Learning Goals

- Definition of Fully Polynomial-Time Approximation Schemes (FPTAS)
- Design pseudo-polynomial time dynamic programming algorithms for NP-hard problems
- Apply rounding to DP and analyze it to obtain approximation algorithms

The Knapsack Problem

- Input: n items with weights w_{1}, \ldots, w_{n} and values v_{1}, \ldots, v_{n}, and a knapsack capacity W. All weights and values are positive integers; $w_{i} \leq W$ for all i.

The Knapsack Problem

- Input: n items with weights w_{1}, \ldots, w_{n} and values v_{1}, \ldots, v_{n}, and a knapsack capacity W. All weights and values are positive integers; $w_{i} \leq W$ for all i.
- Decision version: given a value target V, does there exist a subset of items whose total weight is $\leq W$ and whose total value is $\geq V$?

The Knapsack Problem

- Input: n items with weights w_{1}, \ldots, w_{n} and values v_{1}, \ldots, v_{n}, and a knapsack capacity W. All weights and values are positive integers; $w_{i} \leq W$ for all i.
- Decision version: given a value target V, does there exist a subset of items whose total weight is $\leq W$ and whose total value is $\geq V$?
- Optimization version: output a subset S of items whose total weight does not exceed W and whose total value is maximum
- Formally, $\max _{i \in S} \sum_{i \in S} v_{i}$ such that $\sum_{i \in S} w_{i} \leq W$.

The Knapsack Problem

- Input: n items with weights w_{1}, \ldots, w_{n} and values v_{1}, \ldots, v_{n}, and a knapsack capacity W. All weights and values are positive integers; $w_{i} \leq W$ for all i.
- Decision version: given a value target V, does there exist a subset of items whose total weight is $\leq W$ and whose total value is $\geq V$?
- Optimization version: output a subset S of items whose total weight does not exceed W and whose total value is maximum
- Formally, $\max _{i \in S} \sum_{i \in S} v_{i}$ such that $\sum_{i \in S} w_{i} \leq W$.
- We already showed the decision version to be NP-complete.

Attempt at Approximation: Greedy

- Greedy approach 1: in each step, among all items that can still be added to the knapsack, choose the one with the maximum value and add it to the knapsack.

Attempt at Approximation: Greedy

- Greedy approach 1: in each step, among all items that can still be added to the knapsack, choose the one with the maximum value and add it to the knapsack.
- This does not guarantee any finite approximation ratio.

Attempt at Approximation: Greedy

- Greedy approach 1: in each step, among all items that can still be added to the knapsack, choose the one with the maximum value and add it to the knapsack.
- This does not guarantee any finite approximation ratio.
- Exercise: Modify the greedy algorithm and get a 2-approximation with a greedy approach (Question 3 in PS6 is a special case)

Attempt at Approximation: Dynamic Programming (DP)

- Recall: when $w_{i}=v_{i}$ for all i, the decision problem with $W=V$ is subset sum, and there is a dynamic programming algorithm that exactly solves the problem in (pseudo-polynomial) time $O(n W)$.

Attempt at Approximation: Dynamic Programming (DP)

- Recall: when $w_{i}=v_{i}$ for all i, the decision problem with $W=V$ is subset sum, and there is a dynamic programming algorithm that exactly solves the problem in (pseudo-polynomial) time $O(n W)$.
- It is easy to generalize this DP for knapsack with running time $O(n W)$.

Attempt at Approximation: Dynamic Programming (DP)

- Recall: when $w_{i}=v_{i}$ for all i, the decision problem with $W=V$ is subset sum, and there is a dynamic programming algorithm that exactly solves the problem in (pseudo-polynomial) time $O(n W)$.
- It is easy to generalize this DP for knapsack with running time $O(n W)$.
- Observation: If all the weights are multiples of an integer b, and the running time would be $O(n W / b)$.

Attempt at Approximation: Dynamic Programming (DP)

- Recall: when $w_{i}=v_{i}$ for all i, the decision problem with $W=V$ is subset sum, and there is a dynamic programming algorithm that exactly solves the problem in (pseudo-polynomial) time $O(n W)$.
- It is easy to generalize this DP for knapsack with running time $O(n W)$.
- Observation: If all the weights are multiples of an integer b, and the running time would be $O(n W / b)$.
- Approximation idea: Can we round the weights, by replacing the actual weights by multiple of an appropriate integer b ?

