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Abstract

We study revenue maximization in settings where agents’ values are interdependent: each
agent receives a signal drawn from a correlated distribution and agents’ values are functions of
all of the signals. We introduce a variant of the generalized VCG auction with reserve prices and
random admission, and show that this auction gives a constant approximation to the optimal
expected revenue in matroid environments. Our results do not require any assumptions on
the signal distributions, however, they require the value functions to satisfy a standard single-
crossing property and a concavity-type condition.
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1 Introduction

Revenue maximization, a.k.a. optimal auction design, is a fundamental goal in mechanism design.
The most common approach to the problem is Bayesian wherein it is assumed that players’ values
are drawn from prior distributions known to the designer. The seminal work of Myerson [24] on
this topic assumes the agents’ values are drawn from independent distributions. In this paper, we
consider settings in which this independence assumption is unreasonable. If the value of the item
derives from its resale value, such as a house, the values of the agents are likely to be correlated.
Yet another example is fashion, whether haute couture or fancy cars, where demand is highly
correlated. Likewise, when the value of the item derives from the potential for making money from
it, the values are correlated, or perhaps even common. The classical example is an auction for the
right to drill for oil in a certain location [36]. Note though that even in settings such as this where
the value is common, bidders might have different information about what that value actually is.
For example, the value of an oil lease depends on how much oil there actually is, and the different
bidders may have access to different assessments about this. Consequently, a bidder might change
her own estimate of the value of the oil lease given access to the information another bidder has.

The following model due to Milgrom and Weber [23] has become standard for auction design in
these correlated and common value settings, generally known as interdependent settings: [See also
17, 22]

• Each agent has a real-valued, private signal, say si for agent i. The set of signals s =
(s1, s2, . . . , sn) is assumed to be drawn from a known, correlated distribution.

The signals are meant to capture the information available to the agents about the item. For
example, in the setting of a painting, the signal could be information about the provenance
of the painting or private information from experts. In the setting of oil drilling rights, the
signals could be information that engineers have about the site based on geologic surveys,
etc.

• The value of the item to agent i is a function vi(s) of the information or signals of all agents.

For example, in the mineral rights model [36], each signal Si = V + Xi might be a noisy
version of the true value V of the oil field (say Xi is N(0, 1)), and vi(s) = E(V |s1, . . . , sn).

Another important case is when vi(s) = si+β
∑

j 6=i sj , for some β ≤ 1. This type of valuation
function captures settings where an agent’s value depends on his own personal appreciation
for the item (si) and on resale value (as reflected by the total appreciation of the other agents)
[24, 16].

Interdependent settings have received attention in the economics community for quite some
time [see 17].1 Perhaps the most notable results here are due to Crémer and McLean [8, 9] [see
also 20, 21, 27]. These papers consider single item auctions and show that if the prior distribution
from which s is drawn satisfies a type of full rank condition, and the valuation functions are known
and satisfy a single-crossing condition (see Section 2), then the auctioneer can construct an auction
that essentially extracts full surplus (that is, has expected revenue equal to E[maxi vi(S1, . . . , Sn)].

From a practical perspective, the Crémer-McLean auction is problematic in two significant ways:
First, the auction is not ex post individually rational. That is, after the fact, agents may regret

1Within the theoretical computer science community, interdependent settings have received far less attention and
most of that only in the last few years. [See, e.g. 28, 26, 13, 4, 1, 33, 29, 18].
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having participated, and indeed may end up being charged a very large amount to participate.
Second, the dependence on the signal distribution is complex in form and can be numerically
unstable. Moreover, agents need to know the prior distribution from which the signals are drawn.
For these reasons, this result has been criticized as being impractical [e.g., in 22].

These shortcomings have driven much recent progress in the understanding of optimal auctions.
Addressing the first issue, i.e., strengthening the requirement for individual rationality so that
bidders are guaranteed non-negative utilities under any circumstance, a series of recent papers
[32, 5, 6, 35, 18, 19] studies ex post equilibria,2 culminating in Roughgarden and Talgam-Cohen [29]’s
characterization of the expected revenue as the “conditional virtual surplus”. This characterization
was used to derive optimal auctions for symmetric matroid settings with various assumptions on
the distribution and the value functions (see Section 2 for details). In particular, for the general
interdependent setting, the value distribution is required to satisfy a monotone hazard rate (MHR)
condition, a property that holds for certain unimodal distributions with light tails.

In this work, we design auctions for a broad class of interdependent value settings that obtain
approximately optimal revenue in ex post equilibrium in the absence of any distributional
assumptions.

Our auctions are variants of the VCG auction with reserve prices. The VCG auction with
reserve prices is known to be approximately optimal in independent private value settings under
certain assumptions. Myerson’s characterization of the optimal auction implies that VCG with
monopoly reserve prices is optimal in the i.i.d. values setting under a matroid feasibility constraint.
In non-i.i.d. settings, the optimal auction can be complex and may be impractical. Hartline and
Roughgarden [15] initiated the study of VCG auctions with reserve prices, as a model for simple
and yet approximately optimal auctions.

For interdependent settings that satisfy a single-crossing condition (a condition also assumed
by Roughgarden and Talgam-Cohen [29] and virtually all literature on these settings), Li [18]
showed that a generalized notion of the VCG auction with appropriate reserve prices gives an e-
approximation to the optimal revenue for matroid settings with generalized MHR distributions.
Unfortunately, for more general distributions, such reserve-based VCG auctions perform poorly
(see example in Section 1.2 below).

We introduce a new variant of VCG auctions: a random admission phase followed by a VCG
auction with reserve prices. We show that this randomization preserves the incentive compatibility
and the approximately optimal performance of VCG auctions even when all restrictions on the
value distribution are lifted, although we will need a certain condition on the value function. As a
special case of our main result, we have:

Theorem 1.1. The randomized GVCG-L∗ auction described in Section 4 is ex post incentive com-
patible, individually rational, and obtains a constant fraction of the optimal revenue under a ma-
troid feasibility constraint, assuming that the valuation functions are additively separable functions
of signals, and satisfy the single-crossing condition.

