Learning Goals

- State the Subset Sum problem
- Understand the reduction from 3-EXACT COVER to Subset Sum
- State the Knapsack problem
- Understand the reduction from Subset Sum to Knapsack

Subset Sum

Definition (Subset Sum)

In the Subset Sum problem, we are given nonnegative integers w_{1}, \ldots, w_{n}, and a target number W, and we must decide whether there is a subset of $\left\{w_{1}, \ldots, w_{n}\right\}$ that adds up to precisely W.

Subset Sum

Definition (Subset Sum)

In the Subset Sum problem, we are given nonnegative integers w_{1}, \ldots, w_{n}, and a target number W, and we must decide whether there is a subset of $\left\{w_{1}, \ldots, w_{n}\right\}$ that adds up to precisely W.

- Subset Sum \in NP.

Subset Sum

Definition (Subset Sum)

In the Subset Sum problem, we are given nonnegative integers w_{1}, \ldots, w_{n}, and a target number W, and we must decide whether there is a subset of $\left\{w_{1}, \ldots, w_{n}\right\}$ that adds up to precisely W.

- Subset Sum \in NP.
- Certificate: a subset of $\left\{w_{1}, \ldots, w_{n}\right\}$;
- Verifier: Check the sum of the subset.

Subset Sum

Definition (Subset Sum)

In the Subset Sum problem, we are given nonnegative integers w_{1}, \ldots, w_{n}, and a target number W, and we must decide whether there is a subset of $\left\{w_{1}, \ldots, w_{n}\right\}$ that adds up to precisely W.

- Subset Sum \in NP.
- Certificate: a subset of $\left\{w_{1}, \ldots, w_{n}\right\}$;
- Verifier: Check the sum of the subset.
- Subset Sum problem can be solved by a dynamic programming that runs in time $O(n W)$.

Dynamic Programming for Subset Sum

- Set up boolean array $S[0 \ldots W]$, itialized to $W[0]=$ True, $W[j]=F A L S E$ for $j=1, \cdots, W$.
- For $i=1, \ldots, n$
- For $j=W, W-1, \cdots, 0$, if $S[j]=$ True, set $S\left[j+w_{i}\right]=$ True.
- Return $S[W]$.

Dynamic Programming for Subset Sum

- Set up boolean array $S[0 \ldots W]$, itialized to $W[0]=$ True, $W[j]=F A L S E$ for $j=1, \cdots, W$.
- For $i=1, \ldots, n$
- For $j=W, W-1, \cdots, 0$, if $S[j]=$ True, set $S\left[j+w_{i}\right]=$ True.
- Return $S[W]$.

Question

Is this a polynomial-time algorithm?

Dynamic Programming for Subset Sum

- Set up boolean array $S[0 \ldots W]$, itialized to $W[0]=$ True, $W[j]=F A L S E$ for $j=1, \cdots, W$.
- For $i=1, \ldots, n$
- For $j=W, W-1, \cdots, 0$, if $S[j]=$ True, set $S\left[j+w_{i}\right]=$ True.
- Return $S[W]$.

Question

Is this a polynomial-time algorithm?

Answer.

- Input length: $n+\log W$;
- Running time: $O(n W)=O(n \exp (\log W))$;
- Not in polynomial time, but in pseudo-polynomial time.

NP-completeness of Subset Sum

Proposition

$3-E X A C T$ COVER \leq_{p} Subset Sum.

NP-completeness of Subset Sum

Proposition

$3-E X A C T$ COVER \leq_{p} Subset Sum.

Proof.

Given 3-EXACT COVER instance with universe $U=\left\{u_{1}, \ldots, u_{n}\right\}$, and $S_{1}, \cdots, S_{m} \subseteq U$,

NP-completeness of Subset Sum

Proposition

$3-E X A C T$ COVER \leq_{p} Subset Sum.

Proof.

Given 3-EXACT COVER instance with universe $U=\left\{u_{1}, \ldots, u_{n}\right\}$, and $S_{1}, \cdots, S_{m} \subseteq U$, construct the following subset instance:

- For each S_{i}, construct $w_{i}=\sum_{j: u_{j} \in S_{i}}(1+m)^{j-1}$;
- $W=\sum_{j=1}^{n}(1+m)^{j-1}$.

