Learning Goals

- Definition of disjoint-path covers and the kind of problems they model
- Reduction of the disjoint-path covers problem to bipartite matching

Motivating Question

- There are n construction sites in different locations; each of them needs a heavy machine for a project on a particular day. The machine needed by each site is identical.

Motivating Question

- There are n construction sites in different locations; each of them needs a heavy machine for a project on a particular day. The machine needed by each site is identical.
- Site i needs the machine from time a_{i} to b_{i};

Motivating Question

- There are n construction sites in different locations; each of them needs a heavy machine for a project on a particular day. The machine needed by each site is identical.
- Site i needs the machine from time a_{i} to b_{i};
- It takes time $c_{i j}$ to move the machine from site i to site j;

Motivating Question

- There are n construction sites in different locations; each of them needs a heavy machine for a project on a particular day. The machine needed by each site is identical.
- Site i needs the machine from time a_{i} to b_{i};
- It takes time $c_{i j}$ to move the machine from site i to site j;
- How many machines do we need so that all sites can get their jobs done?

Model

- Construct a directed graph G, each node v_{i} for a site i;

Model

- Construct a directed graph G, each node v_{i} for a site i;
- There is an edge from v_{i} to v_{j} if it is feasible to move a machine to site j after it is used by site i :

Model

- Construct a directed graph G, each node v_{i} for a site i;
- There is an edge from v_{i} to v_{j} if it is feasible to move a machine to site j after it is used by site i :

$$
b_{i}+c_{i j} \leq a_{j}
$$

Model

- Construct a directed graph G, each node v_{i} for a site i;
- There is an edge from v_{i} to v_{j} if it is feasible to move a machine to site j after it is used by site i :

$$
b_{i}+c_{i j} \leq a_{j}
$$

Note that the resulting graph is acyclic;

Model

- Construct a directed graph G, each node v_{i} for a site i;
- There is an edge from v_{i} to v_{j} if it is feasible to move a machine to site j after it is used by site i :

$$
b_{i}+c_{i j} \leq a_{j}
$$

Note that the resulting graph is acyclic;

- A path in G contains a set of sites whose jobs can be done sequentially by one machine.

Model

- Construct a directed graph G, each node v_{i} for a site i;
- There is an edge from v_{i} to v_{j} if it is feasible to move a machine to site j after it is used by site i :

$$
b_{i}+c_{i j} \leq a_{j}
$$

Note that the resulting graph is acyclic;

- A path in G contains a set of sites whose jobs can be done sequentially by one machine.
- We'd like to find a minimum set of paths so that each vertex is on one path.

Problem Formulation

Definition

Given a directed graph, a set \mathcal{P} of simple paths is a path cover if each node lies on at least one path in \mathcal{P}.

Problem Formulation

Definition

Given a directed graph, a set \mathcal{P} of simple paths is a path cover if each node lies on at least one path in \mathcal{P}.
A path cover \mathcal{P} is a disjoint-path cover if each vertex lies on exactly one path in \mathcal{P}.

Problem Formulation

Definition

Given a directed graph, a set \mathcal{P} of simple paths is a path cover if each node lies on at least one path in \mathcal{P}.
A path cover \mathcal{P} is a disjoint-path cover if each vertex lies on exactly one path in \mathcal{P}.

- Input: Directed acyclic graph (DAG) $G=(V, E)$
- Output: A smallest disjoint-path cover \mathcal{P}

Problem Formulation

Definition

Given a directed graph, a set \mathcal{P} of simple paths is a path cover if each node lies on at least one path in \mathcal{P}.
A path cover \mathcal{P} is a disjoint-path cover if each vertex lies on exactly one path in \mathcal{P}.

- Input: Directed acyclic graph (DAG) $G=(V, E)$
- Output: A smallest disjoint-path cover \mathcal{P}

Remark: The problem without the acyclic condition is NP-hard.

Reduction to Bipartite Matching

The algorithm:

- Construct a bipartite graph $G^{\prime}=(L, R, F)$; for each node v of G, create $\ell_{v} \in L$ and $r_{v} \in R$;

Reduction to Bipartite Matching

The algorithm:

- Construct a bipartite graph $G^{\prime}=(L, R, F)$; for each node v of G, create $\ell_{v} \in L$ and $r_{v} \in R$;
- For each edge (u, v) in G, create edge $\left(\ell_{u}, r_{v}\right)$ in G^{\prime};

Reduction to Bipartite Matching

The algorithm:

- Construct a bipartite graph $G^{\prime}=(L, R, F)$; for each node v of G, create $\ell_{v} \in L$ and $r_{v} \in R$;
- For each edge (u, v) in G, create edge $\left(\ell_{u}, r_{v}\right)$ in G^{\prime};
- Find the maximum matching M^{*} in G^{\prime}.

