Hash Functions

- Challenge in dictionary implementation: among a large universe U of words, we need to maintain a subset S, with fast Insert, Delete, and Lookup operations (ideally in $O(1)$ time).

Hash Functions

- Challenge in dictionary implementation: among a large universe U of words, we need to maintain a subset S, with fast Insert, Delete, and Lookup operations (ideally in $O(1)$ time).
- Maintaining an array of size $|U|$ is too expensive.

Hash Functions

- Challenge in dictionary implementation: among a large universe U of words, we need to maintain a subset S, with fast Insert, Delete, and Lookup operations (ideally in $O(1)$ time).
- Maintaining an array of size $|U|$ is too expensive.
- Maintaining a linked list of size $|S|$ makes lookup too slow.

Hash Functions

- Challenge in dictionary implementation: among a large universe U of words, we need to maintain a subset S, with fast Insert, Delete, and Lookup operations (ideally in $O(1)$ time).
- Maintaining an array of size $|U|$ is too expensive.
- Maintaining a linked list of size $|S|$ makes lookup too slow.
- Hash: Maintain an array of size (roughly) $n=|S|$, and use function $h: U \rightarrow\{0,1, \ldots, n-1\}$. Ideally, we'd like $h(u) \neq h(v)$ whenever $u, v \in S$ are not equal.

Hash Functions

- Challenge in dictionary implementation: among a large universe U of words, we need to maintain a subset S, with fast Insert, Delete, and Lookup operations (ideally in $O(1)$ time).
- Maintaining an array of size $|U|$ is too expensive.
- Maintaining a linked list of size $|S|$ makes lookup too slow.
- Hash: Maintain an array of size (roughly) $n=|S|$, and use function $h: U \rightarrow\{0,1, \ldots, n-1\}$. Ideally, we'd like $h(u) \neq h(v)$ whenever $u, v \in S$ are not equal.
- No deterministic function h can work for all inputs.

Hash Functions

- Challenge in dictionary implementation: among a large universe U of words, we need to maintain a subset S, with fast Insert, Delete, and Lookup operations (ideally in $O(1)$ time).
- Maintaining an array of size $|U|$ is too expensive.
- Maintaining a linked list of size $|S|$ makes lookup too slow.
- Hash: Maintain an array of size (roughly) $n=|S|$, and use function $h: U \rightarrow\{0,1, \ldots, n-1\}$. Ideally, we'd like $h(u) \neq h(v)$ whenever $u, v \in S$ are not equal.
- No deterministic function h can work for all inputs.
- A completely random mapping has collision rate $\frac{1}{n}$, but memorizing the mapping is exactly the problem we started with!

Universal Hash Functions

- Instead of using one hash function, let's construct a family of hash functions, each of them compactly representable and efficiently computable. We then randomly one to use.

Universal Hash Functions

- Instead of using one hash function, let's construct a family of hash functions, each of them compactly representable and efficiently computable. We then randomly one to use.
- A family of hash functions \mathcal{H} is universal if for any $u, v \in U$ that are not equal, the probability that a randomly chosen $h \in \mathcal{H}$ with $h(u)=h(v)$ is at most $1 / n$.

Universal Hash Functions

- Instead of using one hash function, let's construct a family of hash functions, each of them compactly representable and efficiently computable. We then randomly one to use.
- A family of hash functions \mathcal{H} is universal if for any $u, v \in U$ that are not equal, the probability that a randomly chosen $h \in \mathcal{H}$ with $h(u)=h(v)$ is at most $1 / n$.

Lemma

Let \mathcal{H} be a universal class of hash functions mapping a universe U to $\{0,1, \ldots, n-1\}$, let $S \subseteq U$ be of size at most n, and let u be any element in U. Define X to be a random variable equal to the numbe rof elements $s \in S$ for which $h(s)=h(u)$, for a random choice of $h \in \mathcal{H}$. Then $\mathbf{E}[X] \leq 1$.

An implementation of universal hash functions

- Let p be a prime number approximately equal to n (e.g., $n \leq p \leq 2 n$.

