Learning Goals

- Define Hamiltonian Cycles and Paths
- State the HAMILTONIAN CYCLE/PATH problem
- Understand the reduction from HAMILTONIAN CYCLE to HAMILTONIAN PATH
- Understand the reduction from 3-SAT to HAMILTONIAN CYCLE
- State the TRAVELING SALESMAN problem
- Understand the reduction from HAMILTONIAN PATH to TRAVELING SALESMAN
- Definition of Eulerian paths and cycles
- Criterion for existence of Eulerian path/cycle

Classical NP-complete problems

- Richard Karp (1972): Many combinatorial problems commonly encountered are NP-complete!

Classical NP-complete problems

- Richard Karp (1972): Many combinatorial problems commonly encountered are NP-complete!
- Since then, new problems are shown to be NP complete almost every week (if not every day).

Classical NP-complete problems

- Richard Karp (1972): Many combinatorial problems commonly encountered are NP-complete!
- Since then, new problems are shown to be NP complete almost every week (if not every day).
- Different classes of NP-complete problems enable us to recognize other NP-complete problems faster.
- Reductions to these problems are exemplary for coming up with reductions.

Hamiltonian Cycles

Definition

In a directed graph, a Hamiltonian path is a path that visits each vertex exactly once. A Hamiltonian cycle is a cycle that visits each vertex exactly once.

Hamiltonian Cycles

Definition

In a directed graph, a Hamiltonian path is a path that visits each vertex exactly once. A Hamiltonian cycle is a cycle that visits each vertex exactly once.

Definition

In the HAMILTONIAN CYCLE problem, we are given a directed graph and must decide whether there exists a Hamiltonian cycle. In the HAMILTONIAN PATH problem, we are given a directed graph and must decide whether there exists a Hamiltonian path.

Theorem

HAMILTONIAN CYCLE is NP-complete.

Theorem

HAMILTONIAN CYCLE is NP-complete.

Proof.

HAMILTONIAN CYCLE is in NP. Certificate for a YES instance: a Hamiltonian cycle. Verifier: verify it is a cycle that visits every node exactly once.

Theorem

HAMILTONIAN CYCLE is NP-complete.

Proof.

HAMILTONIAN CYCLE is in NP. Certificate for a YES instance: a
Hamiltonian cycle. Verifier: verify it is a cycle that visits every node exactly once.
We show $3-$ SAT \leq_{p} HAMILTONIAN CYCLE.
"Gadget": a fragment of a problem that encodes a fragment from another problem.

Theorem

HAMILTONIAN CYCLE is NP-complete.

Proof.

HAMILTONIAN CYCLE is in NP. Certificate for a YES instance: a
Hamiltonian cycle. Verifier: verify it is a cycle that visits every node exactly once.
We show $3-$ SAT \leq_{p} HAMILTONIAN CYCLE.
"Gadget": a fragment of a problem that encodes a fragment from another problem.
Example: the 3-cycles in the reduction from 3-SAT to INDEPENDENT SET represent clauses.

Theorem

HAMILTONIAN CYCLE is NP-complete.

Proof.

HAMILTONIAN CYCLE is in NP. Certificate for a YES instance: a
Hamiltonian cycle. Verifier: verify it is a cycle that visits every node exactly once.
We show $3-$ SAT \leq_{p} HAMILTONIAN CYCLE.
"Gadget": a fragment of a problem that encodes a fragment from another problem.
Example: the 3-cycles in the reduction from 3-SAT to INDEPENDENT SET represent clauses.
In HAMILTONIAN CYCLE, what is a gadget to represent the TRUE or FALSE assignment to a variable in 3-SAT?

Gadget representing variables

A gadget for a variable. Starting from s_{i} there is one way to traverse all nodes and arrive at t_{i} (TRUE); starting from t_{i}, there is one way to traverse all nodes and arrive at s_{i} (FALSE).

Gadget representing variables

A gadget for a variable. Starting from s_{i} there is one way to traverse all nodes and arrive at t_{i} (TRUE); starting from t_{i}, there is one way to traverse all nodes and arrive at s_{i} (FALSE).

Connection of two variable gadgets.

Adding Clauses

Adding a positive literal to a clause.

