
Random Variables

Learning Goals

Random variables and their expectations

Expectation of some distributions (Indicator variables/Bernoulli,
binomial, geometric)

Linearity of expectations

Analyze two examples: guessing cards and coupon collection

Analyze probability of correctness of simple randomized algorithms, as
exempli�ed by MAX 3-SAT
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Random Variables

Random variables

Random variables map the sample space to real numbers X : Ω→ R.
Examples in this class all have random variables taking nonnegative

integer values.

Let X be a random variable on a probability space, for a number j ,

Pr [X = j ] := Pr [{ω ∈ Ω : X (ω) = j}] .

Example: Toss a dice, let X be the result (number of pips). Then
∀i ∈ {1, 2, · · · , 6}, Pr[X = i ] = 1/6.

Example: For an event A, let X be 1 if A happens, and 0 if not. Then
Pr[X = 1] = Pr[A].

X is called the indicator variable of A.
A random variable that only takes values 0 or 1 is said to be drawn

from a Bernoulli distribution.
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Random Variables

Expectation of a random variable

The expectation of a random variable X is

E [X ] :=
∞∑
j=0

j · Pr [X = j ] .

Example: If X is the indicator variable of event A, then
E[X ] = Pr[X = 1] = Pr[A].

Example: If X is the result of a die toss, then

E [X ] =
1

6

6∑
i=1

i =
7

2
.

E
[
X 2
]

=
1

6

6∑
i=1

i2 =
91

6
.

Note E[X 2] 6= (E[X ])2.
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Random Variables

Example

Example: Toss a coin that shows Heads with probability p. Keep
tossing until one sees a head. Let X be the number of tosses.

Pr [X = j ] = p(1− p)j−1;

E [X ] =
∞∑
j=1

j Pr [X = j ] =
∞∑
j=1

jp(1− p)j−1 = p · 1
p2

=
1

p
.

For x < 1,

∞∑
j=1

jx j−1 =
∞∑
j=1

(x j)′ =

 ∞∑
j=1

x j

′ =

(
1

1− x
− 1

)′
=

1

(1− x)2
.
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Random Variables

Linearity of expectation

For random variables X and Y de�ned on the same probability space,
a new random variable X + Y is given by
(X + Y )(ω) = X (ω) + Y (ω) for any sample point ω.

Example: Toss two dices. Let X be the result of the �rst dice, and Y
that of the second. Then X + Y is the random variable for the sum of
the two results.

Theorem

For any collection of random variables X1, · · · ,Xn (de�ned on the same

probability space),

E

[
n∑

i=1

Xi

]
=

n∑
i=1

E [Xi ] .
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Random Variables

Diversion: Independence among random variables

De�nition

Two random variables are independent if for any i , j , the events X = i and
Y = j are independent.

Remark

Linearity of expectation does NOT need independence among the random
variables!

November 29, 2019 6 / 12



Random Variables

Examples of linearity of expectations: Guessing cards

Shu�e a deck of n distinct cards, and reveal them one by one. Before each
revelation, make a uniformly random guess. How many guesses are correct
in expectation?

Let Xi be the indicator variable for the i -th guess being correct, then
E[Xi ] = 1/n.

The total number of correct guesses is X :=
∑n

i=1
Xi . So

E[X ] =
∑n

i=1
E[Xi ] = n · 1n = 1.
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Random Variables

Guessing cards (continued)

What if in the i -th round, we guess a card uniformly at random among the
cards that haven't shown up?

Let Yi be the indicator variable for the i -th guess being correct. Then
E[Yi ] = 1

n−i+1
.

The total number of crrect guess is Y :=
∑

i Yi . So

E [Y ] =
n∑

i=1

E [Yi ] =
n∑

i=1

1

n − i + 1
=

n∑
i=1

1

i
≈ ln n.
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Random Variables
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Random Variables

Examples of linearity of expectations: Coupon collection

A co�ee shop gives you, for any puchase of co�ee, one of n di�erent
coupons uniformly at random. After you collect all n coupons, you get a
free cup. How many cups do you expect to buy before you get a free one?

Let Xi be the number of purchases we make to get the i -th coupon
after we've collected i − 1 coupons.

There are n − i + 1 unseen coupons, and the probability we see one of
them in each purchase is n−i+1

n .

E[Xi ] = n
n−i+1

(from the earlier example about tossing coins.)

Therefore the expected total number of purchases is

n∑
i=1

n

n − i + 1
= n ·

n∑
i=1

1

i
≈ n ln n.
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Random Variables

Recipe for expectation calculation

Express the quantity we are interested in as a random variable

Express the random variable as a sum of random variables whose
expectations are easy to compute

Apply linearity of expectation (without worrying about independence)!

November 29, 2019 10 / 12



Random Variables

Algorithmic application: MAX 3-SAT

MAX 3-SAT problem: Given a 3-SAT formula with n variables and m
clauses, �nd a truth assignment that satis�es as many clauses as
possible.

The problem is obviously NP-hard.

A randomzied algorithm: let each variable be TRUE with probability
1

2
, independently.

Claim

Under the uniformly random truth assignment, in expectation 7

8
m clauses

are satis�ed.
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Random Variables

MAX 3-SAT Analysis

Claim

Under the uniformly random truth assignment, in expectation 7

8
m clauses

are satis�ed.

Proof.

Let Xi be the indicator variable for the i -th clause to be satis�ed, then the
number of satis�ed clauses is

∑
i Xi .

E

[∑
i

Xi

]
=
∑
i

E [Xi ] =
m∑
i=1

Pr [clause i is satis�ed] =
7

8
m.
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