
Hash Functions

Challenge in dictionary implementation: among a large universe U of

words, we need to maintain a subset S , with fast Insert, Delete, and

Lookup operations (ideally in O(1) time).

Maintaining an array of size |U| is too expensive.

Maintaining a linked list of size |S | makes lookup too slow.

Hash: Maintain an array of size (roughly) n = |S |, and use function

h : U → {0, 1, . . . , n − 1}. Ideally, we'd like h(u) 6= h(v) whenever
u, v ∈ S are not equal.

No deterministic function h can work for all inputs.

A completely random mapping has collision rate 1

n , but memorizing

the mapping is exactly the problem we started with!

March 29, 2018 1 / 8

Hash Functions

Challenge in dictionary implementation: among a large universe U of

words, we need to maintain a subset S , with fast Insert, Delete, and

Lookup operations (ideally in O(1) time).

Maintaining an array of size |U| is too expensive.

Maintaining a linked list of size |S | makes lookup too slow.

Hash: Maintain an array of size (roughly) n = |S |, and use function

h : U → {0, 1, . . . , n − 1}. Ideally, we'd like h(u) 6= h(v) whenever
u, v ∈ S are not equal.

No deterministic function h can work for all inputs.

A completely random mapping has collision rate 1

n , but memorizing

the mapping is exactly the problem we started with!

March 29, 2018 1 / 8

Hash Functions

Challenge in dictionary implementation: among a large universe U of

words, we need to maintain a subset S , with fast Insert, Delete, and

Lookup operations (ideally in O(1) time).

Maintaining an array of size |U| is too expensive.

Maintaining a linked list of size |S | makes lookup too slow.

Hash: Maintain an array of size (roughly) n = |S |, and use function

h : U → {0, 1, . . . , n − 1}. Ideally, we'd like h(u) 6= h(v) whenever
u, v ∈ S are not equal.

No deterministic function h can work for all inputs.

A completely random mapping has collision rate 1

n , but memorizing

the mapping is exactly the problem we started with!

March 29, 2018 1 / 8

Hash Functions

Challenge in dictionary implementation: among a large universe U of

words, we need to maintain a subset S , with fast Insert, Delete, and

Lookup operations (ideally in O(1) time).

Maintaining an array of size |U| is too expensive.

Maintaining a linked list of size |S | makes lookup too slow.

Hash: Maintain an array of size (roughly) n = |S |, and use function

h : U → {0, 1, . . . , n − 1}. Ideally, we'd like h(u) 6= h(v) whenever
u, v ∈ S are not equal.

No deterministic function h can work for all inputs.

A completely random mapping has collision rate 1

n , but memorizing

the mapping is exactly the problem we started with!

March 29, 2018 1 / 8

Hash Functions

Challenge in dictionary implementation: among a large universe U of

words, we need to maintain a subset S , with fast Insert, Delete, and

Lookup operations (ideally in O(1) time).

Maintaining an array of size |U| is too expensive.

Maintaining a linked list of size |S | makes lookup too slow.

Hash: Maintain an array of size (roughly) n = |S |, and use function

h : U → {0, 1, . . . , n − 1}. Ideally, we'd like h(u) 6= h(v) whenever
u, v ∈ S are not equal.

No deterministic function h can work for all inputs.

A completely random mapping has collision rate 1

n , but memorizing

the mapping is exactly the problem we started with!

March 29, 2018 1 / 8

Hash Functions

Challenge in dictionary implementation: among a large universe U of

words, we need to maintain a subset S , with fast Insert, Delete, and

Lookup operations (ideally in O(1) time).

Maintaining an array of size |U| is too expensive.

Maintaining a linked list of size |S | makes lookup too slow.

Hash: Maintain an array of size (roughly) n = |S |, and use function

h : U → {0, 1, . . . , n − 1}. Ideally, we'd like h(u) 6= h(v) whenever
u, v ∈ S are not equal.

No deterministic function h can work for all inputs.

A completely random mapping has collision rate 1

n , but memorizing

the mapping is exactly the problem we started with!

March 29, 2018 1 / 8

Universal Hash Functions

Instead of using one hash function, let's construct a family of hash

functions, each of them compactly representable and e�ciently

computable. We then randomly one to use.

