• Challenge in dictionary implementation: among a large universe U of words, we need to maintain a subset S, with fast lnsert, Delete, and Lookup operations (ideally in O(1) time).

- Challenge in dictionary implementation: among a large universe U of words, we need to maintain a subset S, with fast lnsert, Delete, and Lookup operations (ideally in O(1) time).
- Maintaining an array of size |U| is too expensive.

- Challenge in dictionary implementation: among a large universe U of words, we need to maintain a subset S, with fast Insert, Delete, and Lookup operations (ideally in O(1) time).
- Maintaining an array of size |U| is too expensive.
- Maintaining a linked list of size |S| makes lookup too slow.

- Challenge in dictionary implementation: among a large universe U of words, we need to maintain a subset S, with fast Insert, Delete, and Lookup operations (ideally in O(1) time).
- Maintaining an array of size |U| is too expensive.
- Maintaining a linked list of size |S| makes lookup too slow.
- Hash: Maintain an array of size (roughly) n = |S|, and use function $h: U \rightarrow \{0, 1, ..., n-1\}$. Ideally, we'd like $h(u) \neq h(v)$ whenever $u, v \in S$ are not equal.

- Challenge in dictionary implementation: among a large universe U of words, we need to maintain a subset S, with fast Insert, Delete, and Lookup operations (ideally in O(1) time).
- Maintaining an array of size |U| is too expensive.
- Maintaining a linked list of size |S| makes lookup too slow.
- Hash: Maintain an array of size (roughly) n = |S|, and use function $h: U \rightarrow \{0, 1, ..., n-1\}$. Ideally, we'd like $h(u) \neq h(v)$ whenever $u, v \in S$ are not equal.
- No deterministic function *h* can work for all inputs.

- Challenge in dictionary implementation: among a large universe U of words, we need to maintain a subset S, with fast Insert, Delete, and Lookup operations (ideally in O(1) time).
- Maintaining an array of size |U| is too expensive.
- Maintaining a linked list of size |S| makes lookup too slow.
- Hash: Maintain an array of size (roughly) n = |S|, and use function $h: U \rightarrow \{0, 1, ..., n-1\}$. Ideally, we'd like $h(u) \neq h(v)$ whenever $u, v \in S$ are not equal.
- No deterministic function *h* can work for all inputs.
- A completely random mapping has collision rate $\frac{1}{n}$, but memorizing the mapping is exactly the problem we started with!

• Instead of using one hash function, let's construct a *family* of hash functions, each of them compactly representable and efficiently computable. We then *randomly* one to use.

- Instead of using one hash function, let's construct a *family* of hash functions, each of them compactly representable and efficiently computable. We then *randomly* one to use.
- A family of hash functions H is universal if for any u, v ∈ U that are not equal, the probability that a randomly chosen h ∈ H with h(u) = h(v) is at most 1/n.

- Instead of using one hash function, let's construct a *family* of hash functions, each of them compactly representable and efficiently computable. We then *randomly* one to use.
- A family of hash functions H is universal if for any u, v ∈ U that are not equal, the probability that a randomly chosen h ∈ H with h(u) = h(v) is at most 1/n.

Lemma

Let \mathcal{H} be a universal class of hash functions mapping a universe U to $\{0, 1, \ldots, n-1\}$, let $S \subseteq U$ be of size at most n, and let u be any element in U. Define X to be a random variable equal to the number of elements $s \in S$ for which h(s) = h(u), for a random choice of $h \in \mathcal{H}$. Then $\mathbf{E}[X] \leq 1$.

イロト イヨト イヨト

• Let p be a prime number approximately equal to n (e.g., $n \le p \le 2n$.

- Let p be a prime number approximately equal to n (e.g., $n \le p \le 2n$.
- Represent each element of U by a sequence x₁x₂...x_r, where x_i is an integer from {0, 1, ..., p − 1}.