Theorem 1.1 in fact holds for a larger class of valuation functions that includes, e.g., concave
functions of additively separable functions of signals (see Assumption (A.3) in Section 2). Although
Theorem 1.1 can be seen as a simple vs. optimal type of result, we emphasize that, for non-MHR

2Bidding truthfully is an ex post equilibrium if an agent does not regret having bid truthfully when the mechanism
terminates, given that other agents bid truthfully. In other words, bidding truthfully is a Nash equilibrium at the
end. See Section 2.
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value distributions, no optimal auctions or approximately optimal ones were previously known,
even for selling a single item.

We now describe our results in more detail.

1.1 Correlated Private Values

We first consider the special case where the values (vi := vi(s) = si) are privately known and
drawn from a correlated distribution F . The computational complexity of designing the revenue
maximizing mechanism in this setting at ex post Nash equilibrium3 under the assumption of ex
post individual rationality has been largely resolved. Papadimitiou and Pierrakos [26] proved that
the deterministic revenue maximization is computationally hard even with 3 bidders. In some
settings positive results were obtained: Dobzinski et al. [13] showed how to derive truthful-in-
expectation mechanisms via linear programming when the joint distribution of values is given
explicitly; Roughgarden and Talgam-Cohen [29] give optimal auctions for matroid settings under
the assumptions of affiliation and a strong version of regularity.

Lookahead auctions for a single item. Ronen [28] took the approximation approach, and
proposed the following intuitve lookahead auction: choose the highest bidder as the tentative winner
and then run an optimal auction for the highest bidder conditioning on all other bidders’ valuations
and the fact that this tentative winner’s valuation is above all others’. It is not hard to see that this
auction is dominant strategy incentive-compabible for correlated bidders. Moreover, with a simple
and elegant proof, Ronen showed that this auction gives at least half of the optimal revenue of any
single-item auction. Dobzinski et al. [13] later extended these to a more general class of lookahead
auctions with better approximation ratios.

Our first result generalizes the lookahead auction to the matroid setting for correlated bidders
in the most natural way, and shows that it is still a 2-approximation.

Theorem 1.2. The lookahead auction in Section 3 gives at least half of the optimal revenue in any
matroid setting for bidders with arbitrarily correlated valuations.

It is interesting to note that the lookahead auction (in both the single-item case and in our
generalization for the matroid case) is a special case of VCG-L auctions: A VCG-L auction [12, 18]
is an auction that first selects as tentative winners the bidders who would be winners in a VCG
auction, and then offers a take-it-or-leave-it price to each of these tentative winners, where the
price is the higher of the VCG price and a preset reserve price. In the lookahead auction, the
reserve price is determined optimally based on the conditional value distribution of the tentative
winner, conditioned on others’ revealed values and on being the tentative winner; We call this the
conditional monopoly reserve. In fact, the lookahead auction or VCG-L with conditional monopoly
reserves is the optimal among all VCG-L auctions.

1.2 General Interdependent Settings

General interdependent settings are far less understood than private value settings. Indeed, even
the more basic problem of maximizing social welfare is not straightforward: It is no longer possible
to design dominant-strategy auctions, since an agent’s value depends on all the signals, and so if,

3For correlated values, ex post equilibrium and dominant-strategy equilibrium coincide. See Section 2.
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say, agent i reports rubbish, agent j might win at a price above his value if he reports truthfully.
Hence, the standard approach is to try maximizing welfare at ex post equilibria. Unfortunately,
maximizing social welfare in an ex post equilibrium is also provably impossible unless the valuation
functions vi(s) satisfy a so-called single-crossing condition. This condition means, in essence, that
the influence of the highest bidder’s signal on her own value is at least as high as its influence on
the other high bidders’ values.4 When the single-crossing condition holds, there is a generalization
of VCG auctions that maximizes efficiency at ex post equilibrium for matroid settings [8, 9, 17, 2,
10, 18]: the mechanism asks agents to reveal their signals, computes values based on the reported
signals, and then runs a VCG-type auction on these values.

Returning to the goal of approximate revenue maximization, a generalization of VCG-L with
conditional monopoly reserves was proposed by Li [18]. This auction, which we will call Generalized
VCG-L with conditional monopoly reserves or GVCG-L∗ for short, is the following:

1. Ask agents to report their signals; compute agents’ values.

2. Choose the social welfare-maximizing set W , and determine the prices they would be charged
in the generalized VCG auction.

3. Offer each agent i in W a take-it-or-leave-it price which is the maximum of the price from
step (2), and the optimal price conditioned on i being in W and conditioned on the signals
of all the other agents.

This auction was shown by Li [18] to obtain an expected revenue which approximates the optimal
social welfare (and hence optimal revenue as well) for matroid settings under the assumption that
the conditional distributions satisfy the monotone hazard rate (MHR) condition. Li [18]’s analysis
relies on a property peculiar to MHR distributions, namely that the optimal revenue from a single
agent is close to the agent’s expected value.

Unfortunately, GVCG-L∗ does not give any constant approximation to the optimal revenue if
the conditional distributions are not MHR, even for single item settings. Consider, for instance, a
setting with two agents and one item where the first agent’s value is v1(s1, s2) = s1 and the second
agent’s value is v2(s1, s2) = s1 − ε. In this case, GVCG-L∗ always serves the first agent, obtaining
the same expected revenue as in a single agent auction with this agent alone, because the signal s2
contains no information and v2 is completely determined by s1 (incentive compability prevents
the use of v2 in extracting revenue from the first agent). The optimal auction, on the other hand
always serves the second agent obtaining her entire value (because s1 completely determines v2).
The gap between the revenues of these two auctions can be arbitrarily large if the distribution of
s1 is non-MHR. We note, in particular, that a revenue-maximizing auction must at times sell to
an agent whose value is not the largest. Accordingly, we add a stage of random admission at the
start of the auction, ensuring that the auction precludes the highest-value agent from winning with
constant probability, while still using her signal to help with setting the prices for the other agents.
This enables us to overcome the shortcoming of the GVCG-L∗ auction and to recover revenue from
all cases with constant probability.