Reduction to Bipartite Matching

The algorithm:

- Construct a bipartite graph $G^{\prime}=(L, R, F)$; for each node v of G, create $\ell_{v} \in L$ and $r_{v} \in R$;
- For each edge (u, v) in G, create edge $\left(\ell_{u}, r_{v}\right)$ in G^{\prime};
- Find the maximum matching M^{*} in G^{\prime}.

Claim

The smallest disjoint-path cover \mathcal{P}^{*} has $\left|\mathcal{P}^{*}\right|=|V|-\left|M^{*}\right|$.

Reduction to Bipartite Matching

The algorithm:

- Construct a bipartite graph $G^{\prime}=(L, R, F)$; for each node v of G, create $\ell_{v} \in L$ and $r_{v} \in R$;
- For each edge (u, v) in G, create edge $\left(\ell_{u}, r_{v}\right)$ in G^{\prime};
- Find the maximum matching M^{*} in G^{\prime}.

Claim

The smallest disjoint-path cover \mathcal{P}^{*} has $\left|\mathcal{P}^{*}\right|=|V|-\left|M^{*}\right|$.
The proof will contain an algorithmic construction of \mathcal{P} from M^{*}.

Review of last lecture

- Given a directed graph, a set \mathcal{P} of simple paths is a path cover if each node lies on at least one path in \mathcal{P}. A path cover \mathcal{P} is a disjoint-path cover if each vertex lies on exactly one path in \mathcal{P}.
- The algorithm:
- Construct a bipartite graph $G^{\prime}=(L, R, F)$; for each node v of G, create $\ell_{v} \in L$ and $r_{v} \in R$;

Review of last lecture

- Given a directed graph, a set \mathcal{P} of simple paths is a path cover if each node lies on at least one path in \mathcal{P}. A path cover \mathcal{P} is a disjoint-path cover if each vertex lies on exactly one path in \mathcal{P}.
- The algorithm:
- Construct a bipartite graph $G^{\prime}=(L, R, F)$; for each node v of G, create $\ell_{v} \in L$ and $r_{v} \in R$;
- For each edge (u, v) in G, create edge $\left(\ell_{u}, r_{v}\right)$ in G^{\prime};

Review of last lecture

- Given a directed graph, a set \mathcal{P} of simple paths is a path cover if each node lies on at least one path in \mathcal{P}. A path cover \mathcal{P} is a disjoint-path cover if each vertex lies on exactly one path in \mathcal{P}.
- The algorithm:
- Construct a bipartite graph $G^{\prime}=(L, R, F)$; for each node v of G, create $\ell_{v} \in L$ and $r_{v} \in R$;
- For each edge (u, v) in G, create edge $\left(\ell_{u}, r_{v}\right)$ in G^{\prime};
- Find the maximum matching M^{*} in G^{\prime}.

Claim

The smallest disjoint-path cover \mathcal{P}^{*} has $\left|\mathcal{P}^{*}\right|=|V|-\left|M^{*}\right|$.

Proof of reduction

Claim
The smallest disjoint-path cover \mathcal{P}^{*} has $\left|\mathcal{P}^{*}\right|=|V|-|M|$.

Proof.

- Every matching M in G^{\prime} of size k corresponds to a disjoint-path cover \mathcal{P} in G of size $|V|-k$.

Proof of reduction

Claim

The smallest disjoint-path cover \mathcal{P}^{*} has $\left|\mathcal{P}^{*}\right|=|V|-|M|$.

Proof.

- Every matching M in G^{\prime} of size k corresponds to a disjoint-path cover \mathcal{P} in G of size $|V|-k$.
- Construct a subgraph H of G with the same node set V : include the edge (u, v) in H if $\left(\ell_{u}, r_{v}\right) \in M$.

Proof of reduction

Claim

The smallest disjoint-path cover \mathcal{P}^{*} has $\left|\mathcal{P}^{*}\right|=|V|-|M|$.

Proof.

- Every matching M in G^{\prime} of size k corresponds to a disjoint-path cover \mathcal{P} in G of size $|V|-k$.
- Construct a subgraph H of G with the same node set V : include the edge (u, v) in H if $\left(\ell_{u}, r_{v}\right) \in M$.
- Every vertex in H has at most one incoming edge and at most one outgoing edge.

Proof of reduction

Claim

The smallest disjoint-path cover \mathcal{P}^{*} has $\left|\mathcal{P}^{*}\right|=|V|-|M|$.

Proof.

- Every matching M in G^{\prime} of size k corresponds to a disjoint-path cover \mathcal{P} in G of size $|V|-k$.
- Construct a subgraph H of G with the same node set V : include the edge (u, v) in H if $\left(\ell_{u}, r_{v}\right) \in M$.
- Every vertex in H has at most one incoming edge and at most one outgoing edge.
- Hence H is a collection of disjoint paths; this collection is a path cover in G, and has k edges.