A family of hash functions H is universal if for any u, v ∈ U that are

not equal, the probability that a randomly chosen h ∈ H with

h(u) = h(v) is at most 1/n.

Lemma

Let H be a universal class of hash functions mapping a universe U to

{0, 1, . . . , n − 1}, let S ⊆ U be of size at most n, and let u be any element

in U. De�ne X to be a random variable equal to the numbe rof elements

s ∈ S for which h(s) = h(u), for a random choice of h ∈ H. Then

E[X] ≤ 1.

March 29, 2018 2 / 8

Universal Hash Functions

Instead of using one hash function, let's construct a family of hash

functions, each of them compactly representable and e�ciently

computable. We then randomly one to use.

A family of hash functions H is universal if for any u, v ∈ U that are

not equal, the probability that a randomly chosen h ∈ H with

h(u) = h(v) is at most 1/n.

Lemma

Let H be a universal class of hash functions mapping a universe U to

{0, 1, . . . , n − 1}, let S ⊆ U be of size at most n, and let u be any element

in U. De�ne X to be a random variable equal to the numbe rof elements

s ∈ S for which h(s) = h(u), for a random choice of h ∈ H. Then

E[X] ≤ 1.

March 29, 2018 2 / 8

Universal Hash Functions

Instead of using one hash function, let's construct a family of hash

functions, each of them compactly representable and e�ciently

computable. We then randomly one to use.

A family of hash functions H is universal if for any u, v ∈ U that are

not equal, the probability that a randomly chosen h ∈ H with

h(u) = h(v) is at most 1/n.

Lemma

Let H be a universal class of hash functions mapping a universe U to

{0, 1, . . . , n − 1}, let S ⊆ U be of size at most n, and let u be any element

in U. De�ne X to be a random variable equal to the numbe rof elements

s ∈ S for which h(s) = h(u), for a random choice of h ∈ H. Then

E[X] ≤ 1.

March 29, 2018 2 / 8

An implementation of universal hash functions

Let p be a prime number approximately equal to n (e.g., n ≤ p ≤ 2n.

Represent each element of U by a sequence x1x2 . . . xr , where xi is an
integer from {0, 1, . . . , p − 1}.
Let A be {0, 1, . . . , p − 1}r . For each a ∈ A, de�ne

ha(x) =

(∑
i

aixi

)
mod p, x ∈ U.

Theorem

The family {ha : a ∈ A} is universal family of hash functions.

Lemma

For any prime p and any integer z 6= 0 mod p, and any two integers α, β,
if αz = βz mod p, then α = β mod p.

March 29, 2018 3 / 8

An implementation of universal hash functions

Let p be a prime number approximately equal to n (e.g., n ≤ p ≤ 2n.

Represent each element of U by a sequence x1x2 . . . xr , where xi is an
integer from {0, 1, . . . , p − 1}.

Let A be {0, 1, . . . , p − 1}r . For each a ∈ A, de�ne

ha(x) =

(∑
i

aixi

)
mod p, x ∈ U.

Theorem

The family {ha : a ∈ A} is universal family of hash functions.

Lemma

For any prime p and any integer z 6= 0 mod p, and any two integers α, β,
if αz = βz mod p, then α = β mod p.

March 29, 2018 3 / 8

An implementation of universal hash functions

Let p be a prime number approximately equal to n (e.g., n ≤ p ≤ 2n.

Represent each element of U by a sequence x1x2 . . . xr , where xi is an
integer from {0, 1, . . . , p − 1}.
Let A be {0, 1, . . . , p − 1}r . For each a ∈ A, de�ne

ha(x) =

(∑
i

aixi

)
mod p, x ∈ U.

Theorem

The family {ha : a ∈ A} is universal family of hash functions.

Lemma

For any prime p and any integer z 6= 0 mod p, and any two integers α, β,
if αz = βz mod p, then α = β mod p.

March 29, 2018 3 / 8

An implementation of universal hash functions

Let p be a prime number approximately equal to n (e.g., n ≤ p ≤ 2n.

Represent each element of U by a sequence x1x2 . . . xr , where xi is an
integer from {0, 1, . . . , p − 1}.
Let A be {0, 1, . . . , p − 1}r . For each a ∈ A, de�ne

ha(x) =

(∑
i

aixi

)
mod p, x ∈ U.

