Learning Goals

- Define polynomial-time reductions.
- Understand consequences of polynomial-time reductions in terms of tractability of problems.
- Define decision problems and to use decision problems to solve optimization problems.
- Define independent sets, vertex coversi.
- State the decision problems INDEPENDENT SET, VERTEX COVER and SET COVER
- Understand the reductions between the three problems.

Polynomial-time Reductions

- Recall applications of the max flow min cut algorithm

Polynomial-time Reductions

- Recall applications of the max flow min cut algorithm
- Black box oracle access to an algorithm for a problem X : given an instance of problem X, the oracle returns correctly a solution to the instance in a single step.

Polynomial-time Reductions

- Recall applications of the max flow min cut algorithm
- Black box oracle access to an algorithm for a problem X : given an instance of problem X, the oracle returns correctly a solution to the instance in a single step.

Definition

A polynomial-time reduction from a problem Y to a problem X is an algorithm that solves any instance of Y by taking polynomially many standard computational steps plus a polynomial number of calls to a black box that solves problem X.

Polynomial-time Reductions

- Recall applications of the max flow min cut algorithm
- Black box oracle access to an algorithm for a problem X : given an instance of problem X, the oracle returns correctly a solution to the instance in a single step.

Definition

A polynomial-time reduction from a problem Y to a problem X is an algorithm that solves any instance of Y by taking polynomially many standard computational steps plus a polynomial number of calls to a black box that solves problem X.
When such a reduction exists, we say Y is polynomial-time reducible to X, denoted as $Y \leq_{p} X$.

Polynomial-time Reductions

- Recall applications of the max flow min cut algorithm
- Black box oracle access to an algorithm for a problem X : given an instance of problem X, the oracle returns correctly a solution to the instance in a single step.

Definition

A polynomial-time reduction from a problem Y to a problem X is an algorithm that solves any instance of Y by taking polynomially many standard computational steps plus a polynomial number of calls to a black box that solves problem X.
When such a reduction exists, we say Y is polynomial-time reducible to X, denoted as $Y \leq_{p} X$.

Example: Image Segmentation \leq_{p} min cut

Consequences of polynomial-time reductions

Proposition

If $Y \leq_{p} X$, then
(1) If X can be solved in polynomial time, then Y can be as well;
(2) If Y cannot be solved in polynomial time, then X cannot be either.

Consequences of polynomial-time reductions

Proposition

If $Y \leq_{p} X$, then
(1) If X can be solved in polynomial time, then Y can be as well;

O If Y cannot be solved in polynomial time, then X cannot be either.

Proof.

(1) Take a polynomial-time reduction from Y to X, replace each call of the black box oracle to X by the polynomially many steps needed to solve X. The resulting algorithm runs in polynomial time.

Consequences of polynomial-time reductions

Proposition

If $Y \leq_{p} X$, then
(1) If X can be solved in polynomial time, then Y can be as well;
(2) If Y cannot be solved in polynomial time, then X cannot be either.

Proof.

(1) Take a polynomial-time reduction from Y to X, replace each call of the black box oracle to X by the polynomially many steps needed to solve X. The resulting algorithm runs in polynomial time.
(2) This is the contrapositive of the first bullet.

Consequences of polynomial-time reductions

Proposition

If $Y \leq_{p} X$, then
(1) If X can be solved in polynomial time, then Y can be as well;
(2) If Y cannot be solved in polynomial time, then X cannot be either.

Proof.

(1) Take a polynomial-time reduction from Y to X, replace each call of the black box oracle to X by the polynomially many steps needed to solve X. The resulting algorithm runs in polynomial time.
(2) This is the contrapositive of the first bullet.

Example: Since Min Cut can be solved in polynomial time, so is Image Segmentation.

Decision Problems

Definition

A problem is a decision problem if its answer is either TRUE or FALSE.

Decision Problems

Definition

A problem is a decision problem if its answer is either TRUE or FALSE.

- Example: Given a flow network G and an integer K, decide whether there is a flow in G whose value is at least K.

Decision Problems

Definition

A problem is a decision problem if its answer is either TRUE or FALSE.

- Example: Given a flow network G and an integer K, decide whether there is a flow in G whose value is at least K.
- Generally, there are decision versions of optimization problems.
- Optimization problems ask for maximization or minimization of certain objectives, often subject to constraints.

Decision Problems

Definition

A problem is a decision problem if its answer is either TRUE or FALSE.

- Example: Given a flow network G and an integer K, decide whether there is a flow in G whose value is at least K.
- Generally, there are decision versions of optimization problems.
- Optimization problems ask for maximization or minimization of certain objectives, often subject to constraints.
- Generally, optimization problems can be poly-time reduced to their decision versions

Decision Problems

Definition

A problem is a decision problem if its answer is either TRUE or FALSE.