NP-completeness of Subset Sum

Proposition

3 -EXACT COVER \leq_{p} Subset Sum.

Proof.

Given 3-EXACT COVER instance with universe $U=\left\{u_{1}, \ldots, u_{n}\right\}$, and $S_{1}, \cdots, S_{m} \subseteq U$, construct the following subset instance:

- For each S_{i}, construct $w_{i}=\sum_{j: u_{j} \in S_{i}}(1+m)^{j-1}$;
- $W=\sum_{j=1}^{n}(1+m)^{j-1}$.

The 3-EXACT COVER instance has answer YES if and only if the Subset Sum instance has answer YES.

NP-completeness of Subset Sum

Proposition

$3-E X A C T$ COVER \leq_{p} Subset Sum.

Proof.

Given 3-EXACT COVER instance with universe $U=\left\{u_{1}, \ldots, u_{n}\right\}$, and $S_{1}, \cdots, S_{m} \subseteq U$, construct the following subset instance:

- For each S_{i}, construct $w_{i}=\sum_{j: u_{j} \in S_{i}}(1+m)^{j-1}$;
- $W=\sum_{j=1}^{n}(1+m)^{j-1}$.

The 3-EXACT COVER instance has answer YES if and only if the Subset Sum instance has answer YES.

Key idea: Use $(m+1)$-ary representation of integers to prevent carries in addition.

Polynomial time vs. Pseudo-polynomial time

Question

In the Subset Sum problem, if W is bounded by a polynomial function of n, then does the problem have a polynomial-time algorithm?

Polynomial time vs. Pseudo-polynomial time

Question

In the Subset Sum problem, if W is bounded by a polynomial function of n, then does the problem have a polynomial-time algorithm?

Answer.

Yes. The runtime of the DP algorithm is now $O(n W)=O($ poly $(n))$.

Polynomial time vs. Pseudo-polynomial time

Question

Does Subset Sum admit a polynomial time algorithm if W in the input is in unary representation?

In unary representation, an integer k is represented as k one's.

Polynomial time vs. Pseudo-polynomial time

Question

Does Subset Sum admit a polynomial time algorithm if W in the input is in unary representation?

In unary representation, an integer k is represented as k one's.

Answer.

Yes. Because the input length is now $W+n$, instead of $n+\log W$.

Polynomial time vs. Pseudo-polynomial time

Question

Does the following problem admit a polynomial-time algorithm? Given a graph G that is not connected, and a number k, does there exist a subset of its connected components whose union has size exactly k ?

Polynomial time vs. Pseudo-polynomial time

Question

Does the following problem admit a polynomial-time algorithm? Given a graph G that is not connected, and a number k, does there exist a subset of its connected components whose union has size exactly k ?

Proof.

Answer Yes. $k \leq$ number of nodes of G. If there are n nodes, the dynamic programming runs in time $O\left(n^{2}\right)$.

The Knapsack Problem

Definition

In the Knapsack problem, we are given a knapsack with capacity C and n item, where item i has weight w_{i} and value v_{i}. We are also given a target value W. We must decide whether there is a subset of the items whose total weight is no more than C and whose total value is no less than W.

The Knapsack Problem

Definition

In the Knapsack problem, we are given a knapsack with capacity C and n item, where item i has weight w_{i} and value v_{i}. We are also given a target value W. We must decide whether there is a subset of the items whose total weight is no more than C and whose total value is no less than W.

Claim (Exercise)

Knapsack is NP-complete.

Categories of basic NP-complete problems

- Binary decision: 3-SAT
- Packing problems: Independent Set
- Covering problems: Vertex cover, Set Cover
- Sequencing problems: Hamiltonian Cycle/Path, Traveling Salesman Problem
- Partitioning problems: 3-Dimensional Matching, 3-Coloring, 3-Exact Cover
- Numerical problems: Subset Sum, Knapsack