Attempt at Approximation: Dynamic Programming (DP)

- Recall: when $w_{i}=v_{i}$ for all i, the decision problem with $W=V$ is subset sum, and there is a dynamic programming algorithm that exactly solves the problem in (pseudo-polynomial) time $O(n W)$.
- It is easy to generalize this DP for knapsack with running time $O(n W)$.
- Observation: If all the weights are multiples of an integer b, and the running time would be $O(n W / b)$.
- Approximation idea: Can we round the weights, by replacing the actual weights by multiple of an appropriate integer b ?
- Example: If the weights are $5,24,77,131,142$, with $W=156$, round weights to $0,25,75,125,150$, and $W=150$?

Problem with rounding weights

- Approximation idea: Can we round the weights, by replacing the actual weights by multiple of an appropriate integer b ?
- Problem: weights are hard constraints; by rounding them, easily lead us to infeasible solutions (if we round weights down) or bad approximations (if we round weights up).

Problem with rounding weights

- Approximation idea: Can we round the weights, by replacing the actual weights by multiple of an appropriate integer b ?
- Problem: weights are hard constraints; by rounding them, easily lead us to infeasible solutions (if we round weights down) or bad approximations (if we round weights up).
- Alternative: Such problems won't arise if we round values instead. We need a new DP that has a pseudopolynomial dependence on values instead of weights.

Dynamic Programming on Values

Idea: Iteratively compute an array where $A[v]$ is the minimum weight needed to achieve value v.

Dynamic Programming on Values

Idea: Iteratively compute an array where $A[v]$ is the minimum weight needed to achieve value v. The algorithm:

- Initialize $A[v] \leftarrow \infty$ for $v=1,2, \ldots, v^{*} n$ where $v^{*}:=\max _{i} v_{i}$. Initialize $A[0] \leftarrow 0$.

Dynamic Programming on Values

Idea: Iteratively compute an array where $A[v]$ is the minimum weight needed to achieve value v.
The algorithm:

- Initialize $A[v] \leftarrow \infty$ for $v=1,2, \ldots, v^{*} n$ where $v^{*}:=\max _{i} v_{i}$. Initialize $A[0] \leftarrow 0$.
- For each item $i=1,2, \ldots, n$
- for v from $(i-1) v^{*}$ down to 0
- Update $A\left[v+v_{i}\right] \leftarrow \min \left(A\left[v+v_{i}\right], A[v]+w_{i}\right)$.

Dynamic Programming on Values

Idea: Iteratively compute an array where $A[v]$ is the minimum weight needed to achieve value v.
The algorithm:

- Initialize $A[v] \leftarrow \infty$ for $v=1,2, \ldots, v^{*} n$ where $v^{*}:=\max _{i} v_{i}$. Initialize $A[0] \leftarrow 0$.
- For each item $i=1,2, \ldots, n$
- for v from $(i-1) v^{*}$ down to 0
- Update $A\left[v+v_{i}\right] \leftarrow \min \left(A\left[v+v_{i}\right], A[v]+w_{i}\right)$.
- Return the largest v such that $A[v] \leq W$.

Dynamic Programming on Values

Idea: Iteratively compute an array where $A[v]$ is the minimum weight needed to achieve value v.
The algorithm:

- Initialize $A[v] \leftarrow \infty$ for $v=1,2, \ldots, v^{*} n$ where $v^{*}:=\max _{i} v_{i}$. Initialize $A[0] \leftarrow 0$.
- For each item $i=1,2, \ldots, n$
- for v from $(i-1) v^{*}$ down to 0
- Update $A\left[v+v_{i}\right] \leftarrow \min \left(A\left[v+v_{i}\right], A[v]+w_{i}\right)$.
- Return the largest v such that $A[v] \leq W$.

Running time: for each item i, we go through the array of length $O\left(i v^{*}\right)$, so total running time $O\left(v^{*} n^{2}\right)$.

Rounding the values for approximation

- The dynamic programming is pseudopolynomial time because of its running time dependence on v^{*}.

Rounding the values for approximation

- The dynamic programming is pseudopolynomial time because of its running time dependence on v^{*}.
- Intuitively, if we round up the values to multiples of a small integer b and run the dynamic programming, we shouldn't be far off.

