
Linear Programming: Canonical Form

Canonical form of linear programming:

max
x1,...,xn

n∑
j=1

cjxj

s.t.
∑
i

aijxj ≤ bi , i = 1, 2, . . . ,m;

xj ≥ 0, j = 1, 2, . . . , n.

Written in matrix form:

max
x

cᵀ · x

s.t. Ax ≤ b,

x ≥ 0;

where x, c ∈ Rn,b ∈ Rm,A ∈ Rm×n, and ≤ means coordinate-wise

less than or equal to, and ≥ similarly.
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The Geometry of LP

A (closed) half-space in Rn is a set {x : aᵀ · x ≤ b}.

The intersection of �nitely many half-spaces is a convex polytope

(henceforth just polytope).

The feasible region of an LP is a polytope.

A set S ⊆ Rn is convex if ∀x, y ∈ S , ∀λ ∈ [0, 1], λx + (1− λ)y ∈ S .

Example: a half-space is convex.

The intersection of convex sets is still convex.

Example: a polytope is convex.
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Basic convex geometry

De�nition

A point x is a convex combination of y1, y2, . . . , yk if there exists

λ1, · · ·λk ≥ 0, such that
∑

i λi = 1 and
∑

i λiy
i = x.

De�nition

The convex hull of a set X of points is the set of all convex combinations

of the points in X .

De�nition

A point x in a convex set S is an extreme point of S if there exist no

y, z ∈ S and λ ∈ (0, 1) such that x = λy + (1− λ)z.

The extreme points of a polytope are called vertices.

Lemma

A bounded polytope is the convex hull of its vertices.
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Basic facts on polytopes

Corollary

On a bounded polytope, the maximum value of a linear function can always

be attained on a vertex.

In a linear programming the optimal solution that is a vertex is called

a basic feasible solution.

Lemma (Characterizing vertices)

A point v in a polytope {x : Ax ≤ b} is a vertex if and only if

1 Av ≤ b;

2 If i1, . . . , ik index the constraints that are tight at v, then Ai1 , · · · ,Aik has

full rank, where Ai denotes the i-th row of A.
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The Simplex Algorithm

The simplex algorithm (Dantzig, 1940's): Start from a vertex of the

polytope; repeat until failure: �nd a neighboring vertex with strictly

larger objective value, and move to that vertex; or �nd an adjacent

edge along which the objective function gets unbounded.

Moving from a vertex to an adjacent one is called a pivot operation.

Theorem

The Simplex algorithm terminates in a �nite number of steps. When it

does, it �nds an optimal solution to the linear program.

The running time of the Simplex: exponential time in the worst case,

and close to linear time �in practice�.

Polynomial time algorithms are known for linear programs:

Ellipsoid method (Khachiyan, �rst polytime algorithm);
Interior point method (e.g. Karmarkar's algorithm, runtime Õ(n3.5L).
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Duality

Given a linear program,

max
x

cᵀ · x

s.t. Ax ≤ b,

x ≥ 0;

is there a way to obtain upper bounds on the objective?

The dual program of the linear program above is

min
y

bᵀ · y

s.t. Aᵀy ≥ c,

y ≥ 0.

Theorem (Strong Duality Theorem)

If both the primal and the dual programs are feasible, the two have the

same optimal value.
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Example: K®nig-Egerváry Theorem: In a bipartite graph, the size of a

maximum matching is equal to the size of a minimum vertex cover.

Integer Programming is NP-hard!

Corollary (Complementary Slackness)

Let y∗ be an optimal solution to the dual program. Then

If yi > 0, then the i-th constraint is tight in any optimal solution to

the primal program.

If there is an optimal solution to the primal program for which the i-th
constraint is not tight, then the yi = 0.

The dual of the dual program is the primal program.

Corollary

If x and y are feasible solutions to a linear program and its dual,

respectively, and if x and y satisfy the two complementary slackness

conditions to each other, then both are optimal solutions.

March 19, 2018 7 / 11



Example: K®nig-Egerváry Theorem: In a bipartite graph, the size of a

maximum matching is equal to the size of a minimum vertex cover.

Integer Programming is NP-hard!

Corollary (Complementary Slackness)

Let y∗ be an optimal solution to the dual program. Then

If yi > 0, then the i-th constraint is tight in any optimal solution to

the primal program.

If there is an optimal solution to the primal program for which the i-th
constraint is not tight, then the yi = 0.

The dual of the dual program is the primal program.

Corollary

If x and y are feasible solutions to a linear program and its dual,

respectively, and if x and y satisfy the two complementary slackness

conditions to each other, then both are optimal solutions.

March 19, 2018 7 / 11



Example: K®nig-Egerváry Theorem: In a bipartite graph, the size of a

maximum matching is equal to the size of a minimum vertex cover.

Integer Programming is NP-hard!

Corollary (Complementary Slackness)

Let y∗ be an optimal solution to the dual program. Then

If yi > 0, then the i-th constraint is tight in any optimal solution to

the primal program.

If there is an optimal solution to the primal program for which the i-th
constraint is not tight, then the yi = 0.

The dual of the dual program is the primal program.

Corollary

If x and y are feasible solutions to a linear program and its dual,

respectively, and if x and y satisfy the two complementary slackness

conditions to each other, then both are optimal solutions.

March 19, 2018 7 / 11



Example: K®nig-Egerváry Theorem: In a bipartite graph, the size of a

maximum matching is equal to the size of a minimum vertex cover.

