## Learning Goals

- Random variables and their expectations
- Expectation of some distributions (Indicator variables/Bernoulli, binomial, geometric)
- Linearity of expectations
- Analyze two examples: guessing cards and coupon collection
- Analyze probability of correctness of simple randomized algorithms, as exemplified by MAX 3-SAT


## Random variables

- Random variables map the sample space to real numbers $X: \Omega \rightarrow \mathbb{R}$.
- Examples in this class all have random variables taking nonnegative integer values.


## Random variables

- Random variables map the sample space to real numbers $X: \Omega \rightarrow \mathbb{R}$.
- Examples in this class all have random variables taking nonnegative integer values.
- Let $X$ be a random variable on a probability space, for a number $j$,

$$
\operatorname{Pr}[X=j]:=\operatorname{Pr}[\{\omega \in \Omega: X(\omega)=j\}] .
$$

## Random variables

- Random variables map the sample space to real numbers $X: \Omega \rightarrow \mathbb{R}$.
- Examples in this class all have random variables taking nonnegative integer values.
- Let $X$ be a random variable on a probability space, for a number $j$,

$$
\operatorname{Pr}[X=j]:=\operatorname{Pr}[\{\omega \in \Omega: X(\omega)=j\}] .
$$

- Example: Toss a dice, let $X$ be the result (number of pips). Then $\forall i \in\{1,2, \cdots, 6\}, \operatorname{Pr}[X=i]=1 / 6$.


## Random variables

- Random variables map the sample space to real numbers $X: \Omega \rightarrow \mathbb{R}$.
- Examples in this class all have random variables taking nonnegative integer values.
- Let $X$ be a random variable on a probability space, for a number $j$,

$$
\operatorname{Pr}[X=j]:=\operatorname{Pr}[\{\omega \in \Omega: X(\omega)=j\}] .
$$

- Example: Toss a dice, let $X$ be the result (number of pips). Then $\forall i \in\{1,2, \cdots, 6\}, \operatorname{Pr}[X=i]=1 / 6$.
- Example: For an event $A$, let $X$ be 1 if $A$ happens, and 0 if not. Then $\operatorname{Pr}[X=1]=\operatorname{Pr}[A]$.
- $X$ is called the indicator variable of $A$.
- A random variable that only takes values 0 or 1 is said to be drawn from a Bernoulli distribution.


## Expectation of a random variable

- The expectation of a random variable $X$ is

$$
\mathbf{E}[X]:=\sum_{j=0}^{\infty} j \cdot \operatorname{Pr}[X=j]
$$

## Expectation of a random variable

- The expectation of a random variable $X$ is

$$
\mathbf{E}[X]:=\sum_{j=0}^{\infty} j \cdot \operatorname{Pr}[X=j]
$$

- Example: If $X$ is the indicator variable of event $A$, then $\mathbf{E}[X]=\operatorname{Pr}[X=1]=\operatorname{Pr}[A]$.


## Expectation of a random variable

- The expectation of a random variable $X$ is

$$
\mathbf{E}[X]:=\sum_{j=0}^{\infty} j \cdot \operatorname{Pr}[X=j]
$$

- Example: If $X$ is the indicator variable of event $A$, then $\mathbf{E}[X]=\operatorname{Pr}[X=1]=\operatorname{Pr}[A]$.
- Example: If $X$ is the result of a die toss, then

$$
\begin{gathered}
\mathbf{E}[X]=\frac{1}{6} \sum_{i=1}^{6} i=\frac{7}{2} . \\
\mathbf{E}\left[X^{2}\right]=\frac{1}{6} \sum_{i=1}^{6} i^{2}=\frac{91}{6} .
\end{gathered}
$$

Note $\mathbf{E}\left[X^{2}\right] \neq(\mathbf{E}[X])^{2}$.

## Example

- Example: Toss a coin that shows Heads with probability p. Keep tossing until one sees a head. Let $X$ be the number of tosses.


## Example

- Example: Toss a coin that shows Heads with probability $p$. Keep tossing until one sees a head. Let $X$ be the number of tosses.

$$
\begin{aligned}
\operatorname{Pr}[X=j] & =p(1-p)^{j-1} ; \\
\mathbf{E}[X] & =\sum_{j=1}^{\infty} j \operatorname{Pr}[X=j]=\sum_{j=1}^{\infty} j p(1-p)^{j-1}=p \cdot \frac{1}{p^{2}}=\frac{1}{p} .
\end{aligned}
$$

## Example

- Example: Toss a coin that shows Heads with probability $p$. Keep tossing until one sees a head. Let $X$ be the number of tosses.

$$
\begin{aligned}
\operatorname{Pr}[X=j] & =p(1-p)^{j-1} ; \\
\mathbf{E}[X] & =\sum_{j=1}^{\infty} j \operatorname{Pr}[X=j]=\sum_{j=1}^{\infty} j p(1-p)^{j-1}=p \cdot \frac{1}{p^{2}}=\frac{1}{p} .
\end{aligned}
$$