- Example: Given a flow network G and an integer K, decide whether there is a flow in G whose value is at least K.
- Generally, there are decision versions of optimization problems.
- Optimization problems ask for maximization or minimization of certain objectives, often subject to constraints.
- Generally, optimization problems can be poly-time reduced to their decision versions via binary search.

Decision Problems

Definition

A problem is a decision problem if its answer is either TRUE or FALSE.

- Example: Given a flow network G and an integer K, decide whether there is a flow in G whose value is at least K.
- Generally, there are decision versions of optimization problems.
- Optimization problems ask for maximization or minimization of certain objectives, often subject to constraints.
- Generally, optimization problems can be poly-time reduced to their decision versions via binary search.

Decision Problems

Definition

A problem is a decision problem if its answer is either TRUE or FALSE.

- Example: Given a flow network G and an integer K, decide whether there is a flow in G whose value is at least K.
- Generally, there are decision versions of optimization problems.
- Optimization problems ask for maximization or minimization of certain objectives, often subject to constraints.
- Generally, optimization problems can be poly-time reduced to their decision versions via binary search.
- For maximization problems, there are often a natural upper bound U and a natural lower bound L;

Decision Problems

Definition

A problem is a decision problem if its answer is either TRUE or FALSE.

- Example: Given a flow network G and an integer K, decide whether there is a flow in G whose value is at least K.
- Generally, there are decision versions of optimization problems.
- Optimization problems ask for maximization or minimization of certain objectives, often subject to constraints.
- Generally, optimization problems can be poly-time reduced to their decision versions via binary search.
- For maximization problems, there are often a natural upper bound U and a natural lower bound L;
- Use a black box oracle to the decision version allows one to perform binary search between L and U.

Karp reductions

Definition

Given two decision problems A and B, a Karp reduction is a polynomial-time algorithm φ with

- Input: an instance a of A
- Output: an instance $\varphi(a)$ of B
- Guarantee: the answer to a is TRUE \Leftrightarrow the answer to $\varphi(a)$ is TRUE.

Karp reductions

Definition

Given two decision problems A and B, a Karp reduction is a polynomial-time algorithm φ with

- Input: an instance a of A
- Output: an instance $\varphi(a)$ of B
- Guarantee: the answer to a is TRUE \Leftrightarrow the answer to $\varphi(a)$ is TRUE.

Remark

- A Karp reduction is a polynomial-time reduction.
- A general polynomial-time reduction is sometimes referred to as a Cook reduction or Turing reduction.

Karp reductions

Definition

Given two decision problems A and B, a Karp reduction is a polynomial-time algorithm φ with

- Input: an instance a of A
- Output: an instance $\varphi(a)$ of B
- Guarantee: the answer to a is TRUE \Leftrightarrow the answer to $\varphi(a)$ is TRUE.

Remark

- A Karp reduction is a polynomial-time reduction.
- A general polynomial-time reduction is sometimes referred to as a Cook reduction or Turing reduction.
- A Karp reduction calls the oracle for B only once.

Karp reductions

Definition

Given two decision problems A and B, a Karp reduction is a polynomial-time algorithm φ with

- Input: an instance a of A
- Output: an instance $\varphi(a)$ of B
- Guarantee: the answer to a is TRUE \Leftrightarrow the answer to $\varphi(a)$ is TRUE.

Remark

- A Karp reduction is a polynomial-time reduction.
- A general polynomial-time reduction is sometimes referred to as a Cook reduction or Turing reduction.
- A Karp reduction calls the oracle for B only once.
- In this class we always do Karp reductions.

Independent Set

Definition

Given an undirected graph $G=(V, E)$, a set of nodes $S \subseteq V$ is an independent set if no two nodes in S are connected by an edge.

Independent Set

Definition

Given an undirected graph $G=(V, E)$, a set of nodes $S \subseteq V$ is an independent set if no two nodes in S are connected by an edge.

INDEPENDENT SET

Definition

Given an undirected graph $G=(V, E)$, a set of nodes $S \subseteq V$ is an independent set if no two nodes in S are connected by an edge.

Definition

In the INDEPENDENT SET problem, we are given an undirected graph $G=(V, E)$ and an integer k. We must answer whether G has an independent set of size at least k.

Vertex Cover

Definition

Given an undirected graph $G=(V, E)$, a set of nodes $S \subseteq V$ is a vertex cover if every edge is incident to at least one node in S.

Recall Question 4 of Problem Set 2.

VERTEX COVER

Definition

Given an undirected graph $G=(V, E)$, a set of nodes $S \subseteq V$ is a vertex cover if every edge is incident to at least one node in S.

Definition

In the VERTEX COVER problem, we are given an undirected graph $G=(V, E)$ and an integer k. We must answer whether G has a vertex cover of size at most k.

Polynomial-time reduction example

Proposition
 INDEPENDENT SET \leq_{p} VERTEX COVER. VERTEX COVER \leq_{p} INDEPENDENT SET.

Polynomial-time reduction example

Proposition

INDEPENDENT SET \leq_{p} VERTEX COVER. VERTEX COVER \leq_{p} INDEPENDENT SET.