1.3 Results in Independent Private Value Settings

Ronen [28]’s analysis of the lookahead auction uses first principles without appealing to Myerson’s

4 This implies that, given signals s−i, if agent i has the highest value when si = t∗, then agent i continues to have
the highest value for si > t∗.
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virtual values. Taking the same approach allows us to develop new insight into the design of simple
approximately-optimal auctions even in independent private value settings. In Appendix A we
rederive several known simple vs. optimal results [e.g., 15, 3] as quick consequences of the lookahead
auction. We single out one step of this in Appendix B, which may be of independent interest. This
concerns the VCG-E or VCG with eager reserves auction, which differs from the VCG-L auction
only in that it removes all bidders bidding below their reserve prices before picking the tentative
winners. We show that, when the reserve prices are at least the monopoly reserves, VCG-E is
always preferable than VCG-L, in terms of both social welfare and revenue (Theorem B.2).

1.4 Other Related Work

We briefly give further details on some of the related work.

The standard auctions. The revenue in Bayes-Nash equilibrium of the standard auctions (En-
glish, first price and second price) has been analyzed assuming a strong form of positive correlation
known as “affiliation” between the signals [23]. One of the most interesting results here is the
“linkage principle” which shows that in the symmetric, affiliated setting, the auctioneer benefits by
enabling the maximum amount of information to be revealed. A consequence is that open auctions
such as the English auction generally lead to higher prices than closed auctions such as sealed-bid
first price auctions.

Characterization of revenue in ex post equilibrium. As mentioned earlier, a series of papers,
including [32, 5, 6, 35, 18, 29, 19] [see 29, for a literature review], develop characterization results
for ex post equilibrium that show that the expected revenue in ex post equilibrium is equal to the
expected “conditional virtual surplus”.

Optimal auctions in ex post equilibrium. The characterization results just mentioned are
used to derive Myerson-like optimal auctions in some settings. The most broadly applicable results
here are due to Roughgarden and Talgam-Cohen [29] who use their characterization to derive
optimal auctions (a) for correlated values in matroid settings, with assumptions of regularity and
affiliation, and (b) for the general interdependent case when bidders are symmetric, have affiliated
signals, and satisfy a number of other conditions [19]. They also derive the first approximately-
optimal prior-independent results under the Lopomo assumptions for matroid feasibility constraints.
An auction is prior independent if it does not require knowing the distributions of agents’ values
[12].

Several of these papers [e.g., 19, 25, 6, 29] focus specifically on the English auction and derive
among other things that the English auction with a suitable reserve price is optimal among all ex
post IC and ex post IR auctions for symmetric settings with correlated values that satisfy regularity
and affiliation.

Bayes-Nash equilibrium versus ex post equilibrium. We refer the reader to Roughgarden
and Talgam-Cohen [29] for an excellent discussion of the tradeoffs between BIC mechanism design
and ex post IC mechanism design.
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2 Preliminaries

Single Dimensional Environments. In a single dimensional auction environment, an auction-
eer is offering a service (or goods) to n bidders, but with certain constraints on which subsets of
bidders can be simultaneously served. Formally, if we use [n] to denote the set of bidders, then
there is a set I ⊆ 2[n], such that the auctioneer can serve a subset S of bidders simultaneously if
and only if S is in I. For example, in a single item auction, I consists of all singleton subsets of [n]
and the empty set. We say the environment is downward closed if T ∈ I implies S ∈ I, ∀S ⊆ T .

A feasibility constraint I is called a matroid constraint if it is downward closed and for all
A,B ∈ I with |A| > |B|, there exists e ∈ A such that B ∪ {e} ∈ I. Matroid settings encompass
important types of markets, e.g. digital goods (when all subsets are feasible, i.e., I = 2[n]), k
unit auctions (when I contains all subsets of size at most k, i.e., is the k-uniform matroid), and
unit-demand bipartite matching markets (when I is a transversal matroid).

Signals, valuations and distributions. Each bidder i has a private one-dimensional signal si
representing the information available to him. The signal si is a realization of a random variable
Si. We will assume that the signals S = (S1, . . . , Sn) are drawn from a known correlated joint
distribution denoted by F . We denote the vector (s1, . . . , si−1, s

′
i, si+1, . . . , sn) by (s′i, s−i).

An agent’s valuation vi(s) is a function of all the signals. (In the special case of correlated or
independent private values, vi is equal to the signal si and in that case, we do not refer to signals,
but rather to the valuations vi themselves.) These valuation functions are assumed to be common
knowledge, and satisfy the following conditions:

(A.1) For all i, vi(s) is increasing in each coordinate and strictly increasing in si.

(A.2) The valuations satisfy the single-crossing condition: For each i 6= j, s−i, si, and s′i, with
s′i > si, vi(si, s−i) ≥ vj(si, s−i) implies vi(s

′
i, s−i) > vj(s

′
i, s−i). In other words, as soon as

agent i’s value crosses agent j’s value, then increasing i’s signal continues to keep vi larger
than vj .

(A.3) The responsiveness of an agent’s value to someone else’s signal decreases as the agent’s own

signal increases. Formally, for all i 6= j and for all s, ∂vi(s)
∂sj

is a non-increasing function of si.

Assumptions (A.1) and (A.2) are standard in interdependent value settings. Assumption (A.3)
is new. One broad class of value functions for which this assumption holds is additively separable
valuations, i.e. vi(s) =

∑
j gij(sj) where each gij(·) is a non-decreasing functions. More generally,

if values are concave functions of additively separable functions of signals, then assumption (A.3)
holds.

Auctions and Incentive Compatibility. An auction takes as input a signal from each bidder
and produces as output a pair of vector functions (x, p) defined on tuples of signals. At the signals
(s1, . . . , sn), the allocation function, xi(s1, . . . , sn), gives the probability with which bidder i receives
the service, and pi(s1, . . . , sn) , the payment function, denotes the expected payment bidder i makes
to the auctioneer. (The randomization here is in the mechanism.)

Bidder i’s utility from participating in the auction (x(·), p(·)), when the true signals are s, he
reports ri, and the other bidders report r−i, is vi(s)xi(r)− pi(r).
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Since bidders’ signals are private, they may misreport their signals to gain advantage. In
order to incentivize truthtelling, we study auctions that are incentive compatible. Three different
equilibrium notions, presented in order of decreasing strength, will come up in this paper:

• An auction is called dominant strategy incentive compatible (DSIC) if, for all i, true signals
(s1, . . . , sn), reported signals (r1, . . . , rn) and s′i:

vi(s)xi(si, r−i)− pi(si, r−i) ≥ vi(s)xi(s
′
i, r−i)− pi(s′i, r−i).