Adding Clauses

Adding a negative literal to a clause.

Adding starting and ending points

(Tentative) Formal Description

Given a 3-SAT formula, construct a directed graph G :

- Nodes of G:
(1) Add node $s=s_{0}, t=t_{n+1}$;
(2) For each variable x_{i}, add node $s_{i}=u_{i, 0}, t_{i}=u_{i, m+1}, u_{i, 1}, \ldots, u_{i, m}$;
(3) For each clause j, add node v_{j}.

(Tentative) Formal Description

Given a 3-SAT formula, construct a directed graph G :

- Nodes of G:
(1) Add node $s=s_{0}, t=t_{n+1}$;
(2) For each variable x_{i}, add node $s_{i}=u_{i, 0}, t_{i}=u_{i, m+1}, u_{i, 1}, \ldots, u_{i, m}$;
(3) For each clause j, add node v_{j}.
- Edges of G:
(1) For $i=0, \ldots, n$, connect both s_{i} and t_{i} to both s_{i+1} and t_{i+1};

(Tentative) Formal Description

Given a 3-SAT formula, construct a directed graph G :

- Nodes of G:
(1) Add node $s=s_{0}, t=t_{n+1}$;
(2) For each variable x_{i}, add node $s_{i}=u_{i, 0}, t_{i}=u_{i, m+1}, u_{i, 1}, \ldots, u_{i, m}$;
(3) For each clause j, add node v_{j}.
- Edges of G :
(1) For $i=0, \ldots, n$, connect both s_{i} and t_{i} to both s_{i+1} and t_{i+1};
(2) For $i=1, \ldots, n, j=0,1, \ldots, m$, connect $u_{i, j}$ to $u_{i, j+1}$ and $u_{i, j+1}$ to $u_{i, j}$;

(Tentative) Formal Description

Given a 3-SAT formula, construct a directed graph G :

- Nodes of G:
(1) Add node $s=s_{0}, t=t_{n+1}$;
(2) For each variable x_{i}, add node $s_{i}=u_{i, 0}, t_{i}=u_{i, m+1}, u_{i, 1}, \ldots, u_{i, m}$;
(3) For each clause j, add node v_{j}.
- Edges of G :
(1) For $i=0, \ldots, n$, connect both s_{i} and t_{i} to both s_{i+1} and t_{i+1};
(2) For $i=1, \ldots, n, j=0,1, \ldots, m$, connect $u_{i, j}$ to $u_{i, j+1}$ and $u_{i, j+1}$ to $u_{i, j}$;
(3) For each clause j that includes literal x_{i}, connect $u_{i, j}$ to v_{j} and v_{j} to $u_{i, j+1}$;

(Tentative) Formal Description

Given a 3-SAT formula, construct a directed graph G :

- Nodes of G :
(1) Add node $s=s_{0}, t=t_{n+1}$;
(2) For each variable x_{i}, add node $s_{i}=u_{i, 0}, t_{i}=u_{i, m+1}, u_{i, 1}, \ldots, u_{i, m}$;
(3) For each clause j, add node v_{j}.
- Edges of G :
(1) For $i=0, \ldots, n$, connect both s_{i} and t_{i} to both s_{i+1} and t_{i+1};
(2) For $i=1, \ldots, n, j=0,1, \ldots, m$, connect $u_{i, j}$ to $u_{i, j+1}$ and $u_{i, j+1}$ to $u_{i, j}$;
(3) For each clause j that includes literal x_{i}, connect $u_{i, j}$ to v_{j} and v_{j} to $u_{i, j+1}$;
(1) For each cluase j that includes literals $\neg x_{i}$, connect $u_{i, j+1}$ to v_{j} and v_{j} to $u_{i, j}$;

(Tentative) Formal Description

Given a 3-SAT formula, construct a directed graph G :