Integer Programming is NP-hard!

Corollary (Complementary Slackness)

Let y∗ be an optimal solution to the dual program. Then

If yi > 0, then the i-th constraint is tight in any optimal solution to

the primal program.

If there is an optimal solution to the primal program for which the i-th
constraint is not tight, then the yi = 0.

The dual of the dual program is the primal program.

Corollary

If x and y are feasible solutions to a linear program and its dual,

respectively, and if x and y satisfy the two complementary slackness

conditions to each other, then both are optimal solutions.

March 19, 2018 7 / 11



Example: K®nig-Egerváry Theorem: In a bipartite graph, the size of a

maximum matching is equal to the size of a minimum vertex cover.

Integer Programming is NP-hard!

Corollary (Complementary Slackness)

Let y∗ be an optimal solution to the dual program. Then

If yi > 0, then the i-th constraint is tight in any optimal solution to

the primal program.

If there is an optimal solution to the primal program for which the i-th
constraint is not tight, then the yi = 0.

The dual of the dual program is the primal program.

Corollary

If x and y are feasible solutions to a linear program and its dual,

respectively, and if x and y satisfy the two complementary slackness

conditions to each other, then both are optimal solutions.

March 19, 2018 7 / 11



Basic Game Theory

De�nition

A two-player normal form game is speci�ed by a pair of m × n payo�

matrices, (R,C, where m is the number of actions available to the row

player and n the number of actions available to the column player. That is,

Ri ,j and Ci ,j are the payo�s for the row player and the column player,

resptively, if the row player plays action i and the column player plays

action j .

De�nition

A pure Nash equilibrium is an action pair (i , j) so that both players are best

responding to each other, i.e., Ri ,j = maxi ′ Ri ′,j and Ci ,j = maxj ′ Ci ,j ′ .

Example

Prisonner's Dilemma.
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Basic Game Theory (continued)

Example

Battle of the Sexes.

Example

Matching pennies.

We need to allow players to play mixed strategies, i.e., probability

distributions over the actions. For the row player, the set of mixed

strategies is represented by ∆m := {x ∈ Rm
≥0|

∑
i xi = 1}. Similarly,

∆n is the set of mixed strategies for the column player.

The expected payo� for the row player when she plays x ∈ ∆m and

her opponent plays y ∈ ∆n is xᵀRy. Similarly, the column player's

expected payo� is xᵀCy.

March 19, 2018 9 / 11



Basic Game Theory (continued)

Example

Battle of the Sexes.

Example

Matching pennies.

We need to allow players to play mixed strategies, i.e., probability

distributions over the actions. For the row player, the set of mixed

strategies is represented by ∆m := {x ∈ Rm
≥0|

∑
i xi = 1}. Similarly,

∆n is the set of mixed strategies for the column player.

The expected payo� for the row player when she plays x ∈ ∆m and

her opponent plays y ∈ ∆n is xᵀRy. Similarly, the column player's

expected payo� is xᵀCy.

March 19, 2018 9 / 11



Basic Game Theory (continued)

Example

Battle of the Sexes.

Example

Matching pennies.

We need to allow players to play mixed strategies, i.e., probability

distributions over the actions. For the row player, the set of mixed

strategies is represented by ∆m := {x ∈ Rm
≥0|

∑
i xi = 1}. Similarly,

∆n is the set of mixed strategies for the column player.

The expected payo� for the row player when she plays x ∈ ∆m and

her opponent plays y ∈ ∆n is xᵀRy. Similarly, the column player's

expected payo� is xᵀCy.

March 19, 2018 9 / 11



Basic Game Theory (continued)

Example

Battle of the Sexes.

Example

Matching pennies.

We need to allow players to play mixed strategies, i.e., probability

distributions over the actions. For the row player, the set of mixed

strategies is represented by ∆m := {x ∈ Rm
≥0|

∑
i xi = 1}. Similarly,

∆n is the set of mixed strategies for the column player.

The expected payo� for the row player when she plays x ∈ ∆m and

her opponent plays y ∈ ∆n is xᵀRy. Similarly, the column player's

expected payo� is xᵀCy.

March 19, 2018 9 / 11



Basic Game Theory (continued)

De�nition

A pair of strategy (x, y) ∈ ∆m ×∆n is a Nash equilibrium if

xRy ≥ x′Ry, ∀x′ ∈ ∆m;

xCy ≥ xCy′, ∀y′ ∈ ∆n.

De�nition

A two player game is zero sum if R + C = 0.

Theorem (von Neumann)

Any two-player zero sum game has a Nash equilibrium.

Theorem (Nash)

Any n-player �nite game has a Nash equilibrium.
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Proof of von Neumann's min-max theorem

A linear program that computes a lower bound on the row player's payo�:

max P

s.t.
∑
j

Rijxj ≥ P, i = 1, 2, . . . , n;

∑
j

xj = 1;

xj ≥ 0, j = 1, 2, . . . ,m.
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Proof of von Neumann's min-max theorem (continued)

Another linear program gives an upper bound on the row player's payo� (by

a similar argument on the column player):

min Q

s.t.
∑
i

Rijyi ≤ Q, j = 1, 2, . . . ,m;∑
i

yi = 1;

yi ≥ 0, i = 1, 2, . . . , n.

The two programs are dual for each other. By Strong Duality Theorem, the

upper bound and the lower bound are equal, and therefore the optimal

solutions x∗ and y∗ are best responses to each other, i.e., they constitute a

Nash equilibrium.
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