• An auction is called ex post incentive compatible (ex post IC, for short)5 if, for all i, true
signals (s1, . . . , sn) and s′i

vi(s)xi(s)− pi(s) ≥ vi(s)xi(s
′
i, s−i)− pi(s′i, s−i).

• An auction is called Bayesian incentive compatible (BIC) if, for all i, si and s′i,

E [vi(si,S−i)xi(si,S−i)− pi(si,S−i)] ≥ E
[
vi(si,S−i)xi(s

′
i,S−i)− pi(s′i,S−i)

]
.

In this paper we will focus only on incentive compatible auctions, and so we will use the terms bids
and signals, or, in the correlated case, valuations, interchangeably.

We will also focus exclusively on auctions that satisfy ex post individual rationality, that is each
agent’s final utility is always nonnegative.

Social Welfare and Revenue. The social welfare for serving a set T of bidders with signals s
is
∑

i∈T vi(s). The expected revenue of an auction is E[
∑

i pi(S)].

VCG and Generalized VCG auctions with lazy reserve prices. In a VCG auction [34,
7, 14], the winning set of bidders is the feasible set with the largest sum of valuations. Each of
them pays the critical valuation below which he would drop from the winning set. We will be
interested in the generalization of VCG that applies in interdependent matroid settings that satisfy
the single-crossing condition [8, 9, 17, 2, 10, 18].

Formally, in generalized VCG, the set W of winners is

W := argmaxT∈I
∑
i∈T

vi(s).

To define payments, let

s∗i = inf
si
{i ∈ argmaxT∈I

∑
j∈T

vj(si, s−i)}.

The VCG payment or VCG threshold for bidder i is then

pVCG
i := vi(s

∗
i , s−i).

This payment pVCG
i is defined solely by the signals of other bidders, the form of the valuation

functions, and the feasibility system I, and therefore is well defined for all bidders, including those

5All ex post IC auctions that we consider will, in fact, satisfy the ex post IC condition even after any internal
randomization in the auction.
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who lose the auction. For each bidder, the VCG threshold is the value above which he will win the
auction, and below which he loses.

By construction, the VCG auction maximizes social welfare. Moreover, for correlated settings,
VCG is dominant strategy incentive compatible, and for interdependent settings, generalized VCG
is ex post incentive compatible. (See Lemma 2.1.)

The main object of study in this paper is a generalized VCG-type auction with individual
reserve prices.

Definition 1 (Generalized VCG Auctions with Lazy Reserve Prices (GVCG-L)). In the generalized
VCG auction with lazy reserve prices (r1, . . . , rn), agents are asked to report their signals. Given
these signals, the mechanism first chooses a tentative subset W of winners as in the GVCG auction,
i.e., W = argmaxT∈I

∑
i∈T vi(s). Then each bidder i ∈ W is presented a take-it-or-leave-it price

set to be the higher of ri and pVCG
i .

Lemma 2.1. [18] For any interdependent setting with matroid feasibility, the Generalized VCG
auction with lazy reserve prices is ex post incentive compatible as long as for each i, the reserve price
ri is specified independently of si. For correlated, downward-closed settings, it is dominant-strategy
incentive compatible.

For completeness, we provide a brief proof sketch for this lemma.

Proof sketch. It suffices to prove that GVCG without reserve prices is ex post IC, in other
words, for all agents i, i is in the winning set W if and only if his value exceeds his threshold
pVCG
i (s−i). Recall that for a matroid constraint, the winning set W can be found by ordering

agents by decreasing value and greedily selecting a maximal feasible set in this order. Also, in a
matroid, the sizes of all maximal feasible subsets of a given set are equal. It follows then that
whether or not an agent i belongs to the set W depends only on the set of agents preceding i in
the ordering by decreasing value, and not on the relative ordering of those agents. Furthermore,
if an agent in the winning set W unilaterally raises his signal, the single-crossing property implies
that his rank in the ordering improves. Putting these two observations together we may conclude
that the agent belongs to W as long as his signal exceeds his threshold s∗i .

3 Correlated private values

For correlated private value single-item auctions, Ronen [28] proposed the lookahead auction which
he showed 2-approximates the optimal revenue. In fact, the lookahead auction is simply VCG-L
with conditional monopoly reserves, that is, where the reserve price for the highest bidder is set
optimally based on the conditional distribution of the agent’s value given others’ values and the
fact that the agent has the maximum value. We now give a natural extension of this result to
matroid settings: we show that VCG-L with conditional monopoly reserves continues to give a
2-approximation to expected revenue in these settings.

Theorem 3.1. (Restatement of Theorem 1.2.) The VCG-L auction with conditional monopoly
reserves obtains at least half of the optimal revenue under a matroid feasibility constraint when
agents have correlated private values.

To prove Theorem 3.1, we will need the next well-known theorem on matroids. [See, e.g. 31,
for a proof.]

8



Theorem 3.2. Let B1 and B2 be any two independent sets of a matroid M such that |B1| = |B2|.
There exists a bijective mapping g : B1 \B2 → B2 \B1 such that ∀e ∈ B1 \B2, B2 \ {e} ∪ {g(e)} is
independent in M.

Proof of Theorem 3.1. We use VCG-L∗ to denote VCG-L with conditional monopoly reserves. De-
note by Rev the expected revenue of the VCG-L∗ auction. The revenue of any optimal auction can
be split into two parts, H and L: H is the expected revenue from W , the set of tentative winners,
and L the revenue from the rest of the agents. Note that W here is random, determined by the
realization of bidders’ valuations, but H and L are expected values and not random. It suffices to
show that Rev is no less than both H and L.

Rev is clearly at least H, since the VCG-L∗ auction runs the optimal auction for each agent
in W , using all information available at that stage.

Let W ′ ⊆ [n]\W be an independent subset that maximizes the social welfare among bidders not
in W . The expectation of

∑
j∈W ′ vj is an upper bound for L, since the auction cannot charge more

than the agents’ valuations. Therefore it suffices to show Rev ≥ E[
∑

j∈W ′ vj ]. Since |W ′| ≤ |W |,
we can find a subset U ⊆W such that U ∪W ′ is independent and |U ∪W ′| = |W |. By Theorem 3.2
there exists a bijective mapping g : W \U →W ′ such that for any bidder i in W \U , W \{i}∪{g(i)}
is independent. Therefore, the VCG threshold pVCG

i for each i ∈ W \ U is at least vg(i). In the
second stage of the VCG-L∗ auction, if the auctioneer simply sets VCG payment for each agent
in W , a revenue of

∑
j∈W ′ vj would have been secured. By the optimality of the revenue from W

in the lookahead auction, we have Rev ≥ E[
∑

j∈W ′ vj ] ≥ L.

