The Knapsack Problem

Learning Goals

@ Definition of Fully Polynomial-Time Approximation Schemes (FPTAS)

@ Design pseudo-polynomial time dynamic programming algorithms for
NP-hard problems

@ Apply rounding to DP and analyze it to obtain approximation
algorithms

. TN E



The Knapsack Problem

@ Input: n items with weights wy, ..., w, and values vy,...,v,, and a
knapsack capacity W. All weights and values are positive integers;
w; < W for all i.

. S () e @



The Knapsack Problem

@ Input: n items with weights wy, ..., w, and values vy,...,v,, and a
knapsack capacity W. All weights and values are positive integers;
w; < W for all i.

@ Decision version: given a value target V, does there exist a subset of
items whose total weight is < W and whose total value is > V7

. S () e @



The Knapsack Problem

@ Input: n items with weights wy, ..., w, and values vy,...,v,, and a
knapsack capacity W. All weights and values are positive integers;
w; < W for all i.

@ Decision version: given a value target V, does there exist a subset of
items whose total weight is < W and whose total value is > V7

@ Optimization version: output a subset S of items whose total weight
does not exceed W and whose total value is maximum

e Formally, max;ecs ) ;g vi such that >, s w; < W.

. Sremioy 1) e @



The Knapsack Problem

@ Input: n items with weights wy, ..., w, and values vy,...,v,, and a
knapsack capacity W. All weights and values are positive integers;
w; < W for all i.

@ Decision version: given a value target V, does there exist a subset of
items whose total weight is < W and whose total value is > V7

@ Optimization version: output a subset S of items whose total weight
does not exceed W and whose total value is maximum

e Formally, max;ecs ) ;g vi such that >, s w; < W.
@ We already showed the decision version to be NP-complete.

. N T E



Attempt at Approximation: Greedy

@ Greedy approach 1: in each step, among all items that can still be
added to the knapsack, choose the one with the maximum value and
add it to the knapsack.

. RN TEETE



Attempt at Approximation: Greedy

@ Greedy approach 1: in each step, among all items that can still be
added to the knapsack, choose the one with the maximum value and
add it to the knapsack.

@ This does not guarantee any finite approximation ratio.

. RN TEETE



Attempt at Approximation: Greedy

@ Greedy approach 1: in each step, among all items that can still be
added to the knapsack, choose the one with the maximum value and
add it to the knapsack.

@ This does not guarantee any finite approximation ratio.

e Exercise: Modify the greedy algorithm and get a 2-approximation with
a greedy approach (Question 3 in PS6 is a special case)

. RN TEETE



Attempt at Approximation: Dynamic Programming (DP)

@ Recall: when w; = v; for all J, the decision problem with W = V is
subset sum, and there is a dynamic programming algorithm that
exactly solves the problem in (pseudo-polynomial) time O(nW).

. B () e O



The Knapsack Problem

Attempt at Approximation: Dynamic Programming (DP)

@ Recall: when w; = v; for all J, the decision problem with W = V is
subset sum, and there is a dynamic programming algorithm that
exactly solves the problem in (pseudo-polynomial) time O(nW).

o It is easy to generalize this DP for knapsack with running time
O(nW).

. SRR

4/9



Attempt at Approximation: Dynamic Programming (DP)

@ Recall: when w; = v; for all J, the decision problem with W = V is
subset sum, and there is a dynamic programming algorithm that
exactly solves the problem in (pseudo-polynomial) time O(nW).

o It is easy to generalize this DP for knapsack with running time
O(nW).

@ Observation: If all the weights are multiples of an integer b, and the
running time would be O(nW/b).

. N TERTE



Attempt at Approximation: Dynamic Programming (DP)

@ Recall: when w; = v; for all J, the decision problem with W = V is
subset sum, and there is a dynamic programming algorithm that
exactly solves the problem in (pseudo-polynomial) time O(nW).

o It is easy to generalize this DP for knapsack with running time
O(nW).

@ Observation: If all the weights are multiples of an integer b, and the
running time would be O(nW/b).

@ Approximation idea: Can we round the weights, by replacing the
actual weights by multiple of an appropriate integer b?

. N TERTE



Attempt at Approximation: Dynamic Programming (DP)

@ Recall: when w; = v; for all J, the decision problem with W = V is
subset sum, and there is a dynamic programming algorithm that
exactly solves the problem in (pseudo-polynomial) time O(nW).

o It is easy to generalize this DP for knapsack with running time
O(nW).

@ Observation: If all the weights are multiples of an integer b, and the
running time would be O(nW/b).