- Nodes of G :
(1) Add node $s=s_{0}, t=t_{n+1}$;
(2) For each variable x_{i}, add node $s_{i}=u_{i, 0}, t_{i}=u_{i, m+1}, u_{i, 1}, \ldots, u_{i, m}$;
(3) For each clause j, add node v_{j}.
- Edges of G :
(1) For $i=0, \ldots, n$, connect both s_{i} and t_{i} to both s_{i+1} and t_{i+1};
(2) For $i=1, \ldots, n, j=0,1, \ldots, m$, connect $u_{i, j}$ to $u_{i, j+1}$ and $u_{i, j+1}$ to $u_{i, j}$;
(3) For each clause j that includes literal x_{i}, connect $u_{i, j}$ to v_{j} and v_{j} to $u_{i, j+1}$;
(1) For each cluase j that includes literals $\neg x_{i}$, connect $u_{i, j+1}$ to v_{j} and v_{j} to $u_{i, j}$;
(0) Connect t to s.

(Tentatively) Completing the Proof

Claim

The given 3-SAT formula has a satisfying truth assignment if and only if G has a Hamiltonian cycle.

(Tentatively) Completing the Proof

Claim

The given 3-SAT formula has a satisfying truth assignment if and only if G has a Hamiltonian cycle.

Proof.

Given a satisfying truth assignment, there is a corresponding Hamiltonian cycle in G; (easy direction)

(Tentatively) Completing the Proof

Claim

The given 3-SAT formula has a satisfying truth assignment if and only if G has a Hamiltonian cycle.

Proof.

Given a satisfying truth assignment, there is a corresponding Hamiltonian cycle in G; (easy direction) Given a Hamiltonian cycle in G, there is a satisfying truth assignment: we run into a problem!

(Tentatively) Completing the Proof

Claim

The given 3-SAT formula has a satisfying truth assignment if and only if G has a Hamiltonian cycle.

Proof.

Given a satisfying truth assignment, there is a corresponding Hamiltonian cycle in G; (easy direction)
Given a Hamiltonian cycle in G, there is a satisfying truth assignment: we run into a problem!
What if the cycle, after going from $u_{i, j}$ to v_{j}, then jumps to $u_{i^{\prime}, j+1}$? $u_{i, j+1}$ may still be covered by clause $j+1$ when the cycle jumps back from v_{j+1} ?

(Tentatively) Completing the Proof

Claim

The given 3-SAT formula has a satisfying truth assignment if and only if G has a Hamiltonian cycle.

Proof.

Given a satisfying truth assignment, there is a corresponding Hamiltonian cycle in G; (easy direction)
Given a Hamiltonian cycle in G, there is a satisfying truth assignment: we run into a problem!
What if the cycle, after going from $u_{i, j}$ to v_{j}, then jumps to $u_{i^{\prime}, j+1}$? $u_{i, j+1}$ may still be covered by clause $j+1$ when the cycle jumps back from v_{j+1} ? This does not easily correspond to a truth assignment.

(Tentatively) Completing the Proof

Claim

The given 3-SAT formula has a satisfying truth assignment if and only if G has a Hamiltonian cycle.

Proof.

Given a satisfying truth assignment, there is a corresponding Hamiltonian cycle in G; (easy direction)
Given a Hamiltonian cycle in G, there is a satisfying truth assignment: we run into a problem!
What if the cycle, after going from $u_{i, j}$ to v_{j}, then jumps to $u_{i^{\prime}, j+1}$? $u_{i, j+1}$ may still be covered by clause $j+1$ when the cycle jumps back from v_{j+1} ? This does not easily correspond to a truth assignment. Idea: Refine the construction to prevent such jumping from happening.

Refined Construction

Formal Description

Given a 3-SAT formula, construct a directed graph G :

- Nodes of G:
(1) Add node $s=s_{0}, t=t_{n+1}$;
(2) For each variable x_{i}, add node $s_{i}=u_{i, 0}, t_{i}=u_{i, 3 m+1}, u_{i, 1}, \ldots, u_{i, 3 m}$;
(3) For each clause j, add node v_{j}.
- Edges of G :
(1) For $i=0, \ldots, n$, connect both s_{i} and t_{i} to both s_{i+1} and t_{i+1};
(2) For $i=1, \ldots, n, j=0,1, \ldots, 3 m$, connect $u_{i, j}$ to $u_{i, j+1}$ and $u_{i, j+1}$ to $u_{i, j}$;
(3) For each clause j that includes literal x_{i}, connect $u_{i, 3 j-2}$ to v_{j} and v_{j} to $u_{i, 3 j-1}$;
(1) For each cluase j that includes literals $\neg x_{i}$, connect $u_{i, 3 j-1}$ to v_{j} and v_{j} to $u_{i, 3 j-2}$;
(0) Connect t to s.