- Let p be a prime number approximately equal to n (e.g., $n \le p \le 2n$.
- Represent each element of U by a sequence x₁x₂...x_r, where x_i is an integer from {0, 1, ..., p − 1}.
- Let $\mathcal A$ be $\{0,1,\ldots,p-1\}^r.$ For each $\mathbf a\in\mathcal A$, define

$$h_{\mathbf{a}}(\mathbf{x}) = \left(\sum_{i} a_{i} x_{i}\right) \mod p, \quad \mathbf{x} \in U.$$

- Let p be a prime number approximately equal to n (e.g., $n \le p \le 2n$.
- Represent each element of U by a sequence x₁x₂...x_r, where x_i is an integer from {0, 1, ..., p − 1}.
- Let $\mathcal A$ be $\{0,1,\ldots,p-1\}^r.$ For each $\mathbf a\in\mathcal A$, define

$$h_{\mathbf{a}}(\mathbf{x}) = \left(\sum_{i} a_{i} x_{i}\right) \mod p, \quad \mathbf{x} \in U.$$

Theorem

The family $\{h_a : a \in A\}$ is universal family of hash functions.

- Let p be a prime number approximately equal to n (e.g., $n \le p \le 2n$.
- Represent each element of U by a sequence x₁x₂...x_r, where x_i is an integer from {0, 1, ..., p − 1}.
- Let $\mathcal A$ be $\{0,1,\ldots,p-1\}^r.$ For each $\mathbf a\in\mathcal A$, define

$$h_{\mathbf{a}}(\mathbf{x}) = \left(\sum_{i} a_{i} x_{i}\right) \mod p, \quad \mathbf{x} \in U.$$

Theorem

The family $\{h_{\mathbf{a}} : \mathbf{a} \in \mathcal{A}\}$ is universal family of hash functions.

Lemma

For any prime p and any integer $z \neq 0 \mod p$, and any two integers α, β , if $\alpha z = \beta z \mod p$, then $\alpha = \beta \mod p$.

A family \mathcal{H} of hash functions is k-wise independent if, for any $u_1, u_2, \ldots, u_k \in U$, and any hash values $z_1, \ldots, z_k \in \{0, 1, \ldots, n-1\}$, we have

$$\operatorname{Pr}_{h\sim\mathcal{H}}\left[h(u_1)=z_1,\ldots,h(u_k)=z_k\right]=\frac{1}{n^k}.$$

A family \mathcal{H} of hash functions is *k*-wise independent if, for any $u_1, u_2, \ldots, u_k \in U$, and any hash values $z_1, \ldots, z_k \in \{0, 1, \ldots, n-1\}$, we have

$$\operatorname{Pr}_{h\sim\mathcal{H}}\left[h(u_1)=z_1,\ldots,h(u_k)=z_k\right]=\frac{1}{n^k}.$$

• Depending on the context, sometimes we only require the bound to be $O(\frac{1}{n^k})$.

A family \mathcal{H} of hash functions is k-wise independent if, for any $u_1, u_2, \ldots, u_k \in U$, and any hash values $z_1, \ldots, z_k \in \{0, 1, \ldots, n-1\}$, we have

$$\operatorname{Pr}_{h\sim\mathcal{H}}\left[h(u_1)=z_1,\ldots,h(u_k)=z_k\right]=\frac{1}{n^k}.$$

- Depending on the context, sometimes we only require the bound to be $O(\frac{1}{n^k})$.
- Pairwise independence is sometimes known as strong universality.

A family \mathcal{H} of hash functions is k-wise independent if, for any $u_1, u_2, \ldots, u_k \in U$, and any hash values $z_1, \ldots, z_k \in \{0, 1, \ldots, n-1\}$, we have

$$\operatorname{Pr}_{h\sim\mathcal{H}}\left[h(u_1)=z_1,\ldots,h(u_k)=z_k\right]=\frac{1}{n^k}.$$

- Depending on the context, sometimes we only require the bound to be $O(\frac{1}{n^k})$.
- Pairwise independence is sometimes known as strong universality.

Bloom filters

• Scenario: web caching.

< □ > < //>
</

- Scenario: web caching.
- Operations we'd like to support:
 - Insert
 - Lookup: One-sided fault tolerant: if the page is in the cache, we should answer "yes"; if the page is in the cache, we should answer "no" with good probability.

- Scenario: web caching.
- Operations we'd like to support:
 - Insert
 - Lookup: One-sided fault tolerant: if the page is in the cache, we should answer "yes"; if the page is in the cache, we should answer "no" with good probability.
 - (This is not an operation but a desired property): the data structure should be (much) smaller than the dictionary so we can easily send it around.