For $x<1$,

$$
\sum_{j=1}^{\infty} j x^{j-1}=\sum_{j=1}^{\infty}\left(x^{j}\right)^{\prime}=\left(\sum_{j=1}^{\infty} x^{j}\right)^{\prime}=\left(\frac{1}{1-x}-1\right)^{\prime}=\frac{1}{(1-x)^{2}}
$$

## Linearity of expectation

- For random variables $X$ and $Y$ defined on the same probability space, a new random variable $X+Y$ is given by $(X+Y)(\omega)=X(\omega)+Y(\omega)$ for any sample point $\omega$.


## Linearity of expectation

- For random variables $X$ and $Y$ defined on the same probability space, a new random variable $X+Y$ is given by $(X+Y)(\omega)=X(\omega)+Y(\omega)$ for any sample point $\omega$.
- Example: Toss two dices. Let $X$ be the result of the first dice, and $Y$ that of the second. Then $X+Y$ is the random variable for the sum of the two results.


## Linearity of expectation

- For random variables $X$ and $Y$ defined on the same probability space, a new random variable $X+Y$ is given by $(X+Y)(\omega)=X(\omega)+Y(\omega)$ for any sample point $\omega$.
- Example: Toss two dices. Let $X$ be the result of the first dice, and $Y$ that of the second. Then $X+Y$ is the random variable for the sum of the two results.


## Theorem

For any collection of random variables $X_{1}, \cdots, X_{n}$ (defined on the same probability space),

$$
\mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right]
$$

## Linearity of expectation

- For random variables $X$ and $Y$ defined on the same probability space, a new random variable $X+Y$ is given by $(X+Y)(\omega)=X(\omega)+Y(\omega)$ for any sample point $\omega$.
- Example: Toss two dices. Let $X$ be the result of the first dice, and $Y$ that of the second. Then $X+Y$ is the random variable for the sum of the two results.


## Theorem

For any collection of random variables $X_{1}, \cdots, X_{n}$ (defined on the same probability space),

$$
\mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right]
$$

## Diversion: Independence among random variables

## Definition

Two random variables are independent if for any $i, j$, the events $X=i$ and $Y=j$ are independent.

## Remark

Linearity of expectation does NOT need independence among the random variables!

## Examples of linearity of expectations: Guessing cards

Shuffle a deck of $n$ distinct cards, and reveal them one by one. Before each revelation, make a uniformly random guess. How many guesses are correct in expectation?

## Examples of linearity of expectations: Guessing cards

Shuffle a deck of $n$ distinct cards, and reveal them one by one. Before each revelation, make a uniformly random guess. How many guesses are correct in expectation?

- Let $X_{i}$ be the indicator variable for the $i^{\text {-th }}$ guess being correct, then $\mathbf{E}\left[X_{i}\right]=1 / n$.


## Examples of linearity of expectations: Guessing cards

Shuffle a deck of $n$ distinct cards, and reveal them one by one. Before each revelation, make a uniformly random guess. How many guesses are correct in expectation?

- Let $X_{i}$ be the indicator variable for the $i^{- \text {th }}$ guess being correct, then $\mathbf{E}\left[X_{i}\right]=1 / n$.
- The total number of correct guesses is $X:=\sum_{i=1}^{n} X_{i}$. So $\mathbf{E}[X]=\sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right]=n \cdot \frac{1}{n}=1$.


## Guessing cards (continued)

What if in the $i^{- \text {th }}$ round, we guess a card uniformly at random among the cards that haven't shown up?

## Guessing cards (continued)

What if in the $i^{- \text {th }}$ round, we guess a card uniformly at random among the cards that haven't shown up?

- Let $Y_{i}$ be the indicator variable for the $i^{- \text {th }}$ guess being correct. Then $\mathbf{E}\left[Y_{i}\right]=\frac{1}{n-i+1}$.


## Guessing cards (continued)

What if in the $i^{- \text {th }}$ round, we guess a card uniformly at random among the cards that haven't shown up?

- Let $Y_{i}$ be the indicator variable for the $i^{- \text {th }}$ guess being correct. Then $\mathbf{E}\left[Y_{i}\right]=\frac{1}{n-i+1}$.
- The total number of crrect guess is $Y:=\sum_{i} Y_{i}$. So

$$
\mathbf{E}[Y]=\sum_{i=1}^{n} \mathbf{E}\left[Y_{i}\right]=\sum_{i=1}^{n} \frac{1}{n-i+1}=\sum_{i=1}^{n} \frac{1}{i} \approx \ln n
$$

## Examples of linearity of expectations: Coupon collection

A coffee shop gives you, for any puchase of coffee, one of $n$ different coupons uniformly at random. After you collect all $n$ coupons, you get a free cup. How many cups do you expect to buy before you get a free one?