Completing the Proof

Claim

The given 3-SAT formula has a satisfying truth assignment if and only if G has a Hamiltonian cycle.

Completing the Proof

Claim

The given 3-SAT formula has a satisfying truth assignment if and only if G has a Hamiltonian cycle.

Proof.

Given a satisfying truth assignment, there is a corresponding Hamiltonian cycle in G; (easy direction)

Completing the Proof

Claim

The given 3-SAT formula has a satisfying truth assignment if and only if G has a Hamiltonian cycle.

Proof.

Given a satisfying truth assignment, there is a corresponding Hamiltonian cycle in G; (easy direction)
Given a Hamiltonian cycle in G, there is a satisfying truth assignment: Now no jumping around is possible, becuase

Completing the Proof

Claim

The given 3-SAT formula has a satisfying truth assignment if and only if G has a Hamiltonian cycle.

Proof.

Given a satisfying truth assignment, there is a corresponding Hamiltonian cycle in G; (easy direction)
Given a Hamiltonian cycle in G, there is a satisfying truth assignment: Now no jumping around is possible, becuase if a Hamiltonian cycle visit c_{j} from $u_{i, 3 j-2}$, it has to go back to $u_{i, 3 j-1}$, otherwise $u_{i, 3 j-1}$ has only one neighbor ($u_{i, 3 j}$) left (and therefore can no longer be on a Hamiltonian cycle); the same is true if c_{j} is visited from $u_{i, 3 j-1}$.

Completing the Proof

Claim

The given 3-SAT formula has a satisfying truth assignment if and only if G has a Hamiltonian cycle.

Proof.

Given a satisfying truth assignment, there is a corresponding Hamiltonian cycle in G; (easy direction)
Given a Hamiltonian cycle in G, there is a satisfying truth assignment: Now no jumping around is possible, becuase if a Hamiltonian cycle visit c_{j} from $u_{i, 3 j-2}$, it has to go back to $u_{i, 3 j-1}$, otherwise $u_{i, 3 j-1}$ has only one neighbor ($u_{i, 3 j}$) left (and therefore can no longer be on a Hamiltonian cycle); the same is true if c_{j} is visited from $u_{i, 3 j-1}$.
The way each x_{i} cycle is traversed by the Hamiltonian cycle now corresponds to a truth assignment. It is straightforward to verify that all clauses are satisfied by this assignment.

Hamiltonian Paths

Proposition

HAMILTONIAN CYCLE \leq_{p} HAMILTONIAN PATH.

Hamiltonian Paths

Proposition

HAMILTONIAN CYCLE \leq_{p} HAMILTONIAN PATH.

Proof Sketch.

Pick one node and split it into two copies, one with all incoming edges and the other with all outgoing edges.

Eulerian Tours and Eulerian Circuits

Definition

Given an undirected graph G, a Eulerian trail (or Eulerian path) is a path that traverses each edge in G exactly once. A Eulerian trail that is a cycle is called a Eulerian circuit (or Eulerian cycle).

Eulerian Tours and Eulerian Circuits

Definition

Given an undirected graph G, a Eulerian trail (or Eulerian path) is a path that traverses each edge in G exactly once. A Eulerian trail that is a cycle is called a Eulerian circuit (or Eulerian cycle).

Remark

Note that a Eulerian trail does not need to be simple.

Eulerian Tours and Eulerian Circuits

Definition

Given an undirected graph G, a Eulerian trail (or Eulerian path) is a path that traverses each edge in G exactly once. A Eulerian trail that is a cycle is called a Eulerian circuit (or Eulerian cycle).

Remark

Note that a Eulerian trail does not need to be simple.

Theorem

Deciding whether a given graph has a Eulerian cycle is in P .
Deciding whether a given graph has a Eulerian path is in P .