As we point out in Appendix A, it is not hard to see that, when the private valuations are
independently drawn from regular distributions, the reserve prices optimally set for an agent in W
will be either the VCG payment or the monopoly reserve, the optimal price one would set when
selling a single item to this single bidder. In this case, Theorem 3.1 directly implies that the
VCG-L auction with monopoly reserves 2-approximates the optimal auction, a result first shown
by Dhangwatnotai et al. [12]. In Appendix A and Appendix B we also present similarly quick
derivations of several other simple vs. optimal results from the literature.

The proof for Theorem 3.1, generalized from Ronen’s proof for the lookahead auction, is direct
and simple, without appealing to special properties of the distribution, nor any characterizations
of the expected revenue (e.g. as virtual surplus). We use this as a convenient building block in the
design and analysis of our mechanisms for interdependent value settings, which nonetheless call for
new ideas to overcome the plain lookahead auctions’ limitations.

4 General interdependent values

We now consider the general interdependent setting where agents’ values depend on their own as
well as on others’ signals. We consider a natural generalization of the mechanism presented in
the previous section for the correlated private values setting: generalized VCG-L with conditional
monopoly reserves, or GVCG-L∗. We saw an example in the introduction where the GVCG-L∗

mechanism does not always obtain a good approximation to the optimal revenue, even with just
a single item for sale, simple value functions, and “nice” signal distributions. We get around the
shortcomings in GVCG-L∗ by running the mechanism on a random subset of the agents. Impor-
tantly, we ensure that the agent with the highest value is left out of this subset with constant
probability, so that the mechanism can extract revenue from agents with lower values as well. We
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will now show that this modification is sufficient to obtain a constant factor approximation to
optimal revenue.

Before we describe our mechanisms formally, we introduce some notation and prove a bound
on the expected revenue of any ex post IC mechanism. Fix a vector of reported signals s (which
since we consider only incentive-compatible mechanisms are the true signals). We will use v(A) to
denote the total value of a subset A of agents:

∑
i∈A vi(s). Let W be the maximum value feasible

set (e.g., in the case of a matroid constraint, an optimal base in the matroid). Let W ′ be the
maximum value feasible set that is disjoint from W .

Lemma 4.1. Let W and W ′ be defined as above. Then the expected revenue of any ex post IC
mechanism is bounded by

E

[∑
i∈W

Ri + v(W ′)

]
where the expectation is over the randomness in signals; Ri is the expected revenue obtained by
offering to serve agent i at the monopoly reserve price for the conditional value distribution of i,
conditioned on s−i and on i being in W .

Proof. The revenue that any ex post IR mechanism can extract from agents not in W is at most
v(W ′). Therefore, we focus on the revenue that a mechanism can extract from the set W . This
revenue is bounded from above by the sum of revenues of n ex post IC mechanisms, the ith one
of which serves only agent i, and serves this agent only when this agent belongs to the set W .
Any single-agent ex post IC mechanism is a (random) posted price mechanism with a posted price
that depends on the reported signals of the other agents; therefore, the revenue obtained by such
a mechanism is at most Ri.

4.1 Single item setting

We now describe our mechanism for the single item setting. Consider the following mechanism that
we call randomized GVCG-L∗:

1. Ask each agent to report his signal.

2. Include each agent in a set Z with probability 2/3.

3. Run GVCG-L∗ on Z; when determining the reserve price for agent i, condition on
signals of all agents except i (including those not in Z).

Theorem 4.2. Consider a single item setting with interdependent values, where the value functions
satisfy assumptions (A.1)–(A.3). The randomized GVCG-L∗ is ex post IC and achieves a 4.5-
approximation to the optimal ex post IC mechanism.

Proof. Let s = (s1, s2, . . . , sn) denote the agents’ signals. Without loss of generality, suppose that
v1(s) ≥ v2(s) ≥ vj(s) for all j > 2. Define

s∗1 = argmins{v1(s, s−1) ≥ vj(s, s−1) ∀j > 1},

10



In other words, s∗1 is the smallest signal at which agent 1’s value is the highest, given s−1. Let
agent i be the one who determines the threshold s∗1, that is, v1(s

∗
1, s−1) = vi(s

∗
1, s−1). Note that i

may or may not be the agent with the second highest value at s.
Lemma 4.1 implies that

OPT ≤ R1 + v2(s1, s−1)

where R1 is the expected revenue from agent 1 conditioned on s1 ≥ s∗1, and s−1.
On the other hand, the expected revenue of randomized GVCG-L∗ is at least

Pr(1 ∈ Z, i ∈ Z) ·R1 + Pr(2 ∈ Z, 1 6∈ Z) ·R2 =
2

9
(2R1 +R2)

where R2 is the expected revenue from agent 2 conditioned on the fact that v2(s) is highest among
agents in Z, and conditioned on s−2. Therefore, randomized GVCG-L∗ recovers within a small
factor the first component of the optimal revenue.

We will now bound the second term in OPT , namely v2(s1, s−1), in terms of R1 and R2.
Observe that fixing s−1, agent 1’s value at his threshold s∗1 is at least as large as any agent’s value.
Furthermore, R1 extracts at least this threshold value. That is,

v2(s
∗
1, s−1) ≤ v1(s∗1, s−1) ≤ R1.

Next, using assumption (A.3) we get that

v2(s1, s−1)− v2(s∗1, s−1) ≤ v2(s1, 0, s−12)− v2(s∗1, 0, s−12) ≤ v2(s1, 0, s−12) ≤ R2

where the third inequality follows from noting that agent 2’s value conditioned on others’ signals
is at least v2(s1, 0, s−12). Therefore, we have v2(s1, s−1) ≤ R1 +R2, and OPT ≤ 2R1 +R2.

