Review of Previous Lectures

Theorem (Max-Flow Min-Cut Theorem)

The following statements are equivalent:
Q £ is a maximum flow on a flow network G;
Q There is an s-t cut (A, B) with c(A,B) = |f
© There exists no augmenting path in the residual graph Gr.

2

Proof.

2 = 1: cut capacities are upper bounds for flow values.
1 = 3: Augmenting along a path increases a flow's value.
3 = 2: The set of nodes reachable from the source in Gr gives the cut. [
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Bipartite Matchings

Learning Goals

e Matching definition
@ Reduction from bipartite matching to max flow

@ Hall's theorem and its proof
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Bipartite Matching

Motivation problem: An ad exchange decides what ads to show to which
viewers. At each minute,

. SO o, D Dy



Bipartite Matching

Motivation problem: An ad exchange decides what ads to show to which
viewers. At each minute,

@ there are K viewers and L ads;

. SO o, D Dy



Bipartite Matching

Motivation problem: An ad exchange decides what ads to show to which
viewers. At each minute,

@ there are K viewers and L ads;

@ each viewer can be shown at most one ad, and each ad can be shown
to at most one viewer (due to advertisers’ budget constraints);

. SO o, D Dy



Bipartite Matching

Motivation problem: An ad exchange decides what ads to show to which
viewers. At each minute,

@ there are K viewers and L ads;

@ each viewer can be shown at most one ad, and each ad can be shown
to at most one viewer (due to advertisers’ budget constraints);

@ each ad is interested in being shown to a certain group of customers.

. SO o, D Dy



Bipartite Matching

Motivation problem: An ad exchange decides what ads to show to which
viewers. At each minute,

@ there are K viewers and L ads;

@ each viewer can be shown at most one ad, and each ad can be shown
to at most one viewer (due to advertisers’ budget constraints);

@ each ad is interested in being shown to a certain group of customers.

@ We would like to show as many ads as possible.

. SO o, D Dy



Bipartite Matching

Motivation problem: An ad exchange decides what ads to show to which
viewers. At each minute,
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@ each viewer can be shown at most one ad, and each ad can be shown
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Bipartite Matching

Motivation problem: An ad exchange decides what ads to show to which
viewers. At each minute,

@ there are K viewers and L ads;

@ each viewer can be shown at most one ad, and each ad can be shown
to at most one viewer (due to advertisers’ budget constraints);

@ each ad is interested in being shown to a certain group of customers.
@ We would like to show as many ads as possible.
Model: Bipartite graph G = (U, V,E), U is the set of ads, V the set of
viewers; (uj, vj) € E if ad i is interested in being shown to viewer ;.
Definition
Given an undirected graph G = (V,E), a set of edges M C E is a
matching if each node in V is incident to at most one edge in M.

. T



Bipartite Matchings

Maximum Bipartite Matching Problem

o Input: a bipartite graph G = (U, V, E). (Recall: this means all edges
have one endpoint in U and the other in V.)

o Output: a matching M with the maximum cardinality.
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Bipartite Matchings

Maximum Bipartite Matching Problem

o Input: a bipartite graph G = (U, V, E). (Recall: this means all edges
have one node in U and the other in V.)

o Output: a matching M with the maximum cardinality.
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Reducing Bipartite Matching to Max Flow

e Input: G =(U,V,E).
o Construct a directed graph G’ with node set {s} U UU V U {t}.
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Reducing Bipartite Matching to Max Flow

e Input: G =(U,V,E).
o Construct a directed graph G’ with node set {s} U UU V U {t}.

@ Add an edge from s to every node in U, and an edge to t from every
node in V, each with capacity 1.
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Reducing Bipartite Matching to Max Flow

Input: G = (U, V,E).
Construct a directed graph G’ with node set {s}U U U V U {t}.

Add an edge from s to every node in U, and an edge to t from every
node in V, each with capacity 1.

For every (u,v) € E,u € U,v € V, add directed edge (u,v) to G,
with capacity 1.
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Bipartite Matchings

How the reduction works

o Ford-Fulkerson finds a max flow f* in G’ in time
O(IE[ - (|U] + V) + (IU] + |VI)?) = O(mn + n?).
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Bipartite Matchings

How the reduction works

@ Ford-Fulkerson finds a max flow f* in G’ in time
O(E| - ([U] + V1) + (|U] + [V])2) = O(mn + 2).

@ Moreover, this flow is integral on all edges. Hence on each edge it is
either 0 or 1.
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Bipartite Matchings

How the reduction works

@ Ford-Fulkerson finds a max flow f* in G’ in time
O(IEl- (Ul + |V]) + (U] +[V])?) = O(mn + r?).
@ Moreover, this flow is integral on all edges. Hence on each edge it is

either 0 or 1.
@ Let M* C E be the set of edges in E whose copies in G’ carry a flow

of 1in f*.
Proposition

M* is a maximum matching in G.

