Review of Last Lecture

- Massaging mixed-signed objectives
- Recognizing a min cut problem

Learning Goal

- Project selection problem and its reduction to min cut
- Turning hard constraints into punishments in the objective

Motivating Problem

- Let P be a set of n projects; doing project i yields a profit $p_{i} \in \mathbb{R}$. Note that p_{i} can be negative.

Motivating Problem

- Let P be a set of n projects; doing project i yields a profit $p_{i} \in \mathbb{R}$. Note that p_{i} can be negative.
- Each project i associated with a set $R_{i} \subset P$: project i can be done only if all projects in R_{i} are done first.

Motivating Problem

- Let P be a set of n projects; doing project i yields a profit $p_{i} \in \mathbb{R}$. Note that p_{i} can be negative.
- Each project i associated with a set $R_{i} \subset P$: project i can be done only if all projects in R_{i} are done first.
- Objective: Choose a set of projects to maximize total profits, subject to the prerequisite requirements;

Motivating Problem

- Let P be a set of n projects; doing project i yields a profit $p_{i} \in \mathbb{R}$. Note that p_{i} can be negative.
- Each project i associated with a set $R_{i} \subset P$: project i can be done only if all projects in R_{i} are done first.
- Objective: Choose a set of projects to maximize total profits, subject to the prerequisite requirements;
- Formally, choose a set $S \subseteq P$ that maximizes $\sum_{i \in S} p_{i}$, such that $R_{i} \subseteq S$ for every $i \in S$

Problem Formulation

- Input: an acyclic directed graph $G=(P, E)$, each node representing a project, with the associated profit;

Problem Formulation

- Input: an acyclic directed graph $G=(P, E)$, each node representing a project, with the associated profit;
- Edge from i to j represents $j \in R_{i}$, i.e., project j is a prerequisite for i;

Problem Formulation

- Input: an acyclic directed graph $G=(P, E)$, each node representing a project, with the associated profit;
- Edge from i to j represents $j \in R_{i}$, i.e., project j is a prerequisite for i;
- Choosing a subset of projects corresponds to choosing a partition of the node set, which suggests a cut problem.

Problem Formulation

- Input: an acyclic directed graph $G=(P, E)$, each node representing a project, with the associated profit;
- Edge from i to j represents $j \in R_{i}$, i.e., project j is a prerequisite for i;
- Choosing a subset of projects corresponds to choosing a partition of the node set, which suggests a cut problem.

Adjusting the objective

- The objective is in fact mixed signed.
- Let A be the set of projects with nonnegative profits, and B the set with negative profits, then the profit of any $S \subseteq P$ is

$$
\sum_{i \in S \cap A} p_{i}-\sum_{i \in S \cap B}\left|p_{i}\right|
$$

Adjusting the objective

- The objective is in fact mixed signed.
- Let A be the set of projects with nonnegative profits, and B the set with negative profits, then the profit of any $S \subseteq P$ is

$$
\sum_{i \in S \cap A} p_{i}-\sum_{i \in S \cap B}\left|p_{i}\right|
$$

- Adding a constant $\sum_{i \in B}\left|p_{i}\right|$, the objective becomes

$$
\max _{S \subseteq P} \sum_{i \in S \cap A} p_{i}+\sum_{i \in B \backslash S}\left|p_{i}\right|
$$

Adjusting the objective

- The objective is in fact mixed signed.
- Let A be the set of projects with nonnegative profits, and B the set with negative profits, then the profit of any $S \subseteq P$ is

$$
\sum_{i \in S \cap A} p_{i}-\sum_{i \in S \cap B}\left|p_{i}\right|
$$

- Adding a constant $\sum_{i \in B}\left|p_{i}\right|$, the objective becomes

$$
\max _{S \subseteq P} \sum_{i \in S \cap A} p_{i}+\sum_{i \in B \backslash S}\left|p_{i}\right| .
$$

- To reduce to min cut, we need a minimization problem:

$$
\min _{S \subseteq P} \sum_{i \in A \backslash S} p_{i}+\sum_{i \in S \cap B}\left|p_{i}\right| .
$$

An illustration

Reduction to Min Cut

$$
\min _{S \subseteq P} \sum_{i \in A \backslash S} p_{i}+\sum_{i \in S \cap B}\left|p_{i}\right|
$$

Reduction to Min Cut

$$
\min _{S \subseteq P} \sum_{i \in A \backslash S} p_{i}+\sum_{i \in S \cap B}\left|p_{i}\right| .
$$

- Add source s and sink t to G; add edge from s to each $i \in A$ with capacity p_{i}, and edge to t from each $i \in B$ with capacity $\left|p_{i}\right|$.