An implementation of universal hash functions

- Let p be a prime number approximately equal to n (e.g., $n \leq p \leq 2 n$.
- Represent each element of U by a sequence $x_{1} x_{2} \ldots x_{r}$, where x_{i} is an integer from $\{0,1, \ldots, p-1\}$.

An implementation of universal hash functions

- Let p be a prime number approximately equal to n (e.g., $n \leq p \leq 2 n$.
- Represent each element of U by a sequence $x_{1} x_{2} \ldots x_{r}$, where x_{i} is an integer from $\{0,1, \ldots, p-1\}$.
- Let \mathcal{A} be $\{0,1, \ldots, p-1\}^{r}$. For each $\mathbf{a} \in \mathcal{A}$, define

$$
h_{\mathbf{a}}(\mathbf{x})=\left(\sum_{i} a_{i} x_{i}\right) \quad \bmod p, \quad \mathbf{x} \in U
$$

An implementation of universal hash functions

- Let p be a prime number approximately equal to n (e.g., $n \leq p \leq 2 n$.
- Represent each element of U by a sequence $x_{1} x_{2} \ldots x_{r}$, where x_{i} is an integer from $\{0,1, \ldots, p-1\}$.
- Let \mathcal{A} be $\{0,1, \ldots, p-1\}^{r}$. For each $\mathbf{a} \in \mathcal{A}$, define

$$
h_{\mathbf{a}}(\mathbf{x})=\left(\sum_{i} a_{i} x_{i}\right) \quad \bmod p, \quad \mathbf{x} \in U
$$

Theorem

The family $\left\{h_{\mathbf{a}}: \mathbf{a} \in \mathcal{A}\right\}$ is universal family of hash functions.

An implementation of universal hash functions

- Let p be a prime number approximately equal to n (e.g., $n \leq p \leq 2 n$.
- Represent each element of U by a sequence $x_{1} x_{2} \ldots x_{r}$, where x_{i} is an integer from $\{0,1, \ldots, p-1\}$.
- Let \mathcal{A} be $\{0,1, \ldots, p-1\}^{r}$. For each $\mathbf{a} \in \mathcal{A}$, define

$$
h_{\mathbf{a}}(\mathbf{x})=\left(\sum_{i} a_{i} x_{i}\right) \quad \bmod p, \quad \mathbf{x} \in U
$$

Theorem

The family $\left\{h_{\mathbf{a}}: \mathbf{a} \in \mathcal{A}\right\}$ is universal family of hash functions.

Lemma

For any prime p and any integer $z \neq 0 \bmod p$, and any two integers α, β, if $\alpha z=\beta z \bmod p$, then $\alpha=\beta \bmod p$.

k-wise Independent hash functions

Definition

A family \mathcal{H} of hash functions is k-wise independent if, for any $u_{1}, u_{2}, \ldots, u_{k} \in U$, and any hash values $z_{1}, \ldots, z_{k} \in\{0,1, \ldots, n-1\}$, we have

$$
\operatorname{Pr}_{h \sim \mathcal{H}}\left[h\left(u_{1}\right)=z_{1}, \ldots, h\left(u_{k}\right)=z_{k}\right]=\frac{1}{n^{k}} .
$$

k-wise Independent hash functions

Definition

A family \mathcal{H} of hash functions is k-wise independent if, for any $u_{1}, u_{2}, \ldots, u_{k} \in U$, and any hash values $z_{1}, \ldots, z_{k} \in\{0,1, \ldots, n-1\}$, we have

$$
\operatorname{Pr}_{h \sim \mathcal{H}}\left[h\left(u_{1}\right)=z_{1}, \ldots, h\left(u_{k}\right)=z_{k}\right]=\frac{1}{n^{k}} .
$$

- Depending on the context, sometimes we only require the bound to be $O\left(\frac{1}{n^{k}}\right)$.

k-wise Independent hash functions

Definition

A family \mathcal{H} of hash functions is k-wise independent if, for any $u_{1}, u_{2}, \ldots, u_{k} \in U$, and any hash values $z_{1}, \ldots, z_{k} \in\{0,1, \ldots, n-1\}$, we have

$$
\operatorname{Pr}_{h \sim \mathcal{H}}\left[h\left(u_{1}\right)=z_{1}, \ldots, h\left(u_{k}\right)=z_{k}\right]=\frac{1}{n^{k}} .
$$

