
Polynomial-time Reductions

Learning Goals

De�ne polynomial-time reductions.

Understand consequences of polynomial-time reductions in terms of

tractability of problems.

De�ne decision problems and to use decision problems to solve

optimization problems.

De�ne independent sets, vertex coversi.

State the decision problems INDEPENDENT SET, VERTEX COVER

and SET COVER

Understand the reductions between the three problems.
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Polynomial-time Reductions

Polynomial-time Reductions

Recall applications of the max �ow min cut algorithm

Black box oracle access to an algorithm for a problem X : given an

instance of problem X , the oracle returns correctly a solution to the

instance in a single step.

De�nition

A polynomial-time reduction from a problem Y to a problem X is an

algorithm that solves any instance of Y by taking polynomially many

standard computational steps plus a polynomial number of calls to a black

box that solves problem X .

When such a reduction exists, we say Y is polynomial-time reducible to X ,

denoted as Y ≤P X .

Example: Image Segmentation ≤P min cut
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Polynomial-time Reductions

Consequences of polynomial-time reductions

Proposition

If Y ≤P X , then

1 If X can be solved in polynomial time, then Y can be as well;

2 If Y cannot be solved in polynomial time, then X cannot be either.

Proof.

1 Take a polynomial-time reduction from Y to X , replace each call of

the black box oracle to X by the polynomially many steps needed to

solve X . The resulting algorithm runs in polynomial time.

2 This is the contrapositive of the �rst bullet.

Example: Since Min Cut can be solved in polynomial time, so is Image

Segmentation.
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Polynomial-time Reductions

Decision Problems

De�nition

A problem is a decision problem if its answer is either TRUE or FALSE.

Example: Given a �ow network G and an integer K , decide whether

there is a �ow in G whose value is at least K .

Generally, there are decision versions of optimization problems.

Optimization problems ask for maximization or minimization of certain

objectives, often subject to constraints.

Generally, optimization problems can be poly-time reduced to their
decision versions

via binary search.

For maximization problems, there are often a natural upper bound U
and a natural lower bound L;
Use a black box oracle to the decision version allows one to perform

binary search between L and U.
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Polynomial-time Reductions

Karp reductions

De�nition

Given two decision problems A and B , a Karp reduction is a

polynomial-time algorithm ϕ with

Input: an instance a of A

Output: an instance ϕ(a) of B

Guarantee: the answer to a is TRUE ⇔ the answer to ϕ(a) is TRUE.

Remark

A Karp reduction is a polynomial-time reduction.

A general polynomial-time reduction is sometimes referred to as a Cook

reduction or Turing reduction.

A Karp reduction calls the oracle for B only once.

In this class we always do Karp reductions.
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Polynomial-time Reductions

Independent Set

De�nition

Given an undirected graph G = (V ,E ), a set of nodes S ⊆ V is an

independent set if no two nodes in S are connected by an edge.
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Polynomial-time Reductions

INDEPENDENT SET

De�nition

Given an undirected graph G = (V ,E ), a set of nodes S ⊆ V is an

independent set if no two nodes in S are connected by an edge.

De�nition

In the INDEPENDENT SET problem, we are given an undirected graph

G = (V ,E ) and an integer k . We must answer whether G has an

independent set of size at least k .
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Polynomial-time Reductions

Vertex Cover

De�nition

Given an undirected graph G = (V ,E ), a set of nodes S ⊆ V is a vertex

cover if every edge is incident to at least one node in S .

Recall Question 4 of Problem Set 2.
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Polynomial-time Reductions

VERTEX COVER

De�nition

Given an undirected graph G = (V ,E ), a set of nodes S ⊆ V is a vertex

cover if every edge is incident to at least one node in S .

De�nition

In the VERTEX COVER problem, we are given an undirected graph

G = (V ,E ) and an integer k . We must answer whether G has a vertex

cover of size at most k .
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Polynomial-time Reductions

Polynomial-time reduction example

Proposition

INDEPENDENT SET ≤P VERTEX COVER.

VERTEX COVER ≤P INDEPENDENT SET.

An independent set

A vertex cover
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Polynomial-time Reductions

Polynomial-time reduction example

Proposition

INDEPENDENT SET ≤P VERTEX COVER.

VERTEX COVER ≤P INDEPENDENT SET.

Lemma

For any graph G = (V ,E ), if S ⊆ V is an independent set, then V − S is

a vertex cover.

Proof.

For any edge e = (u, v) ∈ E , either u /∈ S or v /∈ S (otherwise S cannot be

independent).

Therefore V − S covers every edge, i.e., it is a vertex cover.
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Polynomial-time Reductions

Polynomial-time reduction example

Proposition

INDEPENDENT SET ≤P VERTEX COVER.

VERTEX COVER ≤P INDEPENDENT SET.

Proof.

There is an independenset set of size at least k if and only if there is a

vertex cover of size at most |V | − k .

The Karp reduction from INDEPENDENT SET to VERTEX COVER:

1 Input: graph G = (V ,E ) and integer k .

2 Output (as an instance of VERTEX COVER): same graph G and

integer |V | − k .
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Polynomial-time Reductions

Review of last lecture

De�nition: Polynomial-time reduction

If A ≤P B , then B is �harder� than A.

De�nition: Decision problems, Karp reductions

De�nition: Independent set, vertex cover

INDEPENDENT SET ≤P VERTEX COVER; VERTEX COVER ≤P
INDEPENDENT SET
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Polynomial-time Reductions

SET COVER

De�nition

In the SET COVER problem, we are given a set U of n elements, a

collection S1, · · · ,Sm of subsets of U, and a number k , and we must

answer whether there is a collection of at most k of these sets whose union

is equal to U.
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Polynomial-time Reductions

SET COVER

Proposition

VERTEX COVER ≤P SET COVER.

Proof.

Given a VERTEX COVER problem G = (V ,E ) and integer k , create the

following SET COVER instance:

U = E ;

For every vertex v ∈ V , create a set Sv ⊆ U which is the set of edges

incident to v .

There is a vertex cover in G of size at most k if and only if there is a set

cover of size at most k in the instance we created.
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Polynomial-time Reductions

Last remark

Remark

This is a reduction from a special problem to a more general problem. A

VERTEX COVER problem is precisely a SET COVER problem when every

element of U is contained in two given subsets.
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