4.2 Matroid setting

Next we consider settings with a matroid feasibility constraint.6 We will run the GVCG-L∗ mech-
anism on a random subset Z of agents. GVCG-L∗ will select the maximum value feasible subset of
this set, call it T , and optimally price the agents in that set conditioned on others’ signals. Define
T ′ = T \W . Our goal in selecting Z is two-fold. First, we want to ensure that T contains agents
in W with high probability, so that we can recover (to some approximation) the Ri’s for agents i
in W . Second, we want to ensure that T ′ = T \W contains value comparable to that in W ′. We
will then be able to “charge” the value of every agent in T ′ to the revenue we recover from this
agent plus the revenue we recover from some agent in W . With these goals in mind, we define the
mechanism as follows.

1. Ask each agent to report his signal.

2. With probability 1/2 let Z be the set of all agents; and with probability 1/2 include
each agent independently in Z with probability 1/2.

3. Run GVCG-L∗ on Z; when determining the reserve price for an agent i, condition
on the signals of all agents except i (including those not in Z).

6We note that our approach also applies to knapsack constraints with the modification that in GVCG-L∗ instead
of picking the maximum value feasible set in the first step we greedily pick a maximal feasible set.
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The following two lemmas capture the properties that we require from T and T ′.

Lemma 4.3. E[v(T ′)] ≥ 1
8 E[v(W ′)].

Lemma 4.4. For any random T ′ there exists an injective mapping fT ′ from the elements of T ′ to
the elements of W such that for each j ∈ T ′ and i = fT ′(j), we have,

vj(s
∗
i , s−i) ≤ vi(s∗i , s−i).

Before proving the lemmas, we give a proof of our main theorem:

Theorem 4.5. Consider an interdependent values setting with a matroid feasibility constraint where
the value functions satisfy assumptions (A.1)–(A.3). The randomized GVCG-L∗ is ex post IC and
achieves a 18-approximation to the optimal ex post IC mechanism.

Proof. Recall that for an agent i ∈ W , Ri denotes the expected revenue we can obtain from this
agent by setting an optimal reserve price for him conditioned on the other agents’ signals and on
being in the set W . With probability 1/2 our mechanism runs GVCG-L∗ on all of the agents, and
therefore obtains this revenue Ri from every agent i ∈ W . With the remaining probability, the
mechanism obtains some revenue from agents in W and some revenue from agents in T ′ = T \W .
For agents j not in W , we can lower bound the revenue that the mechanism can collect from them
if they end up in T ′: this is the expected revenue obtained by optimally pricing agent j conditioned
on s−j ;

7 call this quantity R̃j .
We therefore get that the expected revenue of the mechanism is at least

1

2

∑
i∈W

Ri + E

∑
j∈T ′

R̃j

 .
On the other hand, recall that by Lemma 4.1 we can bound the optimal revenue as

OPT ≤
∑
i∈W

Ri + v(W ′).

We will now upperbound the second term in terms of the Ri’s and R̃j ’s. Fix a random choice of
T ′. Let j ∈ T ′ and i = fT ′(j), as defined in Lemma 4.4. Then

R̃j ≥ vj(0, s−j) ≥ vj(si, 0, s−ij)− vj(s∗i , 0, s−ij) ≥ vj(si, s−i)− vj(s∗i , s−i)

where the last inequality follows from assumption (A.3). But by Lemma 4.4, for that same i =
fT ′(j),

Ri ≥ vi(s∗i , s−i) ≥ vj(s∗i , s−i),

so
R̃j +Ri ≥ vj(s).

7Note that in this lower bound we do not condition on j being in set T ′; the extra conditioning can potentially
increase the expected revenue, but this increase is difficult to estimate because it depends on the random set Z.
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Finally, by Lemma 4.3,

v(W ′) ≤ 8 E

∑
j∈T ′

vj(s)


≤ 8 E

∑
j∈T ′

(R̃j +RfT ′ (j)
)

 .
Putting it together:

OPT ≤
∑
i∈W

Ri + v(W ′)

≤
∑
i∈W

Ri + 8 E

∑
j∈T ′

(R̃j +RfT ′ (j)
)


≤ 9

∑
i∈W

Ri + 8 E

∑
j∈T ′

R̃j

 ,
and we get an 18-approximation.

It remains to prove the lemmas, for which we will need the following fact whose proof can be
found e.g., in Schrijver [31].

Lemma 4.6 (Strong Basis Exchange). Let B and B′ be two bases of a matroid. Then for all
x ∈ B \B′, there is a y ∈ B′ \B such that both B − x+ y and B′ − y + x are bases.

Proof of Lemma 4.3. In step (2) with probability 1/2 we construct Z by sampling each
agent. Let us condition on this event. We will fix a particular order in which to sample elements
for Z and in the process inductively update a particular independent set. It will end up containing
all the elements of W ∩ Z, and each element of W ′ will be in it, and in Z, with probability 1/4.

Assume that |W ′| = |W |. (If not, extend W ′ to a full base using elements of W and adapt the
following arguments appropriately.) Fix an ordering on the elements of W , say a1 . . . , ar. We will
also be considering the elements of W ′ in a particular order b1, . . . , br to be determined.

As we sample elements for Z, we will inductively update two (ordered) sets of matroid elements
Ai and Bi that satisfy the following invariants:

• Ai and Bi are both bases.

• The sampling has been done only for elements {a1, . . . , ai} and {b1, . . . , bi}.

• The first i elements in Ai and Bi are the same.

• All elements in {a1, . . . , ai} ∩ Z are in Ai.

• Each element in {b1, . . . , bi} is in Z ∩Ai with probability 1/4.
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Initially A0 = W and B0 = W ′ satisfy the above invariants. Now suppose that Ai−1 and Bi−1 have
been constructed and satisfy the above invariants. Apply the strong basis exchange lemma to find
an element bi ∈ Bi−1 such that Ai−1 − ai + bi and Bi−1 − bi + ai are both bases.

Now toss the coin to determine if ai ∈ Z. If so, Ai := Ai−1 and Bi := Bi−1 − bi + ai. If ai 6∈ Z,
then Ai := Ai−1 − ai + bi and Bi := Bi−1. Finally toss the coin to determine if bi ∈ Z. It is easy
to see that all the required invariants are satisfied.

