト 二日

Claim

The given 3-SAT formula has a satisfying truth assignment if and only if G has a Hamiltonian cycle.

Proof.

Given a satisfying truth assignment, there is a corresponding Hamiltonian cycle in G; (easy direction)

Given a Hamiltonian cycle in G, there is a satisfying truth assignment: we run into a problem!

What if the cycle, after going from $u_{i,j}$ to v_j , then jumps to $u_{i',j+1}$? $u_{i,j+1}$ may still be covered by clause j + 1 when the cycle jumps back from v_{j+1} ? This does not easily correspond to a truth assignment.

Idea: Refine the construction to prevent such jumping from happening.

Refined Construction

Formal Description

Given a 3-SAT formula, construct a directed graph G:

- Nodes of *G*:
 - **1** Add node $s = s_0$, $t = t_{n+1}$;
 - 2 For each variable x_i , add node $s_i = u_{i,0}$, $t_i = u_{i,3m+1}$, $u_{i,1}$, ..., $u_{i,3m}$;
 - 3 For each clause j, add node v_j .
- Edges of *G*:
 - For $i = 0, \ldots, n$, connect both s_i and t_i to both s_{i+1} and t_{i+1} ;
 - 2 For i = 1, ..., n, j = 0, 1, ..., 3m, connect $u_{i,j}$ to $u_{i,j+1}$ and $u_{i,j+1}$ to $u_{i,j}$;
 - Sore ach clause j that includes literal x_i, connect u_{i,3j-2} to v_j and v_j to u_{i,3j-1};
 - For each cluase j that includes literals ¬x_i, connect u_{i,3j-1} to v_j and v_j to u_{i,3j-2};
 - Onnect t to s.

イロト (周) (ヨ) (ヨ) ヨー つのの

Claim

The given 3-SAT formula has a satisfying truth assignment if and only if G has a Hamiltonian cycle.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

October 21, 2019

3

Claim

The given 3-SAT formula has a satisfying truth assignment if and only if G has a Hamiltonian cycle.

Proof.

Given a satisfying truth assignment, there is a corresponding Hamiltonian cycle in G; (easy direction)

Claim

The given 3-SAT formula has a satisfying truth assignment if and only if G has a Hamiltonian cycle.

Proof.

Given a satisfying truth assignment, there is a corresponding Hamiltonian cycle in G; (easy direction) Given a Hamiltonian cycle in G, there is a satisfying truth assignment:

Now no jumping around is possible, becuase

Claim

The given 3-SAT formula has a satisfying truth assignment if and only if G has a Hamiltonian cycle.

Proof.

Given a satisfying truth assignment, there is a corresponding Hamiltonian cycle in G; (easy direction)

Given a Hamiltonian cycle in G, there is a satisfying truth assignment: Now no jumping around is possible, becuase if a Hamiltonian cycle visit c_j from $u_{i,3j-2}$, it has to go back to $u_{i,3j-1}$, otherwise $u_{i,3j-1}$ has only one neighbor $(u_{i,3j})$ left (and therefore can no longer be on a Hamiltonian cycle); the same is true if c_j is visited from $u_{i,3j-1}$.

Claim

The given 3-SAT formula has a satisfying truth assignment if and only if G has a Hamiltonian cycle.

Proof.

Given a satisfying truth assignment, there is a corresponding Hamiltonian cycle in G; (easy direction)

Given a Hamiltonian cycle in G, there is a satisfying truth assignment: Now no jumping around is possible, becuase if a Hamiltonian cycle visit c_j from $u_{i,3j-2}$, it has to go back to $u_{i,3j-1}$, otherwise $u_{i,3j-1}$ has only one neighbor $(u_{i,3j})$ left (and therefore can no longer be on a Hamiltonian cycle); the same is true if c_j is visited from $u_{i,3j-1}$. The way each x_i cycle is traversed by the Hamiltonian cycle now corresponds to a truth assignment. It is straightforward to verify that all clauses are satisfied by this assignment. NP-Complete Sequencing Problems

Hamiltonian Paths

Proposition

HAMILTONIAN CYCLE \leq_{P} HAMILTONIAN PATH.

October 21, 2019 14 / 21

イロト イポト イモト イモト 一日

Hamiltonian Paths

Proposition

HAMILTONIAN CYCLE \leq_{P} HAMILTONIAN PATH.

Proof Sketch.

Pick one node and split it into two copies, one with all incoming edges and the other with all outgoing edges.

Eulerian Tours and Eulerian Circuits

Definition

Given an undirected graph G, a *Eulerian trail* (or Eulerian path) is a path that traverses each *edge* in G exactly once. A Eulerian trail that is a cycle is called a Eulerian circuit (or Eulerian cycle).