Seven Bridges of Königsberg

Euler's theorem

Theorem

A graph G has a Eulerian cycle if and only if all its nodes have even degrees and all the nodes with non-zero degrees are in the same connected component.

Euler's theorem

Theorem

A graph G has a Eulerian cycle if and only if all its nodes have even degrees and all the nodes with non-zero degrees are in the same connected component.

Proof by induction.

Euler's theorem

Theorem

A graph G has a Eulerian cycle if and only if all its nodes have even degrees and all the nodes with non-zero degrees are in the same connected component.

Proof by induction.

Theorem

A graph G has a Eulerian path if and only if exactly zero or two of its nodes have odd degrees, and all the nodes with non-zero degrees are in the same connected component.

Euler's theorem

Theorem

A graph G has a Eulerian cycle if and only if all its nodes have even degrees and all the nodes with non-zero degrees are in the same connected component.

Proof by induction.

Theorem

A graph G has a Eulerian path if and only if exactly zero or two of its nodes have odd degrees, and all the nodes with non-zero degrees are in the same connected component.

Proof sketch for a graph with two odd-degree nodes: First find a path from one odd degree node to the other, then the rest of the graph has a Eulerian cycle in each of its connected component. Concatenate these cycles to the path forms a Eulerian path.

Traveling Salesman Problem

Definition

Given n nodes v_{1}, \ldots, v_{n}, a tour is a path that starts from v_{1}, visits every other node exactly once, and returns to v_{1}.
In the Traveling Salesman Problem (TSP), we are given n nodes and a distance $d_{i, j}$ from each node v_{i} to another one v_{j}, and a bound D. We are asked to decide whether there is a tour of total distance at most D.

Traveling Salesman Problem

Definition

Given n nodes v_{1}, \ldots, v_{n}, a tour is a path that starts from v_{1}, visits every other node exactly once, and returns to v_{1}.
In the Traveling Salesman Problem (TSP), we are given n nodes and a distance $d_{i, j}$ from each node v_{i} to another one v_{j}, and a bound D. We are asked to decide whether there is a tour of total distance at most D.

Proposition

HAMILTONIAN CYCLE \leq_{p} TSP. \Rightarrow TSP is NP-complete.

Traveling Salesman Problem

Definition

Given n nodes v_{1}, \ldots, v_{n}, a tour is a path that starts from v_{1}, visits every other node exactly once, and returns to v_{1}.
In the Traveling Salesman Problem (TSP), we are given n nodes and a distance $d_{i, j}$ from each node v_{i} to another one v_{j}, and a bound D. We are asked to decide whether there is a tour of total distance at most D.

Proposition

HAMILTONIAN CYCLE \leq_{p} TSP. \Rightarrow TSP is NP-complete.
Proof.
Easy to see TSP \in NP.

Traveling Salesman Problem

Definition

Given n nodes v_{1}, \ldots, v_{n}, a tour is a path that starts from v_{1}, visits every other node exactly once, and returns to v_{1}.
In the Traveling Salesman Problem (TSP), we are given n nodes and a distance $d_{i, j}$ from each node v_{i} to another one v_{j}, and a bound D. We are asked to decide whether there is a tour of total distance at most D.

Proposition

HAMILTONIAN CYCLE \leq_{p} TSP. \Rightarrow TSP is NP-complete.

Proof.

Easy to see TSP \in NP. Given an instance of HAMILTONIAN CYCLE $G=(V, E)$, construct a TSP instance: the nodes are V; distance $d_{i, j}=1$ if $\left(v_{i}, v_{j}\right) \in E$, and 2 otherwise.

Traveling Salesman Problem

Definition

Given n nodes v_{1}, \ldots, v_{n}, a tour is a path that starts from v_{1}, visits every other node exactly once, and returns to v_{1}.
In the Traveling Salesman Problem (TSP), we are given n nodes and a distance $d_{i, j}$ from each node v_{i} to another one v_{j}, and a bound D. We are asked to decide whether there is a tour of total distance at most D.

Proposition

HAMILTONIAN CYCLE \leq_{p} TSP. \Rightarrow TSP is NP-complete.

Proof.