At the end of the process, consider the set A∗ = Ar ∩ Z (where r is the rank of the matroid).
Note that all of the agents in W ∩ Z belong to Ar, so they also belong to A∗. On the other hand,
the greedy algorithm for matroids includes all agents in W ∩ Z into T . So, A∗ \W is a candidate
for the set T ′ = T \W . We now note that A∗ \W contains sufficient value: by the invariant above,
every element of W ′ is in Ar ∩ Z with probability 1/4. Therefore we get:

E
[
v(T ′)

]
≥ E

[
v(W ′ ∩A∗)

]
=

1

4
v(W ′).

Removing the conditioning specified earlier yields the lemma.

Proof of Lemma 4.4. Let the rank of the matroid be r. Recall that |T | ≤ r and T ′ = T \W .
For now assume that T ′ is full rank. We construct the function fT ′ by showing that there is a
matching between W and T ′ such that for each i in W , its match j = M(i) ∈ T ′ has vj(s

∗
i , s−i) ≤

vi(s
∗
i , s−i).
To this end, construct a bipartite graph GW,T ′ where there is an edge from i ∈ W to j ∈ T ′ if

vj(s
∗
i , s−i) ≤ vi(s∗i , s−i).
Let Gi denote the neighbors of i ∈W in the graph, and Bi = T ′\Gi. We will use Hall’s theorem

to show that there is a perfect matching in the graph. Specifically, for any S ⊆ W , we will show
that |Γ(S)| ≥ |S| where Γ(S) are the neighbors of S.

Without loss of generality assume that the agents of W are indexed in order of decreasing value
at s (so their indices are 1, . . . , r). For all k ≤ r, and j < k, we have vj(s

∗
k, s−k) ≥ vk(s∗k, s−k). This

is because vj(s) ≥ vk(s), and the single-crossing condition ensures that agent k cannot be above j
at s∗k and end up at or below j at sk ≥ s∗k.

For each i, let Yi be the set of agents in W ∪ T ′ which have greater value than i at (s∗i , s−i).
Since s∗i is critical for i,

rank(Yi) < rank(Yi ∪ {i}). (1)

Now, let S = {i1, . . . , ik} (ordered in decreasing order of value at s), let B = ∩i∈SBi, and let Sj be
the first j− 1 elements of S. Then for each element ij of S, by submodularity of the rank function,
the fact that Sj ∪B ⊆ Yij and (1), we have

rank(Sj ∪B) < rank(Sj ∪B ∪ {ij}) and thus rank(Sj ∪B ∪ {ij}) = rank(Sj ∪B) + 1.

Induction on j then implies that rank(S ∪ B) = |S| + |B|. Since this is at most r, |B| ≤ r − |S|,
and so |Γ(S)| = |T ′| − |B| = r − |B| ≥ |S|.

To handle the case that T ′ is not full rank, simply augment it to a full basis using elements of
W , and show that there is a matching between W \ T ′ and T ′ by following the same argument.
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5 Conclusions and discussion

In the previous sections we showed that GVCG-L∗ provides constant factor approximations to the
optimal ex post IC revenue in interdependent settings under certain assumptions. There are several
directions for further work which we now discuss.

• Prior independence. In independent values settings it has been shown that under certain
assumptions (e.g., regularity of the value distributions) it is possible to design mechanisms
that do not require knowing the value distributions and yet obtain an approximation to the
optimal expected revenue. Such mechanisms are called prior-independent. One way of de-
signing a prior-independent mechanism, called the single-sample approach, is to use a reserve
price based mechanism (such as GVCG-L) and replace the reserve price by an independent
sample from the agent’s value distribution. The mechanisms that we design require knowing
the conditional distributions of agents’ values in order to determine an appropriate reserve
price. Is it possible to design prior-independent mechanisms in interdependent settings?

It is easy to see that assuming regularity of the conditional distribution a single-sample
approach works: we can replace the optimal reserve price for an agent in GVCG-L by a random
independent draw from the agent’s value distribution conditioned on others’ reported signals,
and still obtain a constant factor approximation to the optimal expected revenue. However,
this approach is unsatisfying. In independent value settings, if there are several agents with
identically distributed values, we can remove one of these agents at random from the auction
and use his value as the random reserve. In interdependent value settings, we cannot truely
“remove” an agent from the auction because her signal affects others’ values8.

Another approach to prior-independent mechanism design is to artificially limit supply [11,
30]. In the interdependent values context, we might ask, for instance: when agents are
symmetric and conditional value distributions satisfy regularity, does the VCG mechanism
with k/2 units for sale approximate the expected revenue of an optimal k-unit auction for
k ≥ 2?

• Relaxing the assumptions. In the absence of the single-crossing assumption, the VCG mech-
anism and its variants are no longer ex post incentive compatible. While it appears to be
challenging to characterize the optimal mechanism in this context, approximations may be
tractable. Likewise, beyond matroid feasibility constraints, VCG and its variants are no
longer necessarily ex post IC. Is it possible to approximate the optimal mechanism in this
case?

• Ex post IC versus Bayesian IC. In independent value settings with single-parameter agents,
Myerson shows that ex post IC mechanisms are as strong as BIC mechanisms in terms of
extracting revenue. In interdependent settings, Cremer and McLean show that BIC mecha-
nisms can extract the entire social welfare under mild assumptions, which can in general be
much larger than the optimal ex post IC revenue. However, Cremer and McLean’s mechanism
violates ex post individual rationality. Can BIC mechanisms obtain more revenue than ex
post IC mechanisms under an ex post IR constraint? Can we approximate this revenue?

8Roughgarden and Talgam-Cohen [29] show that under the so-called Lopomo assumptions, which includes strong
MHR and symmetry across agents, one can get a constant factor approximation by “reusing” the signal of an agent
to determine a random reserve without dropping the agent from the auction.
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A Simple vs. Optimal Results via Lookahead Auctions

In this appendix we give quick derivations for several results in the literature showing that mecha-
nisms simple in form approximates the optimal revenue.

Recall that a monopoly reserve price for a bidder (or rather, her value distribution) is the
optimal take-it-or-leave-it price that an auctioneer should set when selling the item to the bidder
alone. For bidder i, we denote her monopoly reserve price as rmon

i .