Proof.
@ For every matching M in G, there is a flow f in G" with |f| = |M|.
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How the reduction works

@ Ford-Fulkerson finds a max flow f* in G’ in time
O(IEl- (Ul + |V]) + (U] +[V])?) = O(mn + r?).
@ Moreover, this flow is integral on all edges. Hence on each edge it is

either 0 or 1.
@ Let M* C E be the set of edges in E whose copies in G’ carry a flow

of 1in f*.
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Bipartite Matchings

How the reduction works

@ Ford-Fulkerson finds a max flow f* in G’ in time
O(IEl- (Ul + |V]) + (U] +[V])?) = O(mn + r?).
@ Moreover, this flow is integral on all edges. Hence on each edge it is

either 0 or 1.
@ Let M* C E be the set of edges in E whose copies in G’ carry a flow

of 1in f*.
Proposition

M* is a maximum matching in G.

Proof.
@ For every matching M in G, there is a flow f in G" with |f| = |M|.

@ For every integer valued flow f in G’ there is a matching M in G, with
|M| = |f].

© In particular,

M*| = ||
L]
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Bipartite Matchings

Proposition

M* is a maximum matching in G.

Proof.
@ For every matching M in G, there is a flow f in G’ with |f| = |M|.

@ For every integer valued flow f in G’ there is a matching M in G, with
|M| = |f].

© In particular,

M*| = ||,
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Bipartite Matchings

Proposition

M* is a maximum matching in G.

Proof.
@ For every matching M in G, there is a flow f in G’ with |f| = |M|.
@ For every integer valued flow f in G’ there is a matching M in G, with
|M| = |f].
© In particular, |M*| = |f*|.
Q Given M, for each (u,v) € M, let f(s,u) = f(u,v) = f(v,t) =1. All
other edges carry flow 0. Check f is a flow and |f| = |M|.
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Proposition

M* is a maximum matching in G.

Proof.
@ For every matching M in G, there is a flow f in G’ with |f| = |M|.
@ For every integer valued flow f in G’ there is a matching M in G, with
|M| = |f].
© In particular, |M*| = |f*|.
Q Given M, for each (u,v) € M, let f(s,u) = f(u,v) = f(v,t) =1. All
other edges carry flow 0. Check f is a flow and |f| = |M|.
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Bipartite Matchings

Proposition

M* is a maximum matching in G.

Proof.
@ For every matching M in G, there is a flow f in G’ with |f| = |M|.
@ For every integer valued flow f in G’ there is a matching M in G, with
|M| = |f].
© In particular, |M*| = |f*|.
Q Given M, for each (u,v) € M, let f(s,u) = f(u,v) = f(v,t) =1. All
other edges carry flow 0. Check f is a flow and |f| = |M|.

@ Given f, let M be the set of edges between U and V that carry one
unit of flow in f. Check: M is a matching and |M| = |f|.

© Special case of 2.
L]
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Bipartite Matchings

lllustration of a step from the algorithm

J
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Bipartite Matchings

Hall's Theorem

In a biparitite graph G = (U, V, E), a matching M is said to be complete
on U if [M| =|U|. When |U| = |V/|, such a matching is called perfect.
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Bipartite Matchings

Hall's Theorem

In a biparitite graph G = (U, V, E), a matching M is said to be complete
on U if [M| =|U|. When |U| = |V/|, such a matching is called perfect.

Notation: For a set of nodes S C U, denote by I'(S) the “neighbors” of S,
e, M(S)={veV|3ueSst (uv)eE}

A bipartite graph G = (U, V, E) has a complete matching on U if and only

if forany S C U,

r(s)l = 1Sl.
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Bipartite Matchings

Hall's Theorem Illustration
%
]
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Bipartite Matchings

Proof of Hall's Theorem

Theorem (Hall's Theorem)
A bipartite graph G = (U, V, E) has a complete matching on U if and only
if forany S C U, [T(S)| > |S].

Proof.

=: If G has a complete matching M, for any u € U, let ¢(u) € V be the
vertex matched to u in M. Then ¢(u) # p(u') for any u # u'.
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A bipartite graph G = (U, V, E) has a complete matching on U if and only
if forany S C U, [T(S)| > |S].

Proof.

=: If G has a complete matching M, for any u € U, let ¢(u) € V be the
vertex matched to u in M. Then ¢(u) # p(u') for any u # u'.
Forany 5 C U, [I(S)] = He(u)}ues| = [S]-
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Bipartite Matchings

Proof of Hall's Theorem

Theorem (Hall's Theorem)

A bipartite graph G = (U, V, E) has a complete matching on U if and only
if forany S C U, [T(S)| > |S].

