
The Knapsack Problem

Learning Goals

De�nition of Fully Polynomial-Time Approximation Schemes (FPTAS)

Design pseudo-polynomial time dynamic programming algorithms for

NP-hard problems

Apply rounding to DP and analyze it to obtain approximation

algorithms
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The Knapsack Problem

The Knapsack Problem

Input: n items with weights w1, . . . ,wn and values v1, . . . , vn, and a

knapsack capacity W . All weights and values are positive integers;

wi ≤W for all i .

Decision version: given a value target V , does there exist a subset of

items whose total weight is ≤W and whose total value is ≥ V ?

Optimization version: output a subset S of items whose total weight

does not exceed W and whose total value is maximum

Formally, maxi∈S
∑

i∈S vi such that
∑

i∈S wi ≤W .

We already showed the decision version to be NP-complete.
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The Knapsack Problem

Attempt at Approximation: Greedy

Greedy approach 1: in each step, among all items that can still be

added to the knapsack, choose the one with the maximum value and

add it to the knapsack.

This does not guarantee any �nite approximation ratio.

Exercise: Modify the greedy algorithm and get a 2-approximation with

a greedy approach (Question 3 in PS6 is a special case)
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The Knapsack Problem

Attempt at Approximation: Dynamic Programming (DP)

Recall: when wi = vi for all i , the decision problem with W = V is

subset sum, and there is a dynamic programming algorithm that

exactly solves the problem in (pseudo-polynomial) time O(nW ).

It is easy to generalize this DP for knapsack with running time

O(nW ).

Observation: If all the weights are multiples of an integer b, and the

running time would be O(nW /b).

Approximation idea: Can we round the weights, by replacing the

actual weights by multiple of an appropriate integer b?

Example: If the weights are 5, 24, 77, 131, 142, with W = 156, round

weights to 0, 25, 75, 125, 150, and W = 150?
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The Knapsack Problem

Problem with rounding weights

Approximation idea: Can we round the weights, by replacing the

actual weights by multiple of an appropriate integer b?

Problem: weights are hard constraints; by rounding them, easily lead

us to infeasible solutions (if we round weights down) or bad

approximations (if we round weights up).

Alternative: Such problems won't arise if we round values instead. We

need a new DP that has a pseudopolynomial dependence on values

instead of weights.
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The Knapsack Problem

Dynamic Programming on Values

Idea: Iteratively compute an array where A[v ] is the minimum weight

needed to achieve value v .

The algorithm:

Initialize A[v ]←∞ for v = 1, 2, . . . , v∗n where v∗ := maxi vi .
Initialize A[0]← 0.

For each item i = 1, 2, . . . , n
for v from (i − 1)v∗ down to 0

Update A[v + vi ]← min(A[v + vi ],A[v ] + wi ).

Return the largest v such that A[v ] ≤W .

Running time: for each item i , we go through the array of length O(iv∗),
so total running time O(v∗n2).
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The Knapsack Problem

Rounding the values for approximation

The dynamic programming is pseudopolynomial time because of its

running time dependence on v∗.

Intuitively, if we round up the values to multiples of a small integer b
and run the dynamic programming, we shouldn't be far o�.

Let v̂i := dvi/be, and ṽi := v̂ib.

Run the dynamic programming on v̂1, . . . , v̂n, then the running time

would be O(n2v∗/b).

How good an approximation is S , the set of items chosen by the

algorithm?

Let S∗ be any other feasible set of items (think it as the optimal

solution), then∑
i∈S∗

vi ≤
∑
i∈S∗

ṽi = b
∑
i∈S∗

v̂i ≤ b
∑
i∈S

v̂i =
∑
i∈S

ṽi ≤ nb +
∑
i∈S

vi .
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The Knapsack Problem

Final step

∑
i∈S∗

vi ≤
∑
i∈S∗

ṽi = b
∑
i∈S∗

v̂i ≤ b
∑
i∈S

v̂i =
∑
i∈S

ṽi ≤ nb +
∑
i∈S

vi .

If we could make nb a small fraction of
∑

i∈S vi , say, at most ε
fraction, then RHS is (1+ ε)

∑
i∈S vi .

How big should be b?

We want nb ≤ ε
∑

i∈S vi . Fixing ε, this asks for lower bounding∑
i∈S vi .

But
∑

i∈S vi ≥ v∗ − nb!
It su�ces to have nb ≤ ε(v∗ − nb). Using ε < 1, we are good as long

as nb ≤ εv∗ − nb ⇔ b ≤ εv∗/(2n).
Running time: O(n2v∗/b) = O(n3ε−1).
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The Knapsack Problem

PTAS and FPTAS

Theorem

For any ε > 0, the Knapsack problem can be approximated to a factor of

1+ ε by an algorithm that runs in time O(n3ε−1).

De�nition

A family of approximation algorithms is a polynomial-time approximation

scheme (PTAS) for an optimization problem if for any ε > 0, there is an

algorithm in the family that is a (1+ ε)-approximation algorithm for the

problem, with polynomial running time when ε is treated as a constant. If

the running time depends polynomially on ε−1, the family is said to be a

fully polynomial-time approximation scheme (FPTAS).

We have obtained an FPTAS for the Knapsack problem.
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