Theorem

The family {ha : a ∈ A} is universal family of hash functions.

Lemma

For any prime p and any integer z 6= 0 mod p, and any two integers α, β,
if αz = βz mod p, then α = β mod p.

March 29, 2018 3 / 8

An implementation of universal hash functions

Let p be a prime number approximately equal to n (e.g., n ≤ p ≤ 2n.

Represent each element of U by a sequence x1x2 . . . xr , where xi is an
integer from {0, 1, . . . , p − 1}.
Let A be {0, 1, . . . , p − 1}r . For each a ∈ A, de�ne

ha(x) =

(∑
i

aixi

)
mod p, x ∈ U.

Theorem

The family {ha : a ∈ A} is universal family of hash functions.

Lemma

For any prime p and any integer z 6= 0 mod p, and any two integers α, β,
if αz = βz mod p, then α = β mod p.

March 29, 2018 3 / 8

k-wise Independent hash functions

De�nition

A family H of hash functions is k-wise independent if, for any

u1, u2, . . . , uk ∈ U, and any hash values z1, . . . , zk ∈ {0, 1, . . . , n − 1}, we
have

Prh∼H [h(u1) = z1, . . . , h(uk) = zk] =
1

nk
.

Depending on the context, sometimes we only require the bound to be

O(1

nk
).

Pairwise independence is sometimes known as strong universality.

March 29, 2018 4 / 8

k-wise Independent hash functions

De�nition

A family H of hash functions is k-wise independent if, for any

u1, u2, . . . , uk ∈ U, and any hash values z1, . . . , zk ∈ {0, 1, . . . , n − 1}, we
have

Prh∼H [h(u1) = z1, . . . , h(uk) = zk] =
1

nk
.

Depending on the context, sometimes we only require the bound to be

O(1

nk
).

Pairwise independence is sometimes known as strong universality.

March 29, 2018 4 / 8

k-wise Independent hash functions

De�nition

A family H of hash functions is k-wise independent if, for any

u1, u2, . . . , uk ∈ U, and any hash values z1, . . . , zk ∈ {0, 1, . . . , n − 1}, we
have

Prh∼H [h(u1) = z1, . . . , h(uk) = zk] =
1

nk
.

Depending on the context, sometimes we only require the bound to be

O(1

nk
).

Pairwise independence is sometimes known as strong universality.

March 29, 2018 4 / 8

k-wise Independent hash functions

De�nition

A family H of hash functions is k-wise independent if, for any

u1, u2, . . . , uk ∈ U, and any hash values z1, . . . , zk ∈ {0, 1, . . . , n − 1}, we
have

Prh∼H [h(u1) = z1, . . . , h(uk) = zk] =
1

nk
.

Depending on the context, sometimes we only require the bound to be

O(1

nk
).

Pairwise independence is sometimes known as strong universality.

March 29, 2018 4 / 8

Bloom �lters

Scenario: web caching.

Operations we'd like to support:

Insert
Lookup: One-sided fault tolerant: if the page is in the cache, we should
answer "yes"; if the page is in the cache, we should answer "no" with
good probability.
(This is not an operation but a desired property): the data structure
should be (much) smaller than the dictionary so we can easily send it
around.

Operations we do not need to support:

Retrieve the entry associated with a given key value.

Solution: Bloom �lter (Burton Bloom, 1970)

Another application: web browser cache for email contact list

March 29, 2018 5 / 8

Bloom �lters

Scenario: web caching.

Operations we'd like to support:

Insert
Lookup: One-sided fault tolerant: if the page is in the cache, we should
answer "yes"; if the page is in the cache, we should answer "no" with
good probability.

(This is not an operation but a desired property): the data structure
should be (much) smaller than the dictionary so we can easily send it
around.

Operations we do not need to support:

Retrieve the entry associated with a given key value.

Solution: Bloom �lter (Burton Bloom, 1970)

Another application: web browser cache for email contact list

March 29, 2018 5 / 8

Bloom �lters

Scenario: web caching.

Operations we'd like to support:

Insert
Lookup: One-sided fault tolerant: if the page is in the cache, we should
answer "yes"; if the page is in the cache, we should answer "no" with
good probability.
(This is not an operation but a desired property): the data structure
should be (much) smaller than the dictionary so we can easily send it
around.

