
Disjoint-Paths Covers

Learning Goals

De�nition of disjoint-path covers and the kind of problems they model

Reduction of the disjoint-path covers problem to bipartite matching
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Disjoint-Paths Covers

Motivating Question

There are n construction sites in di�erent locations; each of them

needs a heavy machine for a project on a particular day. The machine

needed by each site is identical.

Site i needs the machine from time ai to bi ;

It takes time cij to move the machine from site i to site j ;

How many machines do we need so that all sites can get their jobs

done?
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Disjoint-Paths Covers

Model

Construct a directed graph G , each node vi for a site i ;

There is an edge from vi to vj if it is feasible to move a machine to

site j after it is used by site i :

bi + cij ≤ aj .

Note that the resulting graph is acyclic;

A path in G contains a set of sites whose jobs can be done

sequentially by one machine.

We'd like to �nd a minimum set of paths so that each vertex is on one

path.
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Disjoint-Paths Covers

Problem Formulation

De�nition

Given a directed graph, a set P of simple paths is a path cover if each node

lies on at least one path in P.

A path cover P is a disjoint-path cover if each vertex lies on exactly one

path in P.

Input: Directed acyclic graph (DAG) G = (V ,E )

Output: A smallest disjoint-path cover P
Remark: The problem without the acyclic condition is NP-hard.
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Disjoint-Paths Covers

Reduction to Bipartite Matching

The algorithm:

Construct a bipartite graph G ′ = (L,R,F ); for each node v of G ,

create `v ∈ L and rv ∈ R ;

For each edge (u, v) in G , create edge (`u, rv ) in G ′;

Find the maximum matching M∗ in G ′.

Claim

The smallest disjoint-path cover P∗ has |P∗| = |V | − |M∗|.

The proof will contain an algorithmic construction of P from M∗.
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Disjoint-Paths Covers

Review of last lecture

Given a directed graph, a set P of simple paths is a path cover if each

node lies on at least one path in P. A path cover P is a disjoint-path

cover if each vertex lies on exactly one path in P.
The algorithm:

Construct a bipartite graph G ′ = (L,R,F ); for each node v of G ,

create `v ∈ L and rv ∈ R;

For each edge (u, v) in G , create edge (`u, rv ) in G ′;
Find the maximum matching M∗ in G ′.

Claim

The smallest disjoint-path cover P∗ has |P∗| = |V | − |M∗|.
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Disjoint-Paths Covers

Proof of reduction

Claim

The smallest disjoint-path cover P∗ has |P∗| = |V | − |M|.

Proof.

Every matching M in G ′ of size k corresponds to a disjoint-path

cover P in G of size |V | − k .

Construct a subgraph H of G with the same node set V : include the

edge (u, v) in H if (`u, rv ) ∈ M.

Every vertex in H has at most one incoming edge and at most one

outgoing edge.

Hence H is a collection of disjoint paths; this collection is a path cover

in G , and has k edges.

The number of paths in this path cover is |V | − k .

September 27, 2019 7 / 8



Disjoint-Paths Covers

Proof of reduction

Claim

The smallest disjoint-path cover P∗ has |P∗| = |V | − |M|.

Proof.

Every matching M in G ′ of size k corresponds to a disjoint-path

cover P in G of size |V | − k .

Construct a subgraph H of G with the same node set V : include the

edge (u, v) in H if (`u, rv ) ∈ M.

Every vertex in H has at most one incoming edge and at most one

outgoing edge.

Hence H is a collection of disjoint paths; this collection is a path cover

in G , and has k edges.

The number of paths in this path cover is |V | − k.

September 27, 2019 7 / 8



Disjoint-Paths Covers

Proof of reduction

Claim

The smallest disjoint-path cover P∗ has |P∗| = |V | − |M|.

Proof.

Every matching M in G ′ of size k corresponds to a disjoint-path

cover P in G of size |V | − k .

Construct a subgraph H of G with the same node set V : include the

edge (u, v) in H if (`u, rv ) ∈ M.

Every vertex in H has at most one incoming edge and at most one

outgoing edge.

Hence H is a collection of disjoint paths; this collection is a path cover

in G , and has k edges.

The number of paths in this path cover is |V | − k .

September 27, 2019 7 / 8



Disjoint-Paths Covers

Proof of reduction

Claim

The smallest disjoint-path cover P∗ has |P∗| = |V | − |M|.

Proof.

Every matching M in G ′ of size k corresponds to a disjoint-path

cover P in G of size |V | − k .

Construct a subgraph H of G with the same node set V : include the

edge (u, v) in H if (`u, rv ) ∈ M.

Every vertex in H has at most one incoming edge and at most one

outgoing edge.

Hence H is a collection of disjoint paths; this collection is a path cover

in G , and has k edges.

The number of paths in this path cover is |V | − k.

September 27, 2019 7 / 8



Disjoint-Paths Covers

Proof of reduction

Claim

The smallest disjoint-path cover P∗ has |P∗| = |V | − |M|.

Proof.

Every matching M in G ′ of size k corresponds to a disjoint-path

cover P in G of size |V | − k .

Construct a subgraph H of G with the same node set V : include the

edge (u, v) in H if (`u, rv ) ∈ M.

Every vertex in H has at most one incoming edge and at most one

outgoing edge.

Hence H is a collection of disjoint paths; this collection is a path cover

in G , and has k edges.

The number of paths in this path cover is |V | − k .

September 27, 2019 7 / 8



Disjoint-Paths Covers

Proof of reduction cont.

Claim

The smallest disjoint-path cover P∗ has |P∗| = |V | − |M∗|.

Proof.

Every disjoint-path cover P in G with k paths corresponds to a
matching in G ′ of size |V | − k .

Construct a subset M of edges in G : include in M the edge (`u, rv ) if

(u, v) is in a path in P.
Each node in G has at most one outgoing edge in P, so each node in L
is incident to at most one edge in M.

Each node in G has at most one incoming edge in P, so each node

in R is incident to at most one edge in M.

So M is a matching, and since P has |V | − k edges, |M| = |V | − k.

Question: Where did we use that G is acyclic?
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