
Flow problem: basic de�nitions

Basic setup: we are given a directed graph G = (V ,E ), which
includes a special node s called the source and a node t called the

sink. Each edge (u, v) is associated with a capacity c(u, v) > 0.

Convention: c(u, v) = 0 for (u, v) /∈ E .

De�nition

A �ow is a function f : V 2 → R satisfying:

1 skew symmetry ∀u, v ∈ V , f (u, v) = −f (v , u);
2 conservation of �ow ∀u ∈ V − {s, t},

∑
v∈V f (v , u) = 0.

3 capacity constraints ∀u, v ∈ V , f (u, v) ≤ c(u, v).

The value of a �ow f is |f | :=
∑

v∈V f (s, v).

The maximum �ow problem: given G and capacities on its edges,

compute a �ow with maximum value.
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Cuts

Given a graph G = (V ,E ), a cut is a partition of V into two sets A
and B . That is, A ∩ B = ∅, A ∪ B = V .

Given a graph with source s and sink t, an s − t cut is a cut (A,B)
such that s is in A and t is in B .

The capacity of a cut (A,B) is
∑

u∈A,v∈B c(u, v).

Let f be a �ow, the �ow across a cut (A,B) is
∑

u∈A,v∈B f (u, v).

Lemma

For any s − t cut (A,B) and any �ow f , the value of f is f (A,B).

Lemma

For any s − t cut (A,B) and any �ow f , |f | ≤ c(A,B).
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Ford-Fulkerson Algorithm and Max Flow Min Cut Theorem

Given a �ow f on a graph with capacities c , the residual capacity of a

directed edge (u, v) is r(u, v) := c(u, v)− f (u, v).

Given a �ow f in a graph G with capacities c , the residual graph is a

graph Gf where (u, v) is an edge iff r(u, v) > 0.

Lemma

Given a �ow f on a graph G , and the associated residual graph Gf , let f
′

be a function that maps V 2 to R, then
1 f ′ is a �ow iff f + f ′ is a �ow on G .

2 If f ′ is a �ow on Gf , then |f + f ′| = |f |+ |f ′|, and |f − f ′| = |f | − |f ′|.
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The Max Flow Min Cut Theorem

Given a �ow f on a graph G with source s and sink t, an augmenting

path is a directed path from s to t in the residual graph Gf .

Theorem (Max Flow Min Cut Theorem)

The following statements are equivalent:

1 f is a maximum �ow on G with capacities c ,

2 there is a s − t cut (A,B) with c(A,B) = |f |,
3 There exists no augmenting path in Gf .
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Combinatorial Consequences of Max Flow Min Cut

Theorem (Hall's Theorem)

A bipartite n × n graph G = (U,V ,E ) has a perfect matching if and only

if for any S ⊆ U, |δ(S)| ≥ |S |, where δ(S) denotes the set of nodes in V
that have a neighbor in S .

De�nition

A vertex cover of a graph G = (V ,E ) is a set of vertices S ⊆ V such that

each edge in E is incident to at least one node in S . A minimum vertex

cover is a vertex cover of minimum cardinality.

Theorem (K®nig-Egerváry Theorem)

In a bipartite graph, the size of a maximum matching is equal to the size of

a minimum vertex cover.
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Algorithms for Max Flow / Min Cut

The Ford-Fulkerson algorithm: Start with a �ow f that is zero everywhere.

Find an augmenting path in the residual graph Gf ; let r be the minimum

residual capacity along the path; augment f by a �ow of value r along the

path. Repeat, until no augmenting path can be found.

Theorem

The Ford-Fulkerson algorithm terminates when all capacities are integers.

When it terminates, the Ford-Fulkerson algorithm returns a maximum �ow.

Claim

The Ford-Fulkerson algorithm can take exponential time to terminate.
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Edmonds-Karp Algorithm

The Edmonds and Karp algorithm: When looking for an augmenting path,

use one with the minimum length.

Theorem

The Edmonds-Karp algorithm �nds a maximum �ow in time O(m2n).
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Edmonds-Karp Algorithm Analysis

Lemma

The length of the shortest augmenting path cannot decrease in the

implementation of Edmonds-Karp algorithm.

Lemma

We can augment along shortest augmenting paths of the same length at

most m times before the length of the shortest augmenting paths strictly

increases.

De�nition

The level graph of a graph G is the directed BFS tree rooted at the

source s, with the sideways and backward edges removed.
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Runtime of max �ow min cut algorithm

The Edmond-Karp algorithm runs in strongly polynomial time.

The Dinitz Algorithm: In each round, use a blocking �ow instead of
just one augmenting path. Runs in time O(mn2).

In spirit, similar to Hopcroft and Karp's algorithm for unweighted

bipartite matching.

Other algorithms..
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Application: Baseball Elimination Problem

Problem: We are given n baseball teams and the number of winning

matches of each team. We are also given the number of matches in the

future between each pair of teams. That is, between each pair of teams i
and j , we are given mij , the number of matches that are going to be played

between team i and team j . We ask, given this data, a polynomial-time

algorithm to decide whether a given team (say, team 1) has no chance to

win the champion no matter what happens in the future.
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