Operations we do not need to support:

Retrieve the entry associated with a given key value.

Solution: Bloom �lter (Burton Bloom, 1970)

Another application: web browser cache for email contact list

March 29, 2018 5 / 8

Bloom �lters

Scenario: web caching.

Operations we'd like to support:

Insert
Lookup: One-sided fault tolerant: if the page is in the cache, we should
answer "yes"; if the page is in the cache, we should answer "no" with
good probability.
(This is not an operation but a desired property): the data structure
should be (much) smaller than the dictionary so we can easily send it
around.

Operations we do not need to support:

Retrieve the entry associated with a given key value.

Solution: Bloom �lter (Burton Bloom, 1970)

Another application: web browser cache for email contact list

March 29, 2018 5 / 8

Bloom �lters

Scenario: web caching.

Operations we'd like to support:

Insert
Lookup: One-sided fault tolerant: if the page is in the cache, we should
answer "yes"; if the page is in the cache, we should answer "no" with
good probability.
(This is not an operation but a desired property): the data structure
should be (much) smaller than the dictionary so we can easily send it
around.

Operations we do not need to support:

Retrieve the entry associated with a given key value.

Solution: Bloom �lter (Burton Bloom, 1970)

Another application: web browser cache for email contact list

March 29, 2018 5 / 8

Bloom �lters

Scenario: web caching.

Operations we'd like to support:

Insert
Lookup: One-sided fault tolerant: if the page is in the cache, we should
answer "yes"; if the page is in the cache, we should answer "no" with
good probability.
(This is not an operation but a desired property): the data structure
should be (much) smaller than the dictionary so we can easily send it
around.

Operations we do not need to support:

Retrieve the entry associated with a given key value.

Solution: Bloom �lter (Burton Bloom, 1970)

Another application: web browser cache for email contact list

March 29, 2018 5 / 8

Bloom Filter: Implementation

Set up a bit vector B of length m (we will decide m later; think of it

as O(n)); let h1, . . . , hk be hash functions, which we think of as

independent random functions mapping U to {0, 1, . . . ,m}.

Insert u ∈ U: set B[h1(u)] = B[h2(u)] = · · · = B[hk(u)] = 1.

Query if u is in the set: If B[h1(u)] = · · · = B[hk(u)] = 1, answer

"yes" else answer "no"

If u is in the set, we obviously always answer "yes"

If u is not in the set, what is the probability we answer "yes"?

March 29, 2018 6 / 8

Bloom Filter: Implementation

Set up a bit vector B of length m (we will decide m later; think of it

as O(n)); let h1, . . . , hk be hash functions, which we think of as

independent random functions mapping U to {0, 1, . . . ,m}.
Insert u ∈ U: set B[h1(u)] = B[h2(u)] = · · · = B[hk(u)] = 1.

Query if u is in the set: If B[h1(u)] = · · · = B[hk(u)] = 1, answer

"yes" else answer "no"

If u is in the set, we obviously always answer "yes"

If u is not in the set, what is the probability we answer "yes"?

March 29, 2018 6 / 8

Bloom Filter: Implementation

Set up a bit vector B of length m (we will decide m later; think of it

as O(n)); let h1, . . . , hk be hash functions, which we think of as

independent random functions mapping U to {0, 1, . . . ,m}.
Insert u ∈ U: set B[h1(u)] = B[h2(u)] = · · · = B[hk(u)] = 1.

Query if u is in the set: If B[h1(u)] = · · · = B[hk(u)] = 1, answer

"yes" else answer "no"

If u is in the set, we obviously always answer "yes"

If u is not in the set, what is the probability we answer "yes"?

March 29, 2018 6 / 8

Bloom Filter: Implementation

Set up a bit vector B of length m (we will decide m later; think of it

as O(n)); let h1, . . . , hk be hash functions, which we think of as

independent random functions mapping U to {0, 1, . . . ,m}.
Insert u ∈ U: set B[h1(u)] = B[h2(u)] = · · · = B[hk(u)] = 1.

Query if u is in the set: If B[h1(u)] = · · · = B[hk(u)] = 1, answer

"yes" else answer "no"

If u is in the set, we obviously always answer "yes"

If u is not in the set, what is the probability we answer "yes"?