- Scenario: web caching.
- Operations we'd like to support:
 - Insert
 - Lookup: One-sided fault tolerant: if the page is in the cache, we should answer "yes"; if the page is in the cache, we should answer "no" with good probability.
 - (This is not an operation but a desired property): the data structure should be (much) smaller than the dictionary so we can easily send it around.
- Operations we do not need to support:
 - Retrieve the entry associated with a given key value.

- Scenario: web caching.
- Operations we'd like to support:
 - Insert
 - Lookup: One-sided fault tolerant: if the page is in the cache, we should answer "yes"; if the page is in the cache, we should answer "no" with good probability.
 - (This is not an operation but a desired property): the data structure should be (much) smaller than the dictionary so we can easily send it around.
- Operations we do not need to support:
 - Retrieve the entry associated with a given key value.
- Solution: Bloom filter (Burton Bloom, 1970)

- Scenario: web caching.
- Operations we'd like to support:
 - Insert
 - Lookup: One-sided fault tolerant: if the page is in the cache, we should answer "yes"; if the page is in the cache, we should answer "no" with good probability.
 - (This is not an operation but a desired property): the data structure should be (much) smaller than the dictionary so we can easily send it around.
- Operations we do not need to support:
 - Retrieve the entry associated with a given key value.
- Solution: Bloom filter (Burton Bloom, 1970)
- Another application: web browser cache for email contact list

Set up a bit vector B of length m (we will decide m later; think of it as O(n)); let h₁,..., h_k be hash functions, which we think of as independent random functions mapping U to {0, 1,..., m}.

- Set up a bit vector B of length m (we will decide m later; think of it as O(n)); let h₁,..., h_k be hash functions, which we think of as independent random functions mapping U to {0, 1, ..., m}.
- Insert $u \in U$: set $B[h_1(u)] = B[h_2(u)] = \cdots = B[h_k(u)] = 1$.

- Set up a bit vector B of length m (we will decide m later; think of it as O(n)); let h₁,..., h_k be hash functions, which we think of as independent random functions mapping U to {0, 1,..., m}.
- Insert $u \in U$: set $B[h_1(u)] = B[h_2(u)] = \cdots = B[h_k(u)] = 1$.
- Query if u is in the set: If $B[h_1(u)] = \cdots = B[h_k(u)] = 1$, answer "yes" else answer "no"

- Set up a bit vector B of length m (we will decide m later; think of it as O(n)); let h₁,..., h_k be hash functions, which we think of as independent random functions mapping U to {0, 1,..., m}.
- Insert $u \in U$: set $B[h_1(u)] = B[h_2(u)] = \cdots = B[h_k(u)] = 1$.
- Query if u is in the set: If $B[h_1(u)] = \cdots = B[h_k(u)] = 1$, answer "yes" else answer "no"
- If u is in the set, we obviously always answer "yes"

- Set up a bit vector B of length m (we will decide m later; think of it as O(n)); let h₁,..., h_k be hash functions, which we think of as independent random functions mapping U to {0, 1,..., m}.
- Insert $u \in U$: set $B[h_1(u)] = B[h_2(u)] = \cdots = B[h_k(u)] = 1$.
- Query if u is in the set: If $B[h_1(u)] = \cdots = B[h_k(u)] = 1$, answer "yes" else answer "no"
- If *u* is in the set, we obviously always answer "yes"
- If u is not in the set, what is the probability we answer "yes"?

• If *u* is not in the set, what is the probability we answer "yes"?

• If u is not in the set, what is the probability we answer "yes"? We need to bound the probability of the following "bad event": given a word $u \notin S$, $h_1(u) = h_{j_1}(u_1), \dots, h_k(u) = h_{j_k}(u_k)$ for $u_1, \dots, u_k \in S$, and $j_1, \dots, j_k \in \{1, 2, \dots, k\}$.

• If *u* is not in the set, what is the probability we answer "yes"?

We need to bound the probability of the following "bad event": given a word $u \notin S$, $h_1(u) = h_{j_1}(u_1), \dots, h_k(u) = h_{j_k}(u_k)$ for $u_1, \dots, u_k \in S$, and $j_1, \dots, j_k \in \{1, 2, \dots, k\}$.

Let E_i denote the event that there eixts $u_i \in S$ and $j_i \in \{1, \dots, k\}$ such that $h_i(u) = h_{j_i}(u_i)$. Then we need to bound $\Pr[E_1 \cap E_2 \dots \cap E_k]$.

