Hash Functions
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@ Challenge in dictionary implementation: among a large universe U of
words, we need to maintain a subset S, with fast Insert, Delete, and
Lookup operations (ideally in O(1) time).

e Maintaining an array of size |U| is too expensive.

e Maintaining a linked list of size |S| makes lookup too slow.

e Hash: Maintain an array of size (roughly) n = |S|, and use function
h:U—{0,1,...,n—1}. Ideally, we'd like h(u) # h(v) whenever
u,v € S are not equal.

@ No deterministic function h can work for all inputs.

@ A completely random mapping has collision rate % but memorizing
the mapping is exactly the problem we started with!

March 29, 2018 1/8



Universal Hash Functions

@ Instead of using one hash function, let's construct a family of hash
functions, each of them compactly representable and efficiently
computable. We then randomly one to use.
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Universal Hash Functions

@ Instead of using one hash function, let's construct a family of hash
functions, each of them compactly representable and efficiently
computable. We then randomly one to use.

o A family of hash functions H is universal if for any u, v € U that are

not equal, the probability that a randomly chosen h € ‘H with
h(u) = h(v) is at most 1/n.

Let H be a universal class of hash functions mapping a universe U to
{0,1,...,n—1}, let S C U be of size at most n, and let u be any element
in U. Define X to be a random variable equal to the numbe rof elements
s € S for which h(s) = h(u), for a random choice of h € H. Then

E[X] <1
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An implementation of universal hash functions

@ Let p be a prime number approximately equal to n (e.g., n < p < 2n.

@ Represent each element of U by a sequence x;x> ... x,, where x; is an
integer from {0,1,...,p—1}.
o Let A be {0,1,...,p—1}". For each a € A, define

ha(x) = (Z a,-x,-) mod p, x¢€ U.

The family {h, : a € A} is universal family of hash functions.

For any prime p and any integer z £ 0 mod p, and any two integers «, (3,
if oz = z mod p, then o = 3 mod p.
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k-wise Independent hash functions

A family H of hash functions is k-wise independent if, for any
Ui, Uz, ..., ux € U, and any hash values z;,...,z, € {0,1,...,n— 1}, we
have
1
Prics [h(w) = 21, h(u) = 2] = -
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@ Scenario: web caching.
@ Operations we'd like to support:

o Insert

o Lookup: One-sided fault tolerant: if the page is in the cache, we should
answer "yes"; if the page is in the cache, we should answer "no" with
good probability.

o (This is not an operation but a desired property): the data structure
should be (much) smaller than the dictionary so we can easily send it
around.

@ Operations we do not need to support:
o Retrieve the entry associated with a given key value.

@ Solution: Bloom filter (Burton Bloom, 1970)

@ Another application: web browser cache for email contact list
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Bloom Filter: Implementation

@ Set up a bit vector B of length m (we will decide m later; think of it
as O(n)); let hy, ..., hy be hash functions, which we think of as
independent random functions mapping U to {0,1,..., m}.
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We need to bound the probability of the following “bad event”: given a
word u ¢ S, hi(u) = hj(u1),- -, hi(u) = hj (uk) for ur,...,ur €S, and
J1y---5Jk € {1,2,”- ,k}.

Let E; denote the event that there eixts u; € S and j; € {1,--- , k} such
that hi(u) = hj(u;). Then we need to bound Pr[Ey N E>--- N E].

For a particular hash value z € {0,1,..., m}, and any word u in our set S,
and a hash function h;,

Prhi(u) £ 2] =1 — %;

For z € {0,1,..., m}, the probability that none of the words in S are
mapped to z by any of the k hash functions is

-4
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Bloom Filter: Analysis continued

@ If uis not in the set, what is the probability we answer "yes"?

Let E; denote the event that there eixts u; € S and j; € {1,--- , k} such
that hj(u) = hj(u;). Then we need to bound Pr[E; N Ey--- N Eg].
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Bloom Filter: Analysis continued

@ If uis not in the set, what is the probability we answer "yes"?

Let E; denote the event that there eixts u; € S and j; € {1,--- , k} such
that hj(u) = hj(u;). Then we need to bound Pr[E; N Ey--- N Eg].

Therefore
1 kn
Pr[E,']:l— <1—>
m

Since the events are negatively correlated,

Pr[NiE] < [1 - (1 B rln)k] k . (1 B e,kn/my'

This is the probability of a false positive, and we would like to minimize
this. Taking the derivative of the logarithm of this quantity, we get
k =In2 - when using this value of k, the false positive rate is
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