An independent set

A vertex cover

Polynomial-time reduction example

Proposition
 INDEPENDENT SET \leq_{p} VERTEX COVER. VERTEX COVER \leq_{p} INDEPENDENT SET.

Lemma

For any graph $G=(V, E)$, if $S \subseteq V$ is an independent set, then $V-S$ is a vertex cover.

Polynomial-time reduction example

Proposition

INDEPENDENT SET \leq_{p} VERTEX COVER. VERTEX COVER \leq_{p} INDEPENDENT SET.

Lemma

For any graph $G=(V, E)$, if $S \subseteq V$ is an independent set, then $V-S$ is a vertex cover.

Proof.

For any edge $e=(u, v) \in E$, either $u \notin S$ or $v \notin S$ (otherwise S cannot be independent).

Polynomial-time reduction example

Proposition

INDEPENDENT SET \leq_{p} VERTEX COVER. VERTEX COVER \leq_{p} INDEPENDENT SET.

Lemma

For any graph $G=(V, E)$, if $S \subseteq V$ is an independent set, then $V-S$ is a vertex cover.

Proof.

For any edge $e=(u, v) \in E$, either $u \notin S$ or $v \notin S$ (otherwise S cannot be independent).
Therefore $V-S$ covers every edge, i.e., it is a vertex cover.

Polynomial-time reduction example

Proposition
 INDEPENDENT SET \leq_{p} VERTEX COVER. VERTEX COVER \leq_{p} INDEPENDENT SET.

```
Lemma
For any graph G=(V,E), if S\subseteqV is a vertex cover, then }V-S\mathrm{ is an independent set.
```


Polynomial-time reduction example

Proposition

INDEPENDENT SET \leq_{p} VERTEX COVER. VERTEX COVER \leq_{p} INDEPENDENT SET.

Lemma

For any graph $G=(V, E)$, if $S \subseteq V$ is a vertex cover, then $V-S$ is an independent set.

Proof.

For any two vertices $u, v \in V-S$, there cannot be an edge (u, v) (otherwise S is not a vertex cover.

Polynomial-time reduction example

Proposition

INDEPENDENT SET <p VERTEX COVER. VERTEX COVER \leq_{p} INDEPENDENT SET.

Lemma

For any graph $G=(V, E)$, if $S \subseteq V$ is a vertex cover, then $V-S$ is an independent set.

Proof.

For any two vertices $u, v \in V-S$, there cannot be an edge (u, v) (otherwise S is not a vertex cover.
Therefore $V-S$ is a vertex cover.

Polynomial-time reduction example

Proposition

INDEPENDENT SET \leq_{p} VERTEX COVER. VERTEX COVER \leq_{p} INDEPENDENT SET.

Proof.

There is an independenset set of size at least k if and only if there is a vertex cover of size at most $|V|-k$.

Polynomial-time reduction example

Proposition

INDEPENDENT SET \leq_{p} VERTEX COVER. VERTEX COVER \leq_{p} INDEPENDENT SET.

Proof.

There is an independenset set of size at least k if and only if there is a vertex cover of size at most $|V|-k$. The Karp reduction from INDEPENDENT SET to VERTEX COVER:
(1) Input: graph $G=(V, E)$ and integer k.
(2) Output (as an instance of VERTEX COVER): same graph G and integer $|V|-k$.

Review of last lecture

- Definition: Polynomial-time reduction
- If $A \leq_{\mathrm{p}} B$, then B is "harder" than A.
- Definition: Decision problems, Karp reductions
- Definition: Independent set, vertex cover
- INDEPENDENT SET \leq_{p} VERTEX COVER; VERTEX COVER \leq_{p} INDEPENDENT SET

SET COVER

Definition

In the SET COVER problem, we are given a set U of n elements, a collection S_{1}, \cdots, S_{m} of subsets of U, and a number k, and we must answer whether there is a collection of at most k of these sets whose union is equal to U.

SET COVER

Proposition
 VERTEX COVER $\leq_{\text {p }}$ SET COVER.

SET COVER

Proposition

VERTEX COVER \leq p SET COVER.

Proof.

Given a VERTEX COVER problem $G=(V, E)$ and integer k, create the following SET COVER instance:

- $U=E$;
- For every vertex $v \in V$, create a set $S_{v} \subseteq U$ which is the set of edges incident to v.

SET COVER

Proposition

VERTEX COVER \leq p SET COVER.

Proof.

Given a VERTEX COVER problem $G=(V, E)$ and integer k, create the following SET COVER instance:

- $U=E$;
- For every vertex $v \in V$, create a set $S_{v} \subseteq U$ which is the set of edges incident to v.
There is a vertex cover in G of size at most k if and only if there is a set cover of size at most k in the instance we created.

Last remark

Remark

This is a reduction from a special problem to a more general problem. A VERTEX COVER problem is precisely a SET COVER problem when every element of U is contained in two given subsets.