• If *u* is not in the set, what is the probability we answer "yes"?

We need to bound the probability of the following "bad event": given a word $u \notin S$, $h_1(u) = h_{j_1}(u_1), \dots, h_k(u) = h_{j_k}(u_k)$ for $u_1, \dots, u_k \in S$, and $j_1, \dots, j_k \in \{1, 2, \dots, k\}$. Let E_i denote the event that there eixts $u_i \in S$ and $j_i \in \{1, \dots, k\}$ such

that $h_i(u) = h_{j_i}(u_i)$. Then we need to bound $\Pr[E_1 \cap E_2 \dots \cap E_k]$. For a particular hash value $z \in \{0, 1, \dots, m\}$, and any word u in our set S, and a hash function h_i ,

$$\Pr\left[h_i(u)\neq z\right]=1-\frac{1}{m};$$

• If *u* is not in the set, what is the probability we answer "yes"?

We need to bound the probability of the following "bad event": given a word $u \notin S$, $h_1(u) = h_{j_1}(u_1), \dots, h_k(u) = h_{j_k}(u_k)$ for $u_1, \dots, u_k \in S$, and $j_1, \dots, j_k \in \{1, 2, \dots, k\}$. Let E_i denote the event that there eixts $u_i \in S$ and $j_i \in \{1, \dots, k\}$ such that $h_i(u) = h_{j_i}(u_i)$. Then we need to bound $\Pr[E_1 \cap E_2 \dots \cap E_k]$. For a particular hash value $z \in \{0, 1, \dots, m\}$, and any word u in our set S,

and a hash function h_i,

$$\Pr\left[h_i(u)\neq z\right]=1-\frac{1}{m};$$

For $z \in \{0, 1, ..., m\}$, the probability that none of the words in S are mapped to z by any of the k hash functions is

$$\left(1-\frac{1}{m}\right)^{kn}$$

• If u is not in the set, what is the probability we answer "yes"? Let E_i denote the event that there eixts $u_i \in S$ and $j_i \in \{1, \dots, k\}$ such that $h_i(u) = h_{j_i}(u_i)$. Then we need to bound $\Pr[E_1 \cap E_2 \dots \cap E_k]$.

• If u is not in the set, what is the probability we answer "yes"? Let E_i denote the event that there eixts $u_i \in S$ and $j_i \in \{1, \dots, k\}$ such that $h_i(u) = h_{j_i}(u_i)$. Then we need to bound $\Pr[E_1 \cap E_2 \dots \cap E_k]$. Therefore

$$\Pr\left[E_i\right] = 1 - \left(1 - \frac{1}{m}\right)^{kn}$$

• If u is not in the set, what is the probability we answer "yes"? Let E_i denote the event that there eixts $u_i \in S$ and $j_i \in \{1, \dots, k\}$ such that $h_i(u) = h_{j_i}(u_i)$. Then we need to bound $\Pr[E_1 \cap E_2 \dots \cap E_k]$. Therefore

$$\Pr\left[E_i\right] = 1 - \left(1 - \frac{1}{m}\right)^{kn}$$

Since the events are negatively correlated,

$$\Pr\left[\cap_{i} E_{i}\right] \leq \left[1 - \left(1 - \frac{1}{m}\right)^{kn}\right]^{k} \approx \left(1 - e^{-kn/m}\right)^{k}$$

.

• If u is not in the set, what is the probability we answer "yes"? Let E_i denote the event that there eixts $u_i \in S$ and $j_i \in \{1, \dots, k\}$ such that $h_i(u) = h_{j_i}(u_i)$. Then we need to bound $\Pr[E_1 \cap E_2 \dots \cap E_k]$. Therefore

$$\Pr\left[E_i\right] = 1 - \left(1 - \frac{1}{m}\right)^{kn}$$

Since the events are negatively correlated,

$$\Pr\left[\bigcap_{i} E_{i}\right] \leq \left[1 - \left(1 - \frac{1}{m}\right)^{kn}\right]^{k} \approx \left(1 - e^{-kn/m}\right)^{k}$$

This is the probability of a false positive, and we would like to minimize this. Taking the derivative of the logarithm of this quantity, we get $k = \ln 2 \cdot \frac{m}{p}$; when using this value of k, the false positive rate is

$$\left(\frac{1}{2}\right)^k = (0.6185)^{\frac{m}{n}}.$$