March 29, 2018 6 / 8

Bloom Filter: Implementation

Set up a bit vector B of length m (we will decide m later; think of it

as O(n)); let h1, . . . , hk be hash functions, which we think of as

independent random functions mapping U to {0, 1, . . . ,m}.
Insert u ∈ U: set B[h1(u)] = B[h2(u)] = · · · = B[hk(u)] = 1.

Query if u is in the set: If B[h1(u)] = · · · = B[hk(u)] = 1, answer

"yes" else answer "no"

If u is in the set, we obviously always answer "yes"

If u is not in the set, what is the probability we answer "yes"?

March 29, 2018 6 / 8

Bloom Filter: Analysis

If u is not in the set, what is the probability we answer "yes"?

We need to bound the probability of the following �bad event�: given a

word u /∈ S , h1(u) = hj1(u1), · · · , hk(u) = hjk (uk) for u1, . . . , uk ∈ S , and
j1, . . . , jk ∈ {1, 2, · · · , k}.
Let Ei denote the event that there eixts ui ∈ S and ji ∈ {1, · · · , k} such
that hi (u) = hji (ui). Then we need to bound Pr[E1 ∩ E2 · · · ∩ Ek].
For a particular hash value z ∈ {0, 1, . . . ,m}, and any word u in our set S ,
and a hash function hi ,

Pr [hi (u) 6= z] = 1− 1

m
;

For z ∈ {0, 1, . . . ,m}, the probability that none of the words in S are

mapped to z by any of the k hash functions is(
1− 1

m

)kn

.

March 29, 2018 7 / 8

Bloom Filter: Analysis

If u is not in the set, what is the probability we answer "yes"?

We need to bound the probability of the following �bad event�: given a

word u /∈ S , h1(u) = hj1(u1), · · · , hk(u) = hjk (uk) for u1, . . . , uk ∈ S , and
j1, . . . , jk ∈ {1, 2, · · · , k}.

Let Ei denote the event that there eixts ui ∈ S and ji ∈ {1, · · · , k} such
that hi (u) = hji (ui). Then we need to bound Pr[E1 ∩ E2 · · · ∩ Ek].
For a particular hash value z ∈ {0, 1, . . . ,m}, and any word u in our set S ,
and a hash function hi ,

Pr [hi (u) 6= z] = 1− 1

m
;

For z ∈ {0, 1, . . . ,m}, the probability that none of the words in S are

mapped to z by any of the k hash functions is(
1− 1

m

)kn

.

March 29, 2018 7 / 8

Bloom Filter: Analysis

If u is not in the set, what is the probability we answer "yes"?

We need to bound the probability of the following �bad event�: given a

word u /∈ S , h1(u) = hj1(u1), · · · , hk(u) = hjk (uk) for u1, . . . , uk ∈ S , and
j1, . . . , jk ∈ {1, 2, · · · , k}.
Let Ei denote the event that there eixts ui ∈ S and ji ∈ {1, · · · , k} such
that hi (u) = hji (ui). Then we need to bound Pr[E1 ∩ E2 · · · ∩ Ek].

For a particular hash value z ∈ {0, 1, . . . ,m}, and any word u in our set S ,
and a hash function hi ,

Pr [hi (u) 6= z] = 1− 1

m
;

For z ∈ {0, 1, . . . ,m}, the probability that none of the words in S are

mapped to z by any of the k hash functions is(
1− 1

m

)kn

.

March 29, 2018 7 / 8

Bloom Filter: Analysis

If u is not in the set, what is the probability we answer "yes"?

We need to bound the probability of the following �bad event�: given a

word u /∈ S , h1(u) = hj1(u1), · · · , hk(u) = hjk (uk) for u1, . . . , uk ∈ S , and
j1, . . . , jk ∈ {1, 2, · · · , k}.
Let Ei denote the event that there eixts ui ∈ S and ji ∈ {1, · · · , k} such
that hi (u) = hji (ui). Then we need to bound Pr[E1 ∩ E2 · · · ∩ Ek].
For a particular hash value z ∈ {0, 1, . . . ,m}, and any word u in our set S ,
and a hash function hi ,

Pr [hi (u) 6= z] = 1− 1

m
;

For z ∈ {0, 1, . . . ,m}, the probability that none of the words in S are

mapped to z by any of the k hash functions is(
1− 1

m

)kn

.

