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1 Basic Prophet Inequality

There are n boxes 1, 2, . . . , n. Each box i contains an invisible number vi ≥ 0 drawn from
distribution Fi independently. We know the distributions beforehand. The boxes arrive in the
order 1, 2, . . . , n. When box i arrives, we observe vi and need to decide whether to take the box or
not. If we take the box i, the game stops and our reward is vi; if we let box i pass, we cannot go
back to retrieve it.

An algorithmic task is to design an algorithm that, given the distributions F1, · · · , Fn, maximizes
the expected reward. After a moment’s thought, we recognize that the optimal algorithm is a
“backward induction”: if we wait till the last box, the expected reward we will get is E[vn]; given
this, when box n − 1 comes, we should only take any value greater than E[vn]; this allows us to
compute the expected value we get when we wait till the last two boxes, which we may use to
decide the threshold to be used for box n − 3, and so on and so forth. The backward induction
needs to know the order in which the boxes arriveis. When each box i arrives, the algorithm holds
a threshold θi such that we take box i if and only if vi ≥ θi. It is not hard to see that θi decreases
as i increases.

The prophet inequality problem, however, asks a question that is more about the value of
information. It is concerned with comparing the performance of an online algorithm with an
prescient benchmark: if a prophet knows beforehand all the values in the box, then the expected
performance of the prophet is E[max vi]. How well can an online which only knows the distribution
do in comparison to this benchmark?

Theorem 1. There exists a threshold θ such that accepting the first box with value at least θ
achieves expected value at least 1

2 E[maxi vi]. For any ε > 0, there is no online algorithm whose
performance is guaranteed to be at least (0.5 + ε)E[max vi].

1.1 Quantile Approach

Let the random variable v∗ be maxi vi. Then the cdf of v∗ is F =
∏

i Fi. Let θ be F−1(12). Let’s
assume Pr[∃i, vi = θ] = 0; this is true, for example, when all distributions are atomless. We show
that accepting the first box with value at least θ yields expected value at least 1

2 E[v∗].
We first give an upper bound on the prophet’s value:
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where (x)+ denotes max(x, 0).
With probability 1

2 , the algorithm with threshold θ accepts a box, and that gives value at least
1
2θ even if the value of the accepted box is just θ. On top of this, values that are strictly greater
than θ contribute more. That additional contribution in expectation is∑

i
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Therefore in total the algorithm yields expected value at least 1
2(θ + E[(v∗ − θ)+]).

Remark In lower bounding the contribution from the part (vi − θ)+, we use that the threshold
price is accepted with probability at most 1

2 , whereas in lower bounding the contribution from the
part θ, we used that the threshold price is accepted with probability at least 1

2 . Therefore the
atomless assumption was important. If the condition does not hold, one needs to break ties very
carefully. (How?)

1.2 An Economic Interpretation

If we think of selling a single item to a sequence of bidders, where each bidder i has value vi drawn
independently from distribution Fi, then a threshold algorithm can be seen as the simplest selling
strategy: post a price θ, and sell it to the first buyer i who would like to buy at this price, i.e.,
vi ≥ θ. The problem then asks for a selling strategy so that in expectation the buyer who buys the
item should have a high value. This is known as social welfare maximization in economics.

Under this perspective, θ · Pr[some buyer buys] is the seller’s revenue (or, in other words,
the seller’s utility), whereas

∑
i(vi − θ)+ · Pr[i was considered] is the sum of the buyers’ utilities.

Therefore the calculation we performed above bounds respectively the revenue and the sellers’
utility, and the welfare of a transaction is just the sum of the seller’s revenue and the buyers’
utility!

1.3 Balanced Price Approach

An alternative approach gives the same guarantee but is more robust (without needing to be careful
with tie-breaking, for one thing, and, for another, being in fact also more robust against inaccuracy
in the input distributions). We present the proof using economic terms introduced above.

Consider θ = 1
2 E[maxi vi]. With this posted price θ, let p denote the probability that any buyer

purchases. Then the seller’s revenue is θp. The buyers’ utilities is∑
i
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]
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]
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Therefore the welfare is at least θ.

2



1.4 Lower bound

To see the lower bound, consider two boxes; v1 is deterministically 1, and v2 is h with probability
1/h and 0 with probability 1 − 1/h, for some arbitrarily large h. The prophet’s performance on
this instance is 2− 1/h. whereas any online algorithm, by either taking or not taking the first box,
can get no more value than 1.

2 Pandora Box Problem

In the Pandora Box problem, we again have n boxes, each box i containing a hidden value vi drawn
independently from a known distribution Fi. Again, we are allowed to pick only one box. Instead
of having the boxes arriving in an adversary order, we can choose the order in which to open the
box; also, we are allowed to retrieve a box which we opened and temporarily decided not to take
immediately. On each box i, there is also a cost ci ≥ 0: so in order to open box i, we must first pay
a cost ci. The Pandora Box problem asks for an algorithm that, given this information, decides on
a procedure that maximizes the expected utility, which is the value in the box we take minus all
the search costs we pay along the way. We are not allowed to take a box we did not open.

2.1 The index algorithm

For each box i, with its distribution Fi and search cost ci, if we were also offered another box which
deterministically contains a value v, how large should v be so that we are indifferent between (a)
opening box i first and then deciding which one to take, and (b) skipping box i and directly taking
the deterministic value?

The break-even value v is such that the expected additional value we obtain from opening box i
covers exactly the cost of opening it, i.e., E(vi−v)+ [=]ci. There is a unique solution to this equation.
Let θi denote this solution, and call it the index of box i.

The index algorithm uses the following procedure: Initialize by writing on each box its index.
Remove all boxes with negative indices. Among the remaining ones, open the box with the highest
index, and replace the index written on it by the value contained in it. If at any point the largest
number written on a box is a value (instead of an index), take that box and quit; otherwise open
a box with the currently highest index (breaking ties arbitrarily).

2.2 Optimality of the index algorithm

Theorem 2. Among all procedures, the index algorithm has the highest expected utility.

Proof. Consider any algorithm. For each box i, let Ii be the indicator variable for the event that
the algorithm opens box i, and Ai be the indicator variable for the event that the algorithm takes
box i. Then the algorithm’s expected utility is

∑
iE[Aivi−ciIi]. Recall that ci = Ev′i∼Fi

[(vi−θi)+].
So

Ev [Aivi − ciIi] = Ev

[
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[
(v′i − θi)+

]
· Ii
]
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[
Aivi − (vi − θi)+ · Ii

]
.

Replacing v′i by vi is crucial and subtle. They are from the distribution, but note that Ii depends
on v. The crucial observation is that Ii is independent from vi — whether an algorithm opens box i
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cannot be affected by what is actually contained in it. Now we upper bound the expected utility
of the algorithm, using the fact that Ai ≤ Ii:∑
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Since for any realization of v, we have
∑

iAi ≤ 1, so we have
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.

We argue that the index algorithm achieves exactly this upper bound. In this line of derivation,
there are two inequalities. The first inequality would be tight if the algorithm satisfies the following
property: whenever it opens a box and sees a value greater than the index written on the box, the
algorithm must take it. The index algorithm does satisfy this property. The second inequality is
satisfied if the box chosen by the algorithm always maximizes min(vi, θi). The index algorithm also
satisfies this.
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