Eulerian Tours and Eulerian Circuits

Definition

Given an undirected graph G, a *Eulerian trail* (or Eulerian path) is a path that traverses each *edge* in G exactly once. A Eulerian trail that is a cycle is called a Eulerian circuit (or Eulerian cycle).

15/21

Remark

Note that a Eulerian trail does not need to be simple.

Eulerian Tours and Eulerian Circuits

Definition

Given an undirected graph G, a *Eulerian trail* (or Eulerian path) is a path that traverses each *edge* in G exactly once. A Eulerian trail that is a cycle is called a Eulerian circuit (or Eulerian cycle).

Remark

Note that a Eulerian trail does not need to be simple.

Theorem

Deciding whether a given graph has a Eulerian cycle is in P. Deciding whether a given graph has a Eulerian path is in P.

NP-Complete Sequencing Problems

Seven Bridges of Königsberg

Theorem

A graph G has a Eulerian cycle if and only if all its nodes have even degrees and all the nodes with non-zero degrees are in the same connected component.

< □ > < @ > < 클 > < 클 > 클
October 21, 2019

Theorem

A graph G has a Eulerian cycle if and only if all its nodes have even degrees and all the nodes with non-zero degrees are in the same connected component.

< □ > < @ > < 클 > < 클 > 클
October 21, 2019

17 / 21

Proof by induction.

Theorem

A graph G has a Eulerian cycle if and only if all its nodes have even degrees and all the nodes with non-zero degrees are in the same connected component.

Proof by induction.

Theorem

A graph G has a Eulerian path if and only if exactly zero or two of its nodes have odd degrees, and all the nodes with non-zero degrees are in the same connected component.

Theorem

A graph G has a Eulerian cycle if and only if all its nodes have even degrees and all the nodes with non-zero degrees are in the same connected component.

Proof by induction.

Theorem

A graph G has a Eulerian path if and only if exactly zero or two of its nodes have odd degrees, and all the nodes with non-zero degrees are in the same connected component.

Proof sketch for a graph with two odd-degree nodes: First find a path from one odd degree node to the other, then the rest of the graph has a Eulerian cycle in each of its connected component. Concatenate these cycles to the path forms a Eulerian path.

Definition

Given *n* nodes v_1, \ldots, v_n , a *tour* is a path that starts from v_1 , visits every other node exactly once, and returns to v_1 . In the *Traveling Salesman Problem (TSP)*, we are given *n* nodes and a distance $d_{i,j}$ from each node v_i to another one v_j , and a bound *D*. We are asked to decide whether there is a tour of total distance at most *D*.

Definition

Given *n* nodes v_1, \ldots, v_n , a *tour* is a path that starts from v_1 , visits every other node exactly once, and returns to v_1 . In the *Traveling Salesman Problem (TSP)*, we are given *n* nodes and a distance $d_{i,j}$ from each node v_i to another one v_j , and a bound *D*. We are asked to decide whether there is a tour of total distance at most *D*.

Proposition

HAMILTONIAN CYCLE \leq_P TSP. \Rightarrow TSP is NP-complete.

Definition

Given *n* nodes v_1, \ldots, v_n , a *tour* is a path that starts from v_1 , visits every other node exactly once, and returns to v_1 . In the *Traveling Salesman Problem (TSP)*, we are given *n* nodes and a distance $d_{i,j}$ from each node v_i to another one v_j , and a bound *D*. We are asked to decide whether there is a tour of total distance at most *D*.

Proposition

HAMILTONIAN CYCLE \leq_P TSP. \Rightarrow TSP is NP-complete.

Proof.

Easy to see $\mathsf{TSP} \in \mathsf{NP}$.

Definition

Given *n* nodes v_1, \ldots, v_n , a *tour* is a path that starts from v_1 , visits every other node exactly once, and returns to v_1 . In the *Traveling Salesman Problem (TSP)*, we are given *n* nodes and a distance $d_{i,j}$ from each node v_i to another one v_j , and a bound *D*. We are asked to decide whether there is a tour of total distance at most *D*.

Proposition

HAMILTONIAN CYCLE \leq_P TSP. \Rightarrow TSP is NP-complete.

Proof.

Easy to see TSP \in NP. Given an instance of HAMILTONIAN CYCLE G = (V, E), construct a TSP instance: the nodes are V; distance $d_{i,j} = 1$ if $(v_i, v_j) \in E$, and 2 otherwise.