March 29, 2018 7 / 8

Bloom Filter: Analysis

If u is not in the set, what is the probability we answer "yes"?

We need to bound the probability of the following �bad event�: given a

word u /∈ S , h1(u) = hj1(u1), · · · , hk(u) = hjk (uk) for u1, . . . , uk ∈ S , and
j1, . . . , jk ∈ {1, 2, · · · , k}.
Let Ei denote the event that there eixts ui ∈ S and ji ∈ {1, · · · , k} such
that hi (u) = hji (ui). Then we need to bound Pr[E1 ∩ E2 · · · ∩ Ek].
For a particular hash value z ∈ {0, 1, . . . ,m}, and any word u in our set S ,
and a hash function hi ,

Pr [hi (u) 6= z] = 1− 1

m
;

For z ∈ {0, 1, . . . ,m}, the probability that none of the words in S are

mapped to z by any of the k hash functions is(
1− 1

m

)kn

.

March 29, 2018 7 / 8

Bloom Filter: Analysis continued

If u is not in the set, what is the probability we answer "yes"?

Let Ei denote the event that there eixts ui ∈ S and ji ∈ {1, · · · , k} such
that hi (u) = hji (ui). Then we need to bound Pr[E1 ∩ E2 · · · ∩ Ek].

Therefore

Pr [Ei] = 1−
(
1− 1

m

)kn

Since the events are negatively correlated,

Pr [∩iEi] ≤

[
1−

(
1− 1

m

)kn
]k
≈
(
1− e−kn/m

)k
.

This is the probability of a false positive, and we would like to minimize

this. Taking the derivative of the logarithm of this quantity, we get

k = ln 2 · mn ; when using this value of k , the false positive rate is(
1

2

)k

= (0.6185)
m
n .

March 29, 2018 8 / 8

Bloom Filter: Analysis continued

If u is not in the set, what is the probability we answer "yes"?

Let Ei denote the event that there eixts ui ∈ S and ji ∈ {1, · · · , k} such
that hi (u) = hji (ui). Then we need to bound Pr[E1 ∩ E2 · · · ∩ Ek].
Therefore

Pr [Ei] = 1−
(
1− 1

m

)kn

Since the events are negatively correlated,

Pr [∩iEi] ≤

[
1−

(
1− 1

m

)kn
]k
≈
(
1− e−kn/m

)k
.

This is the probability of a false positive, and we would like to minimize

this. Taking the derivative of the logarithm of this quantity, we get

k = ln 2 · mn ; when using this value of k , the false positive rate is(
1

2

)k

= (0.6185)
m
n .

March 29, 2018 8 / 8

Bloom Filter: Analysis continued

If u is not in the set, what is the probability we answer "yes"?

Let Ei denote the event that there eixts ui ∈ S and ji ∈ {1, · · · , k} such
that hi (u) = hji (ui). Then we need to bound Pr[E1 ∩ E2 · · · ∩ Ek].
Therefore

Pr [Ei] = 1−
(
1− 1

m

)kn

Since the events are negatively correlated,

Pr [∩iEi] ≤

[
1−

(
1− 1

m

)kn
]k
≈
(
1− e−kn/m

)k
.

This is the probability of a false positive, and we would like to minimize

this. Taking the derivative of the logarithm of this quantity, we get

k = ln 2 · mn ; when using this value of k , the false positive rate is(
1

2

)k

= (0.6185)
m
n .

March 29, 2018 8 / 8

Bloom Filter: Analysis continued

If u is not in the set, what is the probability we answer "yes"?

Let Ei denote the event that there eixts ui ∈ S and ji ∈ {1, · · · , k} such
that hi (u) = hji (ui). Then we need to bound Pr[E1 ∩ E2 · · · ∩ Ek].
Therefore

Pr [Ei] = 1−
(
1− 1

m

)kn

Since the events are negatively correlated,

Pr [∩iEi] ≤

[
1−

(
1− 1

m

)kn
]k
≈
(
1− e−kn/m

)k
.

This is the probability of a false positive, and we would like to minimize

this. Taking the derivative of the logarithm of this quantity, we get

k = ln 2 · mn ; when using this value of k , the false positive rate is(
1

2

)k

= (0.6185)
m
n .

March 29, 2018 8 / 8

	Advanced Data Structures