- Depending on the context, sometimes we only require the bound to be $O\left(\frac{1}{n^{k}}\right)$.
- Pairwise independence is sometimes known as strong universality.

k-wise Independent hash functions

Definition

A family \mathcal{H} of hash functions is k-wise independent if, for any $u_{1}, u_{2}, \ldots, u_{k} \in U$, and any hash values $z_{1}, \ldots, z_{k} \in\{0,1, \ldots, n-1\}$, we have

$$
\operatorname{Pr}_{h \sim \mathcal{H}}\left[h\left(u_{1}\right)=z_{1}, \ldots, h\left(u_{k}\right)=z_{k}\right]=\frac{1}{n^{k}} .
$$

- Depending on the context, sometimes we only require the bound to be $O\left(\frac{1}{n^{k}}\right)$.
- Pairwise independence is sometimes known as strong universality.

Bloom filters

- Scenario: web caching.

Bloom filters

- Scenario: web caching.
- Operations we'd like to support:
- Insert
- Lookup: One-sided fault tolerant: if the page is in the cache, we should answer "yes"; if the page is in the cache, we should answer "no" with good probability.

Bloom filters

- Scenario: web caching.
- Operations we'd like to support:
- Insert
- Lookup: One-sided fault tolerant: if the page is in the cache, we should answer "yes"; if the page is in the cache, we should answer "no" with good probability.
- (This is not an operation but a desired property): the data structure should be (much) smaller than the dictionary so we can easily send it around.

Bloom filters

- Scenario: web caching.
- Operations we'd like to support:
- Insert
- Lookup: One-sided fault tolerant: if the page is in the cache, we should answer "yes"; if the page is in the cache, we should answer "no" with good probability.
- (This is not an operation but a desired property): the data structure should be (much) smaller than the dictionary so we can easily send it around.
- Operations we do not need to support:
- Retrieve the entry associated with a given key value.

Bloom filters

- Scenario: web caching.
- Operations we'd like to support:
- Insert
- Lookup: One-sided fault tolerant: if the page is in the cache, we should answer "yes"; if the page is in the cache, we should answer "no" with good probability.
- (This is not an operation but a desired property): the data structure should be (much) smaller than the dictionary so we can easily send it around.
- Operations we do not need to support:
- Retrieve the entry associated with a given key value.
- Solution: Bloom filter (Burton Bloom, 1970)

Bloom filters

- Scenario: web caching.
- Operations we'd like to support:
- Insert
- Lookup: One-sided fault tolerant: if the page is in the cache, we should answer "yes"; if the page is in the cache, we should answer "no" with good probability.
- (This is not an operation but a desired property): the data structure should be (much) smaller than the dictionary so we can easily send it around.
- Operations we do not need to support:
- Retrieve the entry associated with a given key value.
- Solution: Bloom filter (Burton Bloom, 1970)
- Another application: web browser cache for email contact list

Bloom Filter: Implementation

- Set up a bit vector B of length m (we will decide m later; think of it as $O(n)$); let h_{1}, \ldots, h_{k} be hash functions, which we think of as independent random functions mapping U to $\{0,1, \ldots, m\}$.

Bloom Filter: Implementation

- Set up a bit vector B of length m (we will decide m later; think of it as $O(n)$); let h_{1}, \ldots, h_{k} be hash functions, which we think of as independent random functions mapping U to $\{0,1, \ldots, m\}$.
- Insert $u \in U$: set $B\left[h_{1}(u)\right]=B\left[h_{2}(u)\right]=\cdots=B\left[h_{k}(u)\right]=1$.