Definition

Given *n* nodes v_1, \ldots, v_n , a *tour* is a path that starts from v_1 , visits every other node exactly once, and returns to v_1 . In the *Traveling Salesman Problem (TSP)*, we are given *n* nodes and a distance $d_{i,j}$ from each node v_i to another one v_j , and a bound *D*. We are asked to decide whether there is a tour of total distance at most *D*.

Proposition

HAMILTONIAN CYCLE \leq_P TSP. \Rightarrow TSP is NP-complete.

Proof.

Easy to see TSP \in NP. Given an instance of HAMILTONIAN CYCLE G = (V, E), construct a TSP instance: the nodes are V; distance $d_{i,j} = 1$ if $(v_i, v_j) \in E$, and 2 otherwise. A Hamiltonian cycle exists in G if and only if there is a tour in the TSP instance with distance n.

Remark: When $d_{i,j} = d_{j,i}$, $\forall i, j$, the problem is called a *symmetric TSP* problem; otherwise it is said to be asymmetric.

Remark: When $d_{i,j} = d_{j,i}$, $\forall i, j$, the problem is called a *symmetric TSP* problem; otherwise it is said to be asymmetric. When $d_{i,j} + d_{j,k} \ge d_{i,k}$, $\forall i, j, k$, the problem is called a *metric TSP* problem.

Remark: When $d_{i,j} = d_{j,i}$, $\forall i, j$, the problem is called a *symmetric TSP* problem; otherwise it is said to be asymmetric. When $d_{i,j} + d_{j,k} \ge d_{i,k}$, $\forall i, j, k$, the problem is called a *metric TSP* problem.

< □ > < @ > < \overline > < \overline > \overline \

19 / 21

We showed that asymmetric, metric TSP is NP-complete.

Remark: When $d_{i,j} = d_{j,i}$, $\forall i, j$, the problem is called a *symmetric TSP* problem; otherwise it is said to be asymmetric. When $d_{i,j} + d_{j,k} \ge d_{i,k}$, $\forall i, j, k$, the problem is called a *metric TSP* problem.

We showed that asymmetric, metric TSP is NP-complete. In fact, symmetric, metric TSP is already NP-complete.

Does the following problem admit a polynomial-time algorithm or is it NP-complete?

• Given a set $A = \{a_1, \ldots, a_n\}$, a collection B_1, B_2, \cdots, B_m of subsets of A, and an integer k > 0. Is there a set $H \subseteq A$, $|H| \le k$ such that $H \cap B_i \neq \emptyset$ for $i = 1, \ldots, m$?

< □ > < @ > < \overline > < \overline > \overline \

Does the following problem admit a polynomial-time algorithm or is it NP-complete?

- Given a set $A = \{a_1, \ldots, a_n\}$, a collection B_1, B_2, \cdots, B_m of subsets of A, and an integer k > 0. Is there a set $H \subseteq A$, $|H| \le k$ such that $H \cap B_i \neq \emptyset$ for $i = 1, \ldots, m$?
- 3 Given a directed graph G = (V, E) with $s, t \in V$, and an integer k > 0.
 - **1** Does there exist at least k edge-disjoint paths from s to t?

Does the following problem admit a polynomial-time algorithm or is it NP-complete?

- Given a set $A = \{a_1, \ldots, a_n\}$, a collection B_1, B_2, \cdots, B_m of subsets of A, and an integer k > 0. Is there a set $H \subseteq A$, $|H| \leq k$ such that $H \cap B_i \neq \emptyset$ for $i = 1, \ldots, m$?
- 2 Given a directed graph G = (V, E) with $s, t \in V$, and an integer k > 0
 - Does there exist at least k edge-disjoint paths from s to t?
 - Given m paths P_1, \dots, P_m from s to t, does there exist at least k 2 paths among P_1, \dots, P_m that are edge-disjoint?

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨー わえの October 21, 2019

Given an undirected graph and integer k, decide whether there is a spanning tree in which each node has degree at most k.

イロト 不得下 イヨト イヨト

October 21, 2019

3

- Given an undirected graph and integer k, decide whether there is a spanning tree in which each node has degree at most k.
- 3 Given a directed graph G = (V, E) with $s, t \in V$ and nonnegative integral edge weights, and an integer k > 0.
 - Does there exist a simple path from s to t with total weight at most k?

- Given an undirected graph and integer k, decide whether there is a spanning tree in which each node has degree at most k.
- 3 Given a directed graph G = (V, E) with $s, t \in V$ and nonnegative integral edge weights, and an integer k > 0.
 - Does there exist a simple path from s to t with total weight at most k?
 - Ooes there exist a simple path from s to t with total weight at least k?