Rounding the values for approximation

- The dynamic programming is pseudopolynomial time because of its running time dependence on v^{*}.
- Intuitively, if we round up the values to multiples of a small integer b and run the dynamic programming, we shouldn't be far off.
- Let $\hat{v}_{i}:=\left\lceil v_{i} / b\right\rceil$, and $\tilde{v}_{i}:=\hat{v}_{i} b$.

Rounding the values for approximation

- The dynamic programming is pseudopolynomial time because of its running time dependence on v^{*}.
- Intuitively, if we round up the values to multiples of a small integer b and run the dynamic programming, we shouldn't be far off.
- Let $\hat{v}_{i}:=\left\lceil v_{i} / b\right\rceil$, and $\tilde{v}_{i}:=\hat{v}_{i} b$.
- Run the dynamic programming on $\hat{v}_{1}, \ldots, \hat{v}_{n}$, then the running time would be $O\left(n^{2} v^{*} / b\right)$.

Rounding the values for approximation

- The dynamic programming is pseudopolynomial time because of its running time dependence on v^{*}.
- Intuitively, if we round up the values to multiples of a small integer b and run the dynamic programming, we shouldn't be far off.
- Let $\hat{v}_{i}:=\left\lceil v_{i} / b\right\rceil$, and $\tilde{v}_{i}:=\hat{v}_{i} b$.
- Run the dynamic programming on $\hat{v}_{1}, \ldots, \hat{v}_{n}$, then the running time would be $O\left(n^{2} v^{*} / b\right)$.
- How good an approximation is S, the set of items chosen by the algorithm?

Rounding the values for approximation

- The dynamic programming is pseudopolynomial time because of its running time dependence on v^{*}.
- Intuitively, if we round up the values to multiples of a small integer b and run the dynamic programming, we shouldn't be far off.
- Let $\hat{v}_{i}:=\left\lceil v_{i} / b\right\rceil$, and $\tilde{v}_{i}:=\hat{v}_{i} b$.
- Run the dynamic programming on $\hat{v}_{1}, \ldots, \hat{v}_{n}$, then the running time would be $O\left(n^{2} v^{*} / b\right)$.
- How good an approximation is S, the set of items chosen by the algorithm?
- Let S^{*} be any other feasible set of items (think it as the optimal solution), then

$$
\sum_{i \in S^{*}} v_{i} \leq \sum_{i \in S^{*}} \tilde{v}_{i}=b \sum_{i \in S^{*}} \hat{v}_{i} \leq b \sum_{i \in S} \hat{v}_{i}=\sum_{i \in S} \tilde{v}_{i} \leq n b+\sum_{i \in S} v_{i}
$$

Final step

$$
\sum_{i \in S^{*}} v_{i} \leq \sum_{i \in S^{*}} \tilde{v}_{i}=b \sum_{i \in S^{*}} \hat{v}_{i} \leq b \sum_{i \in S} \hat{v}_{i}=\sum_{i \in S} \tilde{v}_{i} \leq n b+\sum_{i \in S} v_{i}
$$

- If we could make $n b$ a small fraction of $\sum_{i \in S} v_{i}$, say, at most ϵ fraction, then RHS is $(1+\epsilon) \sum_{i \in S} v_{i}$.

Final step

$$
\sum_{i \in S^{*}} v_{i} \leq \sum_{i \in S^{*}} \tilde{v}_{i}=b \sum_{i \in S^{*}} \hat{v}_{i} \leq b \sum_{i \in S} \hat{v}_{i}=\sum_{i \in S} \tilde{v}_{i} \leq n b+\sum_{i \in S} v_{i} .
$$

- If we could make $n b$ a small fraction of $\sum_{i \in S} v_{i}$, say, at most ϵ fraction, then RHS is $(1+\epsilon) \sum_{i \in S} v_{i}$.
- How big should be b ?