Bloom Filter: Implementation

- Set up a bit vector B of length m (we will decide m later; think of it as $O(n)$); let h_{1}, \ldots, h_{k} be hash functions, which we think of as independent random functions mapping U to $\{0,1, \ldots, m\}$.
- Insert $u \in U$: set $B\left[h_{1}(u)\right]=B\left[h_{2}(u)\right]=\cdots=B\left[h_{k}(u)\right]=1$.
- Query if u is in the set: If $B\left[h_{1}(u)\right]=\cdots=B\left[h_{k}(u)\right]=1$, answer "yes" else answer "no"

Bloom Filter: Implementation

- Set up a bit vector B of length m (we will decide m later; think of it as $O(n)$); let h_{1}, \ldots, h_{k} be hash functions, which we think of as independent random functions mapping U to $\{0,1, \ldots, m\}$.
- Insert $u \in U$: set $B\left[h_{1}(u)\right]=B\left[h_{2}(u)\right]=\cdots=B\left[h_{k}(u)\right]=1$.
- Query if u is in the set: If $B\left[h_{1}(u)\right]=\cdots=B\left[h_{k}(u)\right]=1$, answer "yes" else answer "no"
- If u is in the set, we obviously always answer "yes"

Bloom Filter: Implementation

- Set up a bit vector B of length m (we will decide m later; think of it as $O(n)$); let h_{1}, \ldots, h_{k} be hash functions, which we think of as independent random functions mapping U to $\{0,1, \ldots, m\}$.
- Insert $u \in U$: set $B\left[h_{1}(u)\right]=B\left[h_{2}(u)\right]=\cdots=B\left[h_{k}(u)\right]=1$.
- Query if u is in the set: If $B\left[h_{1}(u)\right]=\cdots=B\left[h_{k}(u)\right]=1$, answer "yes" else answer "no"
- If u is in the set, we obviously always answer "yes"
- If u is not in the set, what is the probability we answer "yes"?

Bloom Filter: Analysis

- If u is not in the set, what is the probability we answer "yes"?

Bloom Filter: Analysis

- If u is not in the set, what is the probability we answer "yes"?

We need to bound the probability of the following "bad event": given a word $u \notin S, h_{1}(u)=h_{j_{1}}\left(u_{1}\right), \cdots, h_{k}(u)=h_{j_{k}}\left(u_{k}\right)$ for $u_{1}, \ldots, u_{k} \in S$, and $j_{1}, \ldots, j_{k} \in\{1,2, \cdots, k\}$.

Bloom Filter: Analysis

- If u is not in the set, what is the probability we answer "yes"?

We need to bound the probability of the following "bad event": given a word $u \notin S, h_{1}(u)=h_{j_{1}}\left(u_{1}\right), \cdots, h_{k}(u)=h_{j_{k}}\left(u_{k}\right)$ for $u_{1}, \ldots, u_{k} \in S$, and $j_{1}, \ldots, j_{k} \in\{1,2, \cdots, k\}$.
Let E_{i} denote the event that there eixts $u_{i} \in S$ and $j_{i} \in\{1, \cdots, k\}$ such that $h_{i}(u)=h_{j_{i}}\left(u_{i}\right)$. Then we need to bound $\operatorname{Pr}\left[E_{1} \cap E_{2} \cdots \cap E_{k}\right]$.

Bloom Filter: Analysis

- If u is not in the set, what is the probability we answer "yes"?

We need to bound the probability of the following "bad event": given a word $u \notin S, h_{1}(u)=h_{j_{1}}\left(u_{1}\right), \cdots, h_{k}(u)=h_{j_{k}}\left(u_{k}\right)$ for $u_{1}, \ldots, u_{k} \in S$, and $j_{1}, \ldots, j_{k} \in\{1,2, \cdots, k\}$.
Let E_{i} denote the event that there eixts $u_{i} \in S$ and $j_{i} \in\{1, \cdots, k\}$ such that $h_{i}(u)=h_{j_{i}}\left(u_{i}\right)$. Then we need to bound $\operatorname{Pr}\left[E_{1} \cap E_{2} \cdots \cap E_{k}\right]$. For a particular hash value $z \in\{0,1, \ldots, m\}$, and any word u in our set S, and a hash function h_{i},

$$
\operatorname{Pr}\left[h_{i}(u) \neq z\right]=1-\frac{1}{m}
$$

Bloom Filter: Analysis

- If u is not in the set, what is the probability we answer "yes"?

