
Review of Previous Lectures

Theorem (Max-Flow Min-Cut Theorem)

The following statements are equivalent:

1 f is a maximum �ow on a �ow network G ;

2 There is an s-t cut (A,B) with c(A,B) = |f |;
3 There exists no augmenting path in the residual graph Gf .

Proof.

2⇒ 1: cut capacities are upper bounds for �ow values.

1⇒ 3: Augmenting along a path increases a �ow's value.

3⇒ 2: The set of nodes reachable from the source in Gf gives the cut.
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Bipartite Matchings

Bipartite Matching

Motivation problem: An ad exchange decides what ads to show to which

viewers. At each minute,

there are K viewers and L ads;

each viewer can be shown at most one ad, and each ad can be shown

to at most one viewer (due to advertisers' budget constraints);

each ad is interested in being shown to a certain group of customers.

We would like to show as many ads as possible.

Model: Bipartite graph G = (U,V ,E ), U is the set of ads, V the set of

viewers; (ui , vj) ∈ E if ad i is interested in being shown to viewer j .

De�nition

Given an undirected graph G = (V ,E ), a set of edges M ⊆ E is a

matching if each node in V is incident to at most one edge in M.

September 20, 2019 3 / 15



Bipartite Matchings

Bipartite Matching

Motivation problem: An ad exchange decides what ads to show to which

viewers. At each minute,

there are K viewers and L ads;

each viewer can be shown at most one ad, and each ad can be shown

to at most one viewer (due to advertisers' budget constraints);

each ad is interested in being shown to a certain group of customers.

We would like to show as many ads as possible.

Model: Bipartite graph G = (U,V ,E ), U is the set of ads, V the set of

viewers; (ui , vj) ∈ E if ad i is interested in being shown to viewer j .

De�nition

Given an undirected graph G = (V ,E ), a set of edges M ⊆ E is a

matching if each node in V is incident to at most one edge in M.

September 20, 2019 3 / 15



Bipartite Matchings

Bipartite Matching

Motivation problem: An ad exchange decides what ads to show to which

viewers. At each minute,

there are K viewers and L ads;

each viewer can be shown at most one ad, and each ad can be shown

to at most one viewer (due to advertisers' budget constraints);

each ad is interested in being shown to a certain group of customers.

We would like to show as many ads as possible.

Model: Bipartite graph G = (U,V ,E ), U is the set of ads, V the set of

viewers; (ui , vj) ∈ E if ad i is interested in being shown to viewer j .

De�nition

Given an undirected graph G = (V ,E ), a set of edges M ⊆ E is a

matching if each node in V is incident to at most one edge in M.

September 20, 2019 3 / 15



Bipartite Matchings

Bipartite Matching

Motivation problem: An ad exchange decides what ads to show to which

viewers. At each minute,

there are K viewers and L ads;

each viewer can be shown at most one ad, and each ad can be shown

to at most one viewer (due to advertisers' budget constraints);

each ad is interested in being shown to a certain group of customers.

We would like to show as many ads as possible.

Model: Bipartite graph G = (U,V ,E ), U is the set of ads, V the set of

viewers; (ui , vj) ∈ E if ad i is interested in being shown to viewer j .

De�nition

Given an undirected graph G = (V ,E ), a set of edges M ⊆ E is a

matching if each node in V is incident to at most one edge in M.

September 20, 2019 3 / 15



Bipartite Matchings

Bipartite Matching

Motivation problem: An ad exchange decides what ads to show to which

viewers. At each minute,

there are K viewers and L ads;

each viewer can be shown at most one ad, and each ad can be shown

to at most one viewer (due to advertisers' budget constraints);

each ad is interested in being shown to a certain group of customers.

We would like to show as many ads as possible.

Model: Bipartite graph G = (U,V ,E ), U is the set of ads, V the set of

viewers; (ui , vj) ∈ E if ad i is interested in being shown to viewer j .

De�nition

Given an undirected graph G = (V ,E ), a set of edges M ⊆ E is a

matching if each node in V is incident to at most one edge in M.

September 20, 2019 3 / 15



Bipartite Matchings

Bipartite Matching

Motivation problem: An ad exchange decides what ads to show to which

viewers. At each minute,

there are K viewers and L ads;

each viewer can be shown at most one ad, and each ad can be shown

to at most one viewer (due to advertisers' budget constraints);

each ad is interested in being shown to a certain group of customers.

We would like to show as many ads as possible.

Model: Bipartite graph G = (U,V ,E ), U is the set of ads, V the set of

viewers; (ui , vj) ∈ E if ad i is interested in being shown to viewer j .

De�nition

Given an undirected graph G = (V ,E ), a set of edges M ⊆ E is a

matching if each node in V is incident to at most one edge in M.

September 20, 2019 3 / 15



Bipartite Matchings

Bipartite Matching

Motivation problem: An ad exchange decides what ads to show to which

viewers. At each minute,

there are K viewers and L ads;

each viewer can be shown at most one ad, and each ad can be shown

to at most one viewer (due to advertisers' budget constraints);

each ad is interested in being shown to a certain group of customers.

We would like to show as many ads as possible.

Model: Bipartite graph G = (U,V ,E ), U is the set of ads, V the set of

viewers; (ui , vj) ∈ E if ad i is interested in being shown to viewer j .

De�nition

Given an undirected graph G = (V ,E ), a set of edges M ⊆ E is a

matching if each node in V is incident to at most one edge in M.

September 20, 2019 3 / 15



Bipartite Matchings

Maximum Bipartite Matching Problem

Problem (The unweighted maximum bipartite matching problem)

Input: a bipartite graph G = (U,V ,E ). (Recall: this means all edges

have one endpoint in U and the other in V .)