Proof of reduction

Claim

The smallest disjoint-path cover \mathcal{P}^{*} has $\left|\mathcal{P}^{*}\right|=|V|-|M|$.

Proof.

- Every matching M in G^{\prime} of size k corresponds to a disjoint-path cover \mathcal{P} in G of size $|V|-k$.
- Construct a subgraph H of G with the same node set V : include the edge (u, v) in H if $\left(\ell_{u}, r_{v}\right) \in M$.
- Every vertex in H has at most one incoming edge and at most one outgoing edge.
- Hence H is a collection of disjoint paths; this collection is a path cover in G, and has k edges.
- The number of paths in this path cover is $|V|-k$.

Proof of reduction cont.

Claim

The smallest disjoint-path cover \mathcal{P}^{*} has $\left|\mathcal{P}^{*}\right|=|V|-\left|M^{*}\right|$.

Proof.

- Every disjoint-path cover \mathcal{P} in G with k paths corresponds to a matching in G^{\prime} of size $|V|-k$.

Proof of reduction cont.

Claim

The smallest disjoint-path cover \mathcal{P}^{*} has $\left|\mathcal{P}^{*}\right|=|V|-\left|M^{*}\right|$.

Proof.

- Every disjoint-path cover \mathcal{P} in G with k paths corresponds to a matching in G^{\prime} of size $|V|-k$.
- Construct a subset M of edges in G : include in M the edge $\left(\ell_{u}, r_{v}\right)$ if (u, v) is in a path in \mathcal{P}.

Proof of reduction cont.

Claim

The smallest disjoint-path cover \mathcal{P}^{*} has $\left|\mathcal{P}^{*}\right|=|V|-\left|M^{*}\right|$.

Proof.

- Every disjoint-path cover \mathcal{P} in G with k paths corresponds to a matching in G^{\prime} of size $|V|-k$.
- Construct a subset M of edges in G : include in M the edge $\left(\ell_{u}, r_{v}\right)$ if (u, v) is in a path in \mathcal{P}.
- Each node in G has at most one outgoing edge in \mathcal{P}, so each node in L is incident to at most one edge in M.

Proof of reduction cont.

Claim

The smallest disjoint-path cover \mathcal{P}^{*} has $\left|\mathcal{P}^{*}\right|=|V|-\left|M^{*}\right|$.

Proof.

- Every disjoint-path cover \mathcal{P} in G with k paths corresponds to a matching in G^{\prime} of size $|V|-k$.
- Construct a subset M of edges in G : include in M the edge $\left(\ell_{u}, r_{v}\right)$ if (u, v) is in a path in \mathcal{P}.
- Each node in G has at most one outgoing edge in \mathcal{P}, so each node in L is incident to at most one edge in M.
- Each node in G has at most one incoming edge in \mathcal{P}, so each node in R is incident to at most one edge in M.

Proof of reduction cont.

Claim

The smallest disjoint-path cover \mathcal{P}^{*} has $\left|\mathcal{P}^{*}\right|=|V|-\left|M^{*}\right|$.

Proof.

- Every disjoint-path cover \mathcal{P} in G with k paths corresponds to a matching in G^{\prime} of size $|V|-k$.
- Construct a subset M of edges in G : include in M the edge $\left(\ell_{u}, r_{v}\right)$ if (u, v) is in a path in \mathcal{P}.
- Each node in G has at most one outgoing edge in \mathcal{P}, so each node in L is incident to at most one edge in M.
- Each node in G has at most one incoming edge in \mathcal{P}, so each node in R is incident to at most one edge in M.
- So M is a matching, and since \mathcal{P} has $|V|-k$ edges, $|M|=|V|-k$.

Proof of reduction cont.

Claim

The smallest disjoint-path cover \mathcal{P}^{*} has $\left|\mathcal{P}^{*}\right|=|V|-\left|M^{*}\right|$.

Proof.

- Every disjoint-path cover \mathcal{P} in G with k paths corresponds to a matching in G^{\prime} of size $|V|-k$.
- Construct a subset M of edges in G : include in M the edge $\left(\ell_{u}, r_{v}\right)$ if (u, v) is in a path in \mathcal{P}.
- Each node in G has at most one outgoing edge in \mathcal{P}, so each node in L is incident to at most one edge in M.
- Each node in G has at most one incoming edge in \mathcal{P}, so each node in R is incident to at most one edge in M.
- So M is a matching, and since \mathcal{P} has $|V|-k$ edges, $|M|=|V|-k$.

Question: Where did we use that G is acyclic?