Proof.

=: If G has a complete matching M, for any u € U, let ¢(u) € V be the
vertex matched to u in M. Then ¢(u) # p(u') for any u # u'.

Forany 5 C U, [T(S)] = {e(u)}ues| =[S

< Consider the flow network G’ in the reduction. If the max matching
in G has fewer than |U| edges, the max flow in G’ is smaller than |U|.
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Bipartite Matchings

Proof of Hall's Theorem

Theorem (Hall's Theorem)

A bipartite graph G = (U, V, E) has a complete matching on U if and only
if forany S C U, [T(S)| > |S].

Proof.

=: If G has a complete matching M, for any u € U, let ¢(u) € V be the
vertex matched to u in M. Then ¢(u) # p(u') for any u # u'.

Forany 5 C U, [T(S)] = {e(u)}ues| =[S

< Consider the flow network G’ in the reduction. If the max matching
in G has fewer than |U| edges, the max flow in G’ is smaller than |U|.

By Max Flow Min Cut Theorem, there is an s-t cut (A, B) in G’ with
c(A,B) < |U].
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Proof of Hall's Theorem cont.

Theorem (Hall's Theorem)

A bipartite graph G = (U, V, E) has a complete matching on U if and only
if forany S C U, [T(S)| > |S].

Proof.
Claim: There exists a min cut (A, B) such that [(ANU) CAN V.
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Proof of Hall's Theorem cont.

Theorem (Hall's Theorem)

A bipartite graph G = (U, V, E) has a complete matching on U if and only
if forany S C U, [T(S)| > |S].

Proof.

Claim: There exists a min cut (A, B) such that [(ANU) CAN V.
Reason: If (u,v) € E, ue ANU,v € BNV, then edges into v contribute
> 1 to c(A, B), and edges leaving v contribute 0. Moving v to A, then
edges into v contribute 0, and edges leaving v contribute 1.

. ST B, O



Proof of Hall's Theorem cont.

Theorem (Hall's Theorem)

A bipartite graph G = (U, V, E) has a complete matching on U if and only
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Theorem (Hall's Theorem)

A bipartite graph G = (U, V, E) has a complete matching on U if and only
if forany S C U, [T(S)| > |S].
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Reason: If (u,v) € E, ue ANU,v € BNV, then edges into v contribute
> 1 to c(A, B), and edges leaving v contribute 0. Moving v to A, then
edges into v contribute 0, and edges leaving v contribute 1.
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Proof of Hall's Theorem cont.

Theorem (Hall's Theorem)

A bipartite graph G = (U, V, E) has a complete matching on U if and only
if forany S C U, [T(S)| > |S].

Proof.

Claim: There exists a min cut (A, B) such that [(ANU) CAN V.
Reason: If (u,v) € E, ue ANU,v € BNV, then edges into v contribute
> 1 to c(A, B), and edges leaving v contribute 0. Moving v to A, then
edges into v contribute 0, and edges leaving v contribute 1.

So for any s-t cut (A, B), we can move all v € T(UN A) to A without
increasing the cut’s capacity.

So there is an s-t cut (A, B) with ¢(A,B) < |U| and T(AN U) C A.

U] > c(A, B) =|U\ Al + AN V| > |U\ A + [[(AN V).
= |U|— U\ Al = |AnU| > [T(AN V).
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A Glimpse at Better Algorithms

@ Reducing to network flows and solving by Ford-Fulkerson is not the
fastest algorithm to find maximum bipartite matchings.

. T



A Glimpse at Better Algorithms

@ Reducing to network flows and solving by Ford-Fulkerson is not the
fastest algorithm to find maximum bipartite matchings.

o Fastest algorithm known: Hopcroft-Karp algorithm, which runs in time

O(m+/n).

. T



A Glimpse at Better Algorithms

@ Reducing to network flows and solving by Ford-Fulkerson is not the
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augment along all of them.

. T



A Glimpse at Better Algorithms

@ Reducing to network flows and solving by Ford-Fulkerson is not the
fastest algorithm to find maximum bipartite matchings.

o Fastest algorithm known: Hopcroft-Karp algorithm, which runs in time
O(m+/n).

@ Basic idea: In each iteration, instead of augmenting along a path, look
for a maximal set of vertex-disjoint shortest augmenting paths, and
augment along all of them.

@ Similar ideas (of augmenting along a collection of shortest paths that
“block” s from t) lead to faster algorithms for the max flow problem:
Dinic’s algorithm, running in time O(mn?).

o (The algorithm by Edmonds and Karp that run in time O(m?n) is an
important predecessor.)
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