@ Approximation idea: Can we round the weights, by replacing the
actual weights by multiple of an appropriate integer b?

@ Example: If the weights are 5, 24, 77, 131, 142, with W = 156, round
weights to 0, 25, 75, 125, 150, and W = 1507

. RN TERTE



The Knapsack Problem

Problem with rounding weights

@ Approximation idea: Can we round the weights, by replacing the
actual weights by multiple of an appropriate integer b?

@ Problem: weights are hard constraints; by rounding them, easily lead
us to infeasible solutions (if we round weights down) or bad
approximations (if we round weights up).

. TN T E



The Knapsack Problem

Problem with rounding weights

@ Approximation idea: Can we round the weights, by replacing the
actual weights by multiple of an appropriate integer b?

@ Problem: weights are hard constraints; by rounding them, easily lead
us to infeasible solutions (if we round weights down) or bad
approximations (if we round weights up).

@ Alternative: Such problems won't arise if we round values instead. We
need a new DP that has a pseudopolynomial dependence on values
instead of weights.

. RN T E



The Knapsack Problem

Dynamic Programming on Values

Idea: Iteratively compute an array where A[v] is the minimum weight
needed to achieve value v.

. Bl () e G



The Knapsack Problem

Dynamic Programming on Values

Idea: Iteratively compute an array where A[v] is the minimum weight
needed to achieve value v.

The algorithm:

o Initialize A[v] +— oo for v =1,2,...,v*n where v* := max; v;.
Initialize A[0] < .

December 12, 2019

6/9



The Knapsack Problem

Dynamic Programming on Values

Idea: Iteratively compute an array where A[v] is the minimum weight
needed to achieve value v.

The algorithm:
o Initialize A[v] +— oo for v =1,2,...,v*n where v* := max; v;.
Initialize A[0] < 0.
@ Foreachitemi=1,2,...,n
o for v from (i — 1)v* down to 0
e Update A[v + vi] «+ min(A[v + vi], A[v] + w;).

December 12, 2019

6/9



The Knapsack Problem

Dynamic Programming on Values

Idea: Iteratively compute an array where A[v] is the minimum weight
needed to achieve value v.

The algorithm:
o Initialize A[v] +— oo for v =1,2,...,v*n where v* := max; v;.
Initialize A[0] < 0.
@ Foreachitemi=1,2,...,n
o for v from (i — 1)v* down to 0
e Update A[v + vi] «+ min(A[v + vi], A[v] + w;).
® Return the largest v such that A[v] < W.

December 12, 2019

6/9



The Knapsack Problem

Dynamic Programming on Values

Idea: Iteratively compute an array where A[v] is the minimum weight
needed to achieve value v.
The algorithm:

o Initialize A[v] +— oo for v =1,2,...,v*n where v* := max; v;.

Initialize A[0] < 0.
@ Foreachitemi=1,2,...,n
o for v from (i — 1)v* down to 0
e Update A[v + vi] «+ min(A[v + vi], A[v] + w;).
® Return the largest v such that A[v] < W.

Running time: for each item i, we go through the array of length O(iv*),
so total running time O(v*n?).

. R N T E



The Knapsack Problem

Rounding the values for approximation

@ The dynamic programming is pseudopolynomial time because of its
running time dependence on v*.

. RN TETE



The Knapsack Problem

Rounding the values for approximation

@ The dynamic programming is pseudopolynomial time because of its
running time dependence on v*.

@ Intuitively, if we round up the values to multiples of a small integer b
and run the dynamic programming, we shouldn’t be far off.

. RN TETE



The Knapsack Problem

Rounding the values for approximation

@ The dynamic programming is pseudopolynomial time because of its
running time dependence on v*.

@ Intuitively, if we round up the values to multiples of a small integer b
and run the dynamic programming, we shouldn’t be far off.

o Let U .= [v;/b], and V; := V;b.

. RN TETE



The Knapsack Problem

Rounding the values for approximation

The dynamic programming is pseudopolynomial time because of its
running time dependence on v*.

Intuitively, if we round up the values to multiples of a small integer b
and run the dynamic programming, we shouldn’t be far off.

Let v; = [V,‘/b], and V; := ¥;b.

Run the dynamic programming on Vi, ..., Uy, then the running time
would be O(n?v*/b).

. RN TETE



The Knapsack Problem

Rounding the values for approximation

@ The dynamic programming is pseudopolynomial time because of its
running time dependence on v*.

@ Intuitively, if we round up the values to multiples of a small integer b
and run the dynamic programming, we shouldn’t be far off.

o Let U .= [v;/b], and V; := V;b.