Easy to see TSP \in NP. Given an instance of HAMILTONIAN CYCLE $G=(V, E)$, construct a TSP instance: the nodes are V; distance $d_{i, j}=1$ if $\left(v_{i}, v_{j}\right) \in E$, and 2 otherwise. A Hamiltonian cycle exists in G if and only if there is a tour in the TSP instance with distance n.

Last remarks on TSP

Remark: When $d_{i, j}=d_{j, i}, \forall i, j$, the problem is called a symmetric TSP problem; otherwise it is said to be asymmetric.

Last remarks on TSP

Remark: When $d_{i, j}=d_{j, i}, \forall i, j$, the problem is called a symmetric TSP problem; otherwise it is said to be asymmetric. When $d_{i, j}+d_{j, k} \geq d_{i, k}, \forall i, j, k$, the problem is called a metric TSP problem.

Last remarks on TSP

Remark: When $d_{i, j}=d_{j, i}, \forall i, j$, the problem is called a symmetric TSP problem; otherwise it is said to be asymmetric.
When $d_{i, j}+d_{j, k} \geq d_{i, k}, \forall i, j, k$, the problem is called a metric TSP problem.
We showed that asymmetric, metric TSP is NP-complete.

Last remarks on TSP

Remark: When $d_{i, j}=d_{j, i}, \forall i, j$, the problem is called a symmetric $T S P$ problem; otherwise it is said to be asymmetric.
When $d_{i, j}+d_{j, k} \geq d_{i, k}, \forall i, j, k$, the problem is called a metric TSP problem.
We showed that asymmetric, metric TSP is NP-complete. In fact, symmetric, metric TSP is already NP-complete.

Exercises

Does the following problem admit a polynomial-time algorithm or is it NP-complete?
(1) Given a set $A=\left\{a_{1}, \ldots, a_{n}\right\}$, a collection $B_{1}, B_{2}, \cdots, B_{m}$ of subsets of A, and an integer $k>0$. Is there a set $H \subseteq A,|H| \leq k$ such that $H \cap B_{i} \neq \emptyset$ for $i=1, \ldots, m$?

Exercises

Does the following problem admit a polynomial-time algorithm or is it NP-complete?
(1) Given a set $A=\left\{a_{1}, \ldots, a_{n}\right\}$, a collection $B_{1}, B_{2}, \cdots, B_{m}$ of subsets of A, and an integer $k>0$. Is there a set $H \subseteq A,|H| \leq k$ such that $H \cap B_{i} \neq \emptyset$ for $i=1, \ldots, m$?
(2) Given a directed graph $G=(V, E)$ with $s, t \in V$, and an integer $k>0$.
(1) Does there exist at least k edge-disjoint paths from s to t ?

Exercises

Does the following problem admit a polynomial-time algorithm or is it NP-complete?
(1) Given a set $A=\left\{a_{1}, \ldots, a_{n}\right\}$, a collection $B_{1}, B_{2}, \cdots, B_{m}$ of subsets of A, and an integer $k>0$. Is there a set $H \subseteq A,|H| \leq k$ such that $H \cap B_{i} \neq \emptyset$ for $i=1, \ldots, m$?
(2) Given a directed graph $G=(V, E)$ with $s, t \in V$, and an integer $k>0$.
(1) Does there exist at least k edge-disjoint paths from s to t ?
(2) Given m paths P_{1}, \cdots, P_{m} from s to t, does there exist at least k paths among P_{1}, \cdots, P_{m} that are edge-disjoint?

Exercises

(1) Given an undirected graph and integer k, decide whether there is a spanning tree in which each node has degree at most k.

Exercises

(1) Given an undirected graph and integer k, decide whether there is a spanning tree in which each node has degree at most k.
(2) Given a directed graph $G=(V, E)$ with $s, t \in V$ and nonnegative integral edge weights, and an integer $k>0$.
(1) Does there exist a simple path from s to t with total weight at most k ?

Exercises

(1) Given an undirected graph and integer k, decide whether there is a spanning tree in which each node has degree at most k.
(2) Given a directed graph $G=(V, E)$ with $s, t \in V$ and nonnegative integral edge weights, and an integer $k>0$.
(1) Does there exist a simple path from s to t with total weight at most k ?
(2) Does there exist a simple path from s to t with total weight at least k ?