## Examples of linearity of expectations: Coupon collection

A coffee shop gives you, for any puchase of coffee, one of $n$ different coupons uniformly at random. After you collect all $n$ coupons, you get a free cup. How many cups do you expect to buy before you get a free one?

- Let $X_{i}$ be the number of purchases we make to get the $i^{\text {-th }}$ coupon after we've collected $i-1$ coupons.


## Examples of linearity of expectations: Coupon collection

A coffee shop gives you, for any puchase of coffee, one of $n$ different coupons uniformly at random. After you collect all $n$ coupons, you get a free cup. How many cups do you expect to buy before you get a free one?

- Let $X_{i}$ be the number of purchases we make to get the $i^{- \text {th }}$ coupon after we've collected $i-1$ coupons.
- There are $n-i+1$ unseen coupons, and the probability we see one of them in each purchase is $\frac{n-i+1}{n}$.


## Examples of linearity of expectations: Coupon collection

A coffee shop gives you, for any puchase of coffee, one of $n$ different coupons uniformly at random. After you collect all $n$ coupons, you get a free cup. How many cups do you expect to buy before you get a free one?

- Let $X_{i}$ be the number of purchases we make to get the $i^{- \text {th }}$ coupon after we've collected $i-1$ coupons.
- There are $n-i+1$ unseen coupons, and the probability we see one of them in each purchase is $\frac{n-i+1}{n}$.
- $\mathbf{E}\left[X_{i}\right]=\frac{n}{n-i+1}$ (from the earlier example about tossing coins.)


## Examples of linearity of expectations: Coupon collection

A coffee shop gives you, for any puchase of coffee, one of $n$ different coupons uniformly at random. After you collect all $n$ coupons, you get a free cup. How many cups do you expect to buy before you get a free one?

- Let $X_{i}$ be the number of purchases we make to get the $i^{- \text {th }}$ coupon after we've collected $i-1$ coupons.
- There are $n-i+1$ unseen coupons, and the probability we see one of them in each purchase is $\frac{n-i+1}{n}$.
- $\mathbf{E}\left[X_{i}\right]=\frac{n}{n-i+1}$ (from the earlier example about tossing coins.)
- Therefore the expected total number of purchases is

$$
\sum_{i=1}^{n} \frac{n}{n-i+1}=n \cdot \sum_{i=1}^{n} \frac{1}{i} \approx n \ln n
$$

## Recipe for expectation calculation

- Express the quantity we are interested in as a random variable
- Express the random variable as a sum of random variables whose expectations are easy to compute
- Apply linearity of expectation (without worrying about independence)!


## Algorithmic application: MAX 3-SAT

- MAX 3-SAT problem: Given a 3-SAT formula with $n$ variables and $m$ clauses, find a truth assignment that satisfies as many clauses as possible.


## Algorithmic application: MAX 3-SAT

- MAX 3-SAT problem: Given a 3-SAT formula with $n$ variables and $m$ clauses, find a truth assignment that satisfies as many clauses as possible.
- The problem is obviously NP-hard.


## Algorithmic application: MAX 3-SAT

- MAX 3-SAT problem: Given a 3-SAT formula with $n$ variables and $m$ clauses, find a truth assignment that satisfies as many clauses as possible.
- The problem is obviously NP-hard.
- A randomzied algorithm: let each variable be TRUE with probability $\frac{1}{2}$, independently.


## Algorithmic application: MAX 3-SAT

- MAX 3-SAT problem: Given a 3-SAT formula with $n$ variables and $m$ clauses, find a truth assignment that satisfies as many clauses as possible.
- The problem is obviously NP-hard.
- A randomzied algorithm: let each variable be TRUE with probability $\frac{1}{2}$, independently.


## Claim

Under the uniformly random truth assignment, in expectation $\frac{7}{8} m$ clauses are satisfied.

## MAX 3-SAT Analysis

## Claim

Under the uniformly random truth assignment, in expectation $\frac{7}{8} m$ clauses are satisfied.

## Proof.

Let $X_{i}$ be the indicator variable for the $i^{- \text {th }}$ clause to be satisfied, then the number of satisfied clauses is $\sum_{i} X_{i}$.

## MAX 3-SAT Analysis

## Claim

Under the uniformly random truth assignment, in expectation $\frac{7}{8} m$ clauses are satisfied.

## Proof.

Let $X_{i}$ be the indicator variable for the $i^{- \text {th }}$ clause to be satisfied, then the number of satisfied clauses is $\sum_{i} X_{i}$.

$$
\mathbf{E}\left[\sum_{i} X_{i}\right]=\sum_{i} \mathbf{E}\left[X_{i}\right]=\sum_{i=1}^{m} \operatorname{Pr}[\text { clause } i \text { is satisfied }]=\frac{7}{8} m
$$

