Linear Programming: Canonical Form

e Canonical form of linear programming:

n

max E Ci X

X159 Xn I
J=1

s.t. Za,’ijSb;, i=1,2,...,m
i

xi>0, j=1,2,...,n.
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Linear Programming: Canonical Form

e Canonical form of linear programming:
n
max E CiXj
X1 yeeesXn £ 474
J=1
s.t. E ajx; < bj, Ii=12,....m,
i

xi>0, j=1,2,...,n.
o Written in matrix form:

max c¢T-x
X

s.t. Ax <b,
x> 0;
where x,c € R",b € R™, A € R™*", and < means coordinate-wise
less than or equal to, and > similarly.
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The Geometry of LP

o A (closed) half-space in R" is a set {x : a7 - x < b}.
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@ The intersection of finitely many half-spaces is a convex polytope
(henceforth just polytope).

The feasible region of an LP is a polytope.
Aset S CR"is convex if Vx,y € S, VA € [0,1], Ax+ (1 — N)y € S.
Example: a half-space is convex.

The intersection of convex sets is still convex.

Example: a polytope is convex.
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Basic convex geometry

Definition

A point x is a convex combination of y*,y?, ..., y¥ if there exists
A1, - Ak >0, such that >, \; =1and ) ; \iy' =x.
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Basic convex geometry

A point x is a convex combination of y*,y?, ..., y¥ if there exists
A1, - Ak >0, such that >, \; =1and ) ; \iy' =x.

The convex hull of a set X of points is the set of all convex combinations
of the points in X.

.

Definition

A point x in a convex set S is an extreme point of S if there exist no
y,z€ S and X € (0,1) such that x = Ay + (1 — \)z.

4

March 19, 2018 3/11



Basic convex geometry

Definition

A point x is a convex combination of y*,y?, ..., y¥ if there exists
A1, - Ak >0, such that >, \; =1and ) ; \iy' =x.

Definition

| A\

The convex hull of a set X of points is the set of all convex combinations
of the points in X.

Definition

| A

A point x in a convex set S is an extreme point of S if there exist no
y,z€ S and X € (0,1) such that x = Ay + (1 — \)z.

@ The extreme points of a polytope are called vertices.

A bounded polytope is the convex hull of its vertices.




Basic facts on polytopes

On a bounded polytope, the maximum value of a linear function can always
be attained on a vertex.

@ In a linear programming the optimal solution that is a vertex is called
a basic feasible solution.
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Basic facts on polytopes

On a bounded polytope, the maximum value of a linear function can always
be attained on a vertex.

@ In a linear programming the optimal solution that is a vertex is called
a basic feasible solution.

Lemma (Characterizing vertices)

A point v in a polytope {x : Ax < b} is a vertex if and only if
Q Av <b;

@Q Ifiy,...,ix index the constraints that are tight at v, then A
full rank, where A; denotes the i-th row of A.

-+, A, has

iy "
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The Simplex Algorithm

@ The simplex algorithm (Dantzig, 1940’s): Start from a vertex of the
polytope; repeat until failure: find a neighboring vertex with strictly
larger objective value, and move to that vertex; or find an adjacent
edge along which the objective function gets unbounded.
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The Simplex Algorithm

@ The simplex algorithm (Dantzig, 1940’s): Start from a vertex of the
polytope; repeat until failure: find a neighboring vertex with strictly
larger objective value, and move to that vertex; or find an adjacent
edge along which the objective function gets unbounded.

@ Moving from a vertex to an adjacent one is called a pivot operation.

The Simplex algorithm terminates in a finite number of steps. When it
does, it finds an optimal solution to the linear program.

@ The running time of the Simplex: exponential time in the worst case,
and close to linear time “in practice”.

@ Polynomial time algorithms are known for linear programs:

o Ellipsoid method (Khachiyan, first polytime algorithm); B
o Interior point method (e.g. Karmarkar's algorithm, runtime O(n35L).
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Given a linear program,

max c'-x
X

s.t. Ax <b,
x> 0;

is there a way to obtain upper bounds on the objective?
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Given a linear program,

max c'-x
X

s.t. Ax <b,
x> 0;
is there a way to obtain upper bounds on the objective?

The dual program of the linear program above is

min bT.y
y
s.t. ATy > ¢,

y=>0.

Theorem (Strong Duality Theorem)

If both the primal and the dual programs are feasible, the two have the
same optimal value.
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Example: Kénig-Egervary Theorem: In a bipartite graph, the size of a
maximum matching is equal to the size of a minimum vertex cover.
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Corollary (Complementary Slackness)
Let y* be an optimal solution to the dual program. Then
o Ify; > 0, then the i-th constraint is tight in any optimal solution to
the primal program.