@ Run the dynamic programming on ¥1,..., V,, then the running time
would be O(n?v*/b).

@ How good an approximation is S, the set of items chosen by the
algorithm?

. RN TETE



The Knapsack Problem

Rounding the values for approximation

The dynamic programming is pseudopolynomial time because of its
running time dependence on v*.

Intuitively, if we round up the values to multiples of a small integer b
and run the dynamic programming, we shouldn’t be far off.

Let v; = [V,‘/b], and V; := ¥;b.

Run the dynamic programming on Vi, ..., Uy, then the running time
would be O(n?v*/b).

How good an approximation is S, the set of items chosen by the
algorithm?

Let S* be any other feasible set of items (think it as the optimal
solution), then

DN G=bd G<bd U=) Gi<nb+) v

ieS* i€S* i€S* 1) ieS ieS

. N e



Final step

ZV;SZV,’Z[)Z Q;SbZ\’}/:ZV,'Snb—I-ZV/.

ieS* ieS* ieS* i€eS i€eS i€S

o If we could make nb a small fraction of 3, s v;, say, at most €
fraction, then RHS is (1 +¢€) > ;g vi.

. SRR

8/9



Final step

ZV;SZV,’Z[)Z Q;SbZ\’}/:ZV,'Snb—I-ZV/.

ieS* ieS* ieS* i€eS i€eS i€S

o If we could make nb a small fraction of 3, s v;, say, at most €
fraction, then RHS is (1 +¢€) > ;g vi.

@ How big should be b?

. SRR

8/9



Final step

ZV;SZV,’Z[)Z Q;SbZ\’}/:ZV,'Snb—I-ZV/.

ieS* ieS* ieS* i€eS i€eS i€S

o If we could make nb a small fraction of 3, s v;, say, at most €
fraction, then RHS is (1 +¢€) > ;g vi.

@ How big should be b?
e We want nb <€), s vi. Fixing e, this asks for lower bounding

> ies Vi

o But ), svi>v* —nb!

. SRR

8/9



Final step

ZV;SZV,’Z[)Z Q;SbZ\’}/:ZV,'Snb—I-ZV/.

ieS* ieS* ieS* i€eS i€eS i€S

o If we could make nb a small fraction of 3, s v;, say, at most €
fraction, then RHS is (1 +¢€) > ;g vi.

@ How big should be b?
e We want nb <€), s vi. Fixing e, this asks for lower bounding

Yies Vie
o But ), svi>v* —nb!
o It suffices to have nb < e(v* — nb). Using € < 1, we are good as long
as nb < ev* —nb < b <ev*/(2n).

. R N E



Final step

ZV;SZV,’Z[)Z Q;SbZ\’}/:ZV,'Snb—I-ZV/.

ieS* ieS* ieS* i€eS i€eS i€S

o If we could make nb a small fraction of 3, s v;, say, at most €
fraction, then RHS is (1 +¢€) > ;g vi.

@ How big should be b?
e We want nb <€), s vi. Fixing e, this asks for lower bounding

Yies Vie
o But ), svi>v* —nb!
o It suffices to have nb < e(v* — nb). Using € < 1, we are good as long
as nb < ev* —nb < b <ev*/(2n).

@ Running time: O(n?v*/b) = O(n3¢71).

. R TN E



PTAS and FPTAS

For any € > 0, the Knapsack problem can be approximated to a factor of
1 + € by an algorithm that runs in time O(n3e~1).

. R N E



PTAS and FPTAS

Theorem

For any € > 0, the Knapsack problem can be approximated to a factor of
1 + € by an algorithm that runs in time O(n3e~1).

Definition

A family of approximation algorithms is a polynomial-time approximation
scheme (PTAS) for an optimization problem if for any ¢ > 0, there is an
algorithm in the family that is a (1 + €)-approximation algorithm for the
problem, with polynomial running time when € is treated as a constant. If
the running time depends polynomially on €71, the family is said to be a
fully polynomial-time approximation scheme (FPTAS).

. B ) e O



PTAS and FPTAS

Theorem

For any € > 0, the Knapsack problem can be approximated to a factor of
1 + € by an algorithm that runs in time O(n3e~1).

Definition
A family of approximation algorithms is a polynomial-time approximation
scheme (PTAS) for an optimization problem if for any ¢ > 0, there is an
algorithm in the family that is a (1 + €)-approximation algorithm for the
problem, with polynomial running time when € is treated as a constant. If
the running time depends polynomially on €71, the family is said to be a
fully polynomial-time approximation scheme (FPTAS).

We have obtained an FPTAS for the Knapsack problem.

. B ) e O



	The Knapsack Problem