Reduction to Min Cut

$$
\min _{S \subseteq P} \sum_{i \in A \backslash S} p_{i}+\sum_{i \in S \cap B}\left|p_{i}\right| .
$$

- Add source s and sink t to G; add edge from s to each $i \in A$ with capacity p_{i}, and edge to t from each $i \in B$ with capacity $\left|p_{i}\right|$.
- Now for any $S \subseteq P, c(S \cup\{s\}, \bar{S} \cup\{t\})=\sum_{i \in A \backslash S} p_{i}+\sum_{i \in S \cap B}\left|p_{i}\right|$, i.e., nodes on the side of s in the cut are the selected projects.

Reduction to Min Cut

$$
\min _{S \subseteq P} \sum_{i \in A \backslash S} p_{i}+\sum_{i \in S \cap B}\left|p_{i}\right| .
$$

- Add source s and sink t to G; add edge from s to each $i \in A$ with capacity p_{i}, and edge to t from each $i \in B$ with capacity $\left|p_{i}\right|$.
- Now for any $S \subseteq P, c(S \cup\{s\}, \bar{S} \cup\{t\})=\sum_{i \in A \backslash S} p_{i}+\sum_{i \in S \cap B}\left|p_{i}\right|$, i.e., nodes on the side of s in the cut are the selected projects.
- How about the prerequisite requirements?

Reduction to Min Cut

$$
\min _{S \subseteq P} \sum_{i \in A \backslash S} p_{i}+\sum_{i \in S \cap B}\left|p_{i}\right| .
$$

- Add source s and sink t to G; add edge from s to each $i \in A$ with capacity p_{i}, and edge to t from each $i \in B$ with capacity $\left|p_{i}\right|$.
- Now for any $S \subseteq P, c(S \cup\{s\}, \bar{S} \cup\{t\})=\sum_{i \in A \backslash S} p_{i}+\sum_{i \in S \cap B}\left|p_{i}\right|$, i.e., nodes on the side of s in the cut are the selected projects.
- How about the prerequisite requirements?
- If no edge in G is in the cut we output, all prerequisite requirements are satisfied!

Reduction to Min Cut

$$
\min _{S \subseteq P} \sum_{i \in A \backslash S} p_{i}+\sum_{i \in S \cap B}\left|p_{i}\right| .
$$

- Add source s and sink t to G; add edge from s to each $i \in A$ with capacity p_{i}, and edge to t from each $i \in B$ with capacity $\left|p_{i}\right|$.
- Now for any $S \subseteq P, c(S \cup\{s\}, \bar{S} \cup\{t\})=\sum_{i \in A \backslash S} p_{i}+\sum_{i \in S \cap B}\left|p_{i}\right|$, i.e., nodes on the side of s in the cut are the selected projects.
- How about the prerequisite requirements?
- If no edge in G is in the cut we output, all prerequisite requirements are satisfied!
- Let all the original edges in G carry infinite (or large enough) capacity.

Illustration of flow network

Illustration of a cut

Last remark

- A commonly used idea when doing reductions among problems: convert "hard" constraints to "soft" ones. I.e., if in one problem, certain patterns are forbidden, then in the other problem, punish such patterns in the objective - when the punishment is high enough, such patterns are forbidden from the solution.

Last remark

- A commonly used idea when doing reductions among problems: convert "hard" constraints to "soft" ones. I.e., if in one problem, certain patterns are forbidden, then in the other problem, punish such patterns in the objective - when the punishment is high enough, such patterns are forbidden from the solution.
- (Outside this course:) Recall Lagrangian multipliers from calculus. Hard constraints are softened into punishment in the objective, and the multipliers adjust how heavy the punishment is.