Output: a matching M with the maximum cardinality.
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Bipartite Matchings

Reducing Bipartite Matching to Max Flow

Input: G = (U,V ,E ).

Construct a directed graph G ′ with node set {s} ∪ U ∪ V ∪ {t}.

Add an edge from s to every node in U, and an edge to t from every

node in V , each with capacity 1.

For every (u, v) ∈ E , u ∈ U, v ∈ V , add directed edge (u, v) to G ′,
with capacity 1.

s t
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Bipartite Matchings

How the reduction works

Ford-Fulkerson �nds a max �ow f ∗ in G ′ in time

O(|E | · (|U|+ |V |) + (|U|+ |V |)2) = O(mn + n2).

Moreover, this �ow is integral on all edges. Hence on each edge it is

either 0 or 1.

Let M∗ ⊆ E be the set of edges in E whose copies in G ′ carry a �ow

of 1 in f ∗.

Proposition

M∗ is a maximum matching in G .

Proof.

1 For every matching M in G , there is a �ow f in G ′ with |f | = |M|.
2 For every integer valued �ow f in G ′ there is a matching M in G , with

|M| = |f |.
3 In particular, |M∗| = |f ∗|.
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Bipartite Matchings

Proposition

M∗ is a maximum matching in G .

Proof.

1 For every matching M in G , there is a �ow f in G ′ with |f | = |M|.
2 For every integer valued �ow f in G ′ there is a matching M in G , with

|M| = |f |.
3 In particular, |M∗| = |f ∗|.

1 Given M, for each (u, v) ∈ M, let f (s, u) = f (u, v) = f (v , t) = 1. All

other edges carry �ow 0. Check f is a �ow and |f | = |M|.
2 Given f , let M be the set of edges between U and V that carry one

unit of �ow in f . Check: M is a matching and |M| = |f |.
3 Special case of 2.
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Bipartite Matchings

Illustration of a step from the algorithm
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Bipartite Matchings

Hall's Theorem

De�nition

In a biparitite graph G = (U,V ,E ), a matching M is said to be complete

on U if |M| = |U|. When |U| = |V |, such a matching is called perfect.

Notation: For a set of nodes S ⊆ U, denote by Γ(S) the �neighbors� of S ,
i.e., Γ(S) = {v ∈ V | ∃u ∈ S s.t. (u, v) ∈ E}.

Theorem (Hall's Theorem)

A bipartite graph G = (U,V ,E ) has a complete matching on U if and only

if for any S ⊆ U, |Γ(S)| ≥ |S |.
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Bipartite Matchings

Hall's Theorem Illustration
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Bipartite Matchings

Hall's Theorem Illustration
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Bipartite Matchings

Proof of Hall's Theorem

Theorem (Hall's Theorem)

A bipartite graph G = (U,V ,E ) has a complete matching on U if and only

if for any S ⊆ U, |Γ(S)| ≥ |S |.

Proof.

⇒: If G has a complete matching M, for any u ∈ U, let ϕ(u) ∈ V be the

vertex matched to u in M. Then ϕ(u) 6= ϕ(u′) for any u 6= u′.

For any S ⊆ U, |Γ(S)| ≥ |{ϕ(u)}u∈S | = |S |.
⇐: Consider the �ow network G ′ in the reduction. If the max matching

in G has fewer than |U| edges, the max �ow in G ′ is smaller than |U|.
By Max Flow Min Cut Theorem, there is an s-t cut (A,B) in G ′ with
c(A,B) < |U|.
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Bipartite Matchings

Proof of Hall's Theorem cont.

Theorem (Hall's Theorem)

A bipartite graph G = (U,V ,E ) has a complete matching on U if and only

if for any S ⊆ U, |Γ(S)| ≥ |S |.

Proof.

Claim: There exists a min cut (A,B) such that Γ(A ∩ U) ⊆ A ∩ V .

Reason: If (u, v) ∈ E , u ∈ A ∩ U, v ∈ B ∩ V , then edges into v contribute

≥ 1 to c(A,B), and edges leaving v contribute 0. Moving v to A, then
edges into v contribute 0, and edges leaving v contribute 1.

So for any s-t cut (A,B), we can move all v ∈ Γ(U ∩ A) to A without

increasing the cut's capacity.

So there is an s-t cut (A,B) with c(A,B) < |U| and Γ(A ∩ U) ⊆ A.

|U| > c(A,B) =|U \ A|+ |A ∩ V | ≥ |U \ A|+ |Γ(A ∩ U)|.
⇒ |U| − |U \ A| = |A ∩ U| > |Γ(A ∩ U)|.
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|U| > c(A,B) =|U \ A|+ |A ∩ V | ≥ |U \ A|+ |Γ(A ∩ U)|.
⇒ |U| − |U \ A| = |A ∩ U| > |Γ(A ∩ U)|.
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Bipartite Matchings

Proof of Hall's Theorem cont.

Theorem (Hall's Theorem)
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Proof.
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Bipartite Matchings

A Glimpse at Better Algorithms

Reducing to network �ows and solving by Ford-Fulkerson is not the

fastest algorithm to �nd maximum bipartite matchings.

Fastest algorithm known: Hopcroft-Karp algorithm, which runs in time

O(m
√
n).

Basic idea: In each iteration, instead of augmenting along a path, look

for a maximal set of vertex-disjoint shortest augmenting paths, and

augment along all of them.

Similar ideas (of augmenting along a collection of shortest paths that

�block� s from t) lead to faster algorithms for the max �ow problem:

Dinic's algorithm, running in time O(mn2).

(The algorithm by Edmonds and Karp that run in time O(m2n) is an

important predecessor.)
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