@ If there is an optimal solution to the primal program for which the i-th
constraint is not tight, then the y; = 0.

v

March 19, 2018 7/11



Example: Kénig-Egervary Theorem: In a bipartite graph, the size of a
maximum matching is equal to the size of a minimum vertex cover.
Integer Programming is NP-hard!

Corollary (Complementary Slackness)
Let y* be an optimal solution to the dual program. Then
o Ify; > 0, then the i-th constraint is tight in any optimal solution to
the primal program.
@ If there is an optimal solution to the primal program for which the i-th
constraint is not tight, then the y; = 0.

v

The dual of the dual program is the primal program.

March 19, 2018 7/11
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maximum matching is equal to the size of a minimum vertex cover.
Integer Programming is NP-hard!

Corollary (Complementary Slackness)
Let y* be an optimal solution to the dual program. Then
o Ify; > 0, then the i-th constraint is tight in any optimal solution to
the primal program.
@ If there is an optimal solution to the primal program for which the i-th
constraint is not tight, then the y; = 0.

v

The dual of the dual program is the primal program.

If x and y are feasible solutions to a linear program and its dual,
respectively, and if x and y satisfy the two complementary slackness
conditions to each other, then both are optimal solutions.
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Basic Game Theory

Definition

A two-player normal form game is specified by a pair of m x n payoff
matrices, (R, C, where m is the number of actions available to the row
player and n the number of actions available to the column player. That is,
Rij and C;; are the payoffs for the row player and the column player,

resptively, if the row player plays action i and the column player plays
action J.
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Basic Game Theory

A two-player normal form game is specified by a pair of m x n payoff
matrices, (R, C, where m is the number of actions available to the row
player and n the number of actions available to the column player. That is,
Rij and C;; are the payoffs for the row player and the column player,
resptively, if the row player plays action i and the column player plays
action J.

Definition

A pure Nash equilibrium is an action pair (i,/) so that both players are best
responding to each other, i.e., R;; = max;y Ry ; and C;j = max; G ju.

Prisonner’s Dilemma.
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Basic Game Theory (continued)

Battle of the Sexes. l
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Basic Game Theory (continued)

Battle of the Sexes. \
Matching pennies. \

@ We need to allow players to play mixed strategies, i.e., probability
distributions over the actions. For the row player, the set of mixed
strategies is represented by Ap, = {x € RZ,| >, x; = 1}. Similarly,

A, is the set of mixed strategies for the column player.

March 19, 2018 9/11



Basic Game Theory (continued)

Battle of the Sexes. \
Matching pennies. \

@ We need to allow players to play mixed strategies, i.e., probability
distributions over the actions. For the row player, the set of mixed
strategies is represented by Ap, = {x € RZ,| >, x; = 1}. Similarly,

A, is the set of mixed strategies for the column player.

@ The expected payoff for the row player when she plays x € A, and

her opponent plays y € A, is xTRy. Similarly, the column player’s
expected payoff is xTCy.
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Basic Game Theory (continued)

Definition
A pair of strategy (x,y) € A, X A, is a Nash equilibrium if

xRy > x'Ry, W' € A,;
xCy > xCy’, Vy' € A,.
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Basic Game Theory (continued)

Definition

A pair of strategy (x,y) € A, X A, is a Nash equilibrium if

xRy > x'Ry, W' € A,;
xCy > xCy’, Vy' € A,.

Definition

A two player game is zero sum if R+ C = 0.

Theorem (von Neumann)

Any two-player zero sum game has a Nash equilibrium.

Theorem (Nash)

Any n-player finite game has a Nash equilibrium.
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Proof of von Neumann’s min-max theorem

A linear program that computes a lower bound on the row player’s payoff:

max P

s.t. ZRij)gZP, i=1,2,...,nm
J
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Proof of von Neumann's min-max theorem (continued)

Another linear program gives an upper bound on the row player's payoff (by
a similar argument on the column player):

min Q
s.t. ZRU}/,SQ, j:172)"'7m;

1
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Proof of von Neumann's min-max theorem (continued)

Another linear program gives an upper bound on the row player's payoff (by
a similar argument on the column player):

min @
st. » Ryyi<Q j=12....m
i
Zy/' =1
i
yi>0,i=1,2,....n.

The two programs are dual for each other. By Strong Duality Theorem, the
upper bound and the lower bound are equal, and therefore the optimal
solutions x* and y* are best responses to each other, i.e., they constitute a

Nash equilibrium.
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