Final step

$$
\sum_{i \in S^{*}} v_{i} \leq \sum_{i \in S^{*}} \tilde{v}_{i}=b \sum_{i \in S^{*}} \hat{v}_{i} \leq b \sum_{i \in S} \hat{v}_{i}=\sum_{i \in S} \tilde{v}_{i} \leq n b+\sum_{i \in S} v_{i}
$$

- If we could make $n b$ a small fraction of $\sum_{i \in S} v_{i}$, say, at most ϵ fraction, then RHS is $(1+\epsilon) \sum_{i \in S} v_{i}$.
- How big should be b ?
- We want $n b \leq \epsilon \sum_{i \in S} v_{i}$. Fixing ϵ, this asks for lower bounding $\sum_{i \in S} v_{i}$.
- But $\sum_{i \in S} v_{i} \geq v^{*}-n b!$

Final step

$$
\sum_{i \in S^{*}} v_{i} \leq \sum_{i \in S^{*}} \tilde{v}_{i}=b \sum_{i \in S^{*}} \hat{v}_{i} \leq b \sum_{i \in S} \hat{v}_{i}=\sum_{i \in S} \tilde{v}_{i} \leq n b+\sum_{i \in S} v_{i}
$$

- If we could make $n b$ a small fraction of $\sum_{i \in S} v_{i}$, say, at most ϵ fraction, then RHS is $(1+\epsilon) \sum_{i \in S} v_{i}$.
- How big should be b ?
- We want $n b \leq \epsilon \sum_{i \in S} v_{i}$. Fixing ϵ, this asks for lower bounding $\sum_{i \in S} v_{i}$.
- But $\sum_{i \in S} v_{i} \geq v^{*}-n b$!
- It suffices to have $n b \leq \epsilon\left(v^{*}-n b\right)$. Using $\epsilon<1$, we are good as long as $n b \leq \epsilon v^{*}-n b \Leftrightarrow b \leq \epsilon v^{*} /(2 n)$.

Final step

$$
\sum_{i \in S^{*}} v_{i} \leq \sum_{i \in S^{*}} \tilde{v}_{i}=b \sum_{i \in S^{*}} \hat{v}_{i} \leq b \sum_{i \in S} \hat{v}_{i}=\sum_{i \in S} \tilde{v}_{i} \leq n b+\sum_{i \in S} v_{i}
$$

- If we could make $n b$ a small fraction of $\sum_{i \in S} v_{i}$, say, at most ϵ fraction, then RHS is $(1+\epsilon) \sum_{i \in S} v_{i}$.
- How big should be b ?
- We want $n b \leq \epsilon \sum_{i \in S} v_{i}$. Fixing ϵ, this asks for lower bounding $\sum_{i \in S} v_{i}$.
- But $\sum_{i \in S} v_{i} \geq v^{*}-n b$!
- It suffices to have $n b \leq \epsilon\left(v^{*}-n b\right)$. Using $\epsilon<1$, we are good as long as $n b \leq \epsilon v^{*}-n b \Leftrightarrow b \leq \epsilon v^{*} /(2 n)$.
- Running time: $O\left(n^{2} v^{*} / b\right)=O\left(n^{3} \epsilon^{-1}\right)$.

PTAS and FPTAS

Theorem

For any $\epsilon>0$, the Knapsack problem can be approximated to a factor of $1+\epsilon$ by an algorithm that runs in time $O\left(n^{3} \epsilon^{-1}\right)$.

PTAS and FPTAS

Theorem

For any $\epsilon>0$, the Knapsack problem can be approximated to a factor of $1+\epsilon$ by an algorithm that runs in time $O\left(n^{3} \epsilon^{-1}\right)$.

Definition

A family of approximation algorithms is a polynomial-time approximation scheme (PTAS) for an optimization problem if for any $\epsilon>0$, there is an algorithm in the family that is a $(1+\epsilon)$-approximation algorithm for the problem, with polynomial running time when ϵ is treated as a constant. If the running time depends polynomially on ϵ^{-1}, the family is said to be a fully polynomial-time approximation scheme (FPTAS).

PTAS and FPTAS

Theorem

For any $\epsilon>0$, the Knapsack problem can be approximated to a factor of $1+\epsilon$ by an algorithm that runs in time $O\left(n^{3} \epsilon^{-1}\right)$.

Definition

A family of approximation algorithms is a polynomial-time approximation scheme (PTAS) for an optimization problem if for any $\epsilon>0$, there is an algorithm in the family that is a $(1+\epsilon)$-approximation algorithm for the problem, with polynomial running time when ϵ is treated as a constant. If the running time depends polynomially on ϵ^{-1}, the family is said to be a fully polynomial-time approximation scheme (FPTAS).

We have obtained an FPTAS for the Knapsack problem.