We need to bound the probability of the following "bad event": given a word $u \notin S, h_{1}(u)=h_{j_{1}}\left(u_{1}\right), \cdots, h_{k}(u)=h_{j_{k}}\left(u_{k}\right)$ for $u_{1}, \ldots, u_{k} \in S$, and $j_{1}, \ldots, j_{k} \in\{1,2, \cdots, k\}$.
Let E_{i} denote the event that there eixts $u_{i} \in S$ and $j_{i} \in\{1, \cdots, k\}$ such that $h_{i}(u)=h_{j_{i}}\left(u_{i}\right)$. Then we need to bound $\operatorname{Pr}\left[E_{1} \cap E_{2} \cdots \cap E_{k}\right]$. For a particular hash value $z \in\{0,1, \ldots, m\}$, and any word u in our set S, and a hash function h_{i},

$$
\operatorname{Pr}\left[h_{i}(u) \neq z\right]=1-\frac{1}{m}
$$

For $z \in\{0,1, \ldots, m\}$, the probability that none of the words in S are mapped to z by any of the k hash functions is

$$
\left(1-\frac{1}{m}\right)^{k n}
$$

Bloom Filter: Analysis continued

- If u is not in the set, what is the probability we answer "yes"? Let E_{i} denote the event that there eixts $u_{i} \in S$ and $j_{i} \in\{1, \cdots, k\}$ such that $h_{i}(u)=h_{j i}\left(u_{i}\right)$. Then we need to bound $\operatorname{Pr}\left[E_{1} \cap E_{2} \cdots \cap E_{k}\right]$.

Bloom Filter: Analysis continued

- If u is not in the set, what is the probability we answer "yes"? Let E_{i} denote the event that there eixts $u_{i} \in S$ and $j_{i} \in\{1, \cdots, k\}$ such that $h_{i}(u)=h_{j i}\left(u_{i}\right)$. Then we need to bound $\operatorname{Pr}\left[E_{1} \cap E_{2} \cdots \cap E_{k}\right]$. Therefore

$$
\operatorname{Pr}\left[E_{i}\right]=1-\left(1-\frac{1}{m}\right)^{k n}
$$

Bloom Filter: Analysis continued

- If u is not in the set, what is the probability we answer "yes"? Let E_{i} denote the event that there eixts $u_{i} \in S$ and $j_{i} \in\{1, \cdots, k\}$ such that $h_{i}(u)=h_{j i}\left(u_{i}\right)$. Then we need to bound $\operatorname{Pr}\left[E_{1} \cap E_{2} \cdots \cap E_{k}\right]$. Therefore

$$
\operatorname{Pr}\left[E_{i}\right]=1-\left(1-\frac{1}{m}\right)^{k n}
$$

Since the events are negatively correlated,

$$
\operatorname{Pr}\left[\cap_{i} E_{i}\right] \leq\left[1-\left(1-\frac{1}{m}\right)^{k n}\right]^{k} \approx\left(1-e^{-k n / m}\right)^{k}
$$

Bloom Filter: Analysis continued

- If u is not in the set, what is the probability we answer "yes"? Let E_{i} denote the event that there eixts $u_{i} \in S$ and $j_{i} \in\{1, \cdots, k\}$ such that $h_{i}(u)=h_{j_{i}}\left(u_{i}\right)$. Then we need to bound $\operatorname{Pr}\left[E_{1} \cap E_{2} \cdots \cap E_{k}\right]$. Therefore

$$
\operatorname{Pr}\left[E_{i}\right]=1-\left(1-\frac{1}{m}\right)^{k n}
$$

Since the events are negatively correlated,

$$
\operatorname{Pr}\left[\cap_{i} E_{i}\right] \leq\left[1-\left(1-\frac{1}{m}\right)^{k n}\right]^{k} \approx\left(1-e^{-k n / m}\right)^{k}
$$

This is the probability of a false positive, and we would like to minimize this. Taking the derivative of the logarithm of this quantity, we get $k=\ln 2 \cdot \frac{m}{n}$; when using this value of k, the false positive rate is

$$
\left(\frac{1}{2}\right)^{k}=(0.6185)^{\frac{m}{n}}
$$