Theorem A.1. In general single-dimensional auction settings, when bidders’ private valuations
are drawn independently from regular distributions, the VCG-L auction with conditional monopoly
reserve prices is identical to the VCG-L auction with (unconditional) monopoly reserve prices.

Proof. In the lookahead auction, once a bidder i is in W , the auctioneer runs an optimal auction for
the bidder conditioning on the other bidders’ values and the fact i ∈W given these values. In the
independent value settings, this simply amounts to setting an optimal take-it-or-leave-it price for
the bidder conditioning on vi ≥ pVCG

i . We show that this optimal price is equal to max{pVCG
i , rmon

i .
With this, a quick comparison would confirm that the lookahead auction is identical with VCG-L
with monopoly reserves.

The distribution of vi, conditioning on vi ≥ pVCG
i is just Fi truncated at pVCG, i.e., F cond

i (v) =
Fi(v)−F (pVCG

i )

1−Fi(pVCG
i )

, for any v ≥ pVCG
i , and F cond

i (v) = 0 for any v < pVCG
i . Setting any price below pVCG

i

would be obviously suboptimal, and the revenue of setting a price of p ≥ pVCG
i is

p(1− F cond
i (p)) = p ·

(
1− Fi(p)− Fi(p

VCG
i )

1− Fi(pVCG
i )

)
= p(1− Fi(p)) ·

1

1− Fi(pVCG
i )

.

In words, for prices above pVCG
i , the conditional expected revenue is simply scaled up by a constant

factor of 1
1−Fi(pVCG

i )
from the unconditioned distribution. Therefore, if pVCG

i < rmon
i , the optimal

price to set for the conditional distribution is still rmon
i ; and if pVCG

i ≥ rmon
i , by regularity, the

expected revenue monotonically decreases as the price rises above pVCG
i ; therefore the optimal

price to set is pVCG
i itself.

Given Theorem 3.1, this immediately implies the following result by Dhangwatnotai et al. [12].

Corollary A.2 (12). In matroid settings where bidders’ valuations are drawn independently from
regular distributions, the VCG-L auction with monopoly reserve prices gives at least half of the
optimal revenue.

As another illustration of the usefulness between the lookahead auction and the reserve-based
VCG auctions, we use the analysis of the lookahead auction to give a short re-derivation for a result
by Azar et al. [3], a major building block in that work.

Let Ri(p) denote the expected revenue from bidder i by setting a price of p.

Theorem A.3 (Theorem 3.1 in 3). For each bidder i, let ri be a price drawn randomly from a
certain distribution, such that in the single-bidder setting, Eri [Ri(ri)] ≥ αRi(r

mon
i ). Then in all

downward closed settings where bidders’ valuations are drawn indepdendently from regular distri-
butions, VCG-L with random reserve prices (r1, . . . , rn) gets at least α-fraction of the revenue of
VCG-L with monopoly reserve prices (VCG-LM).
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Proof. Fixing a tentative winner i ∈ W , and condition on the VCG price pVCG
i . For a reserve

price ri, let ρ denote the ratio Ri(ri)/Ri(r
mon
i ), then we have E[ρ] ≥ α. Let ρcond denote the

ratio between the expected VCG-L revenue from using reserve price ri and that from VCG-LM,
conditioning on vi ≥ pVCG

i . It suffices to show E[ρcond] ≥ α. We will show ρcond ≥ ρ pointwise.
Since, as we have shown in the proof of ??, the revenue from all prices above pVCG

i is scaled up by
a factor of 1/(1− Fi(p

VCG
i )) when conditioning on vi > pVCG

i , for ri ≥ pVCG
i we have

ρcond =
Ri(ri)/(1− Fi(p

VCG
i )

Ri(max{pVCG
i , rmon

i })/(1− Fi(pVCG
i )

≥ Ri(ri)

Ri(rmon
i )

= ρ.

For ri < pVCG
i , if pVCG

i ≥ rmon
i , then both auctions will use pVCG

i , and ρcond = 1 ≥ ρ; if pVCG
i < rmon

i ,
we have

ρcond =
Ri(p

VCG
i )/(1− Fi(p

VCG
i ))

Ri(rmon
i )/(1− Fi(pVCG

i ))
=

Ri(p
VCG
i )

Ri(rmon
i )

≥ Ri(ri)

Ri(rmon
i )

= ρ.

The last inequality comes from regularity, i.e., ri < pVCG
i ≤ rmon

i implies Ri(ri) ≤ Ri(p
VCG
i ). This

completes the proof.

B VCG-L vs. VCG-E

In this appendix we compare the revenue of the VCG-E and VCG-L auctions with the same set of
reserves in for independent settings with regular distributions. Although we end the appendix with
Corollary B.3, a known result from ? ], the general comparison we make here concerns VCG-L
and VCG-E auctions with reserves that are not necessarily the monopoly reserves; in fact, even for
the monopoly reserve prices, the revenu dominance of VCG-E that we show here is not known in
the literature. Given the practicality and popularity of such reserve-based auctions, we believe this
comparison to be of independent interest.

Recall that the VCG-E is the auction that first removes all bidders bidding below their reserve
prices and then run VCG-L on the remaining bidders. It is not too hard to see that adding the first
stage improves the social welfare, but the the revenue analysis is nontrivial. We need to analyze
two counteractive aspects. On the one hand, VCG-E removes bidders that are not going to afford
their take-it-or-leave-it price later in the auction, and helps free up resources to be sold to the other
bidders; on the other hand, the existence of more bidders always creates more competition, and
makes the VCG payment for other bidders higher and therefore helps create revenue. Theorem B.2
shows that, when the reserve prices are monopoly reserves, the first force is the dominant one.

The analysis is not trivial, and we first present the case of single-item auctions as a warm-up.
Throughout this appendix we denote by rmon

i the monopoly reserve price for a bidder i, i.e., the
optimal posted price one would set when selling a single item to this bidder.

Theorem B.1. In a single item auction where bidders’ valuations are drawn independently from
regular distributions, the second price auction with eager monopoly reserve prices (VCG-EM) gen-
erates weakly more revenue than the second price auction with lazy monopoly reserve prices (VCG-
LM).

Proof. The key idea of the proof is to consider the expected revenue from each bidder, conditioning
on the other bidders’ valuations. We calculate the conditional expected revenues from the two auc-
tions and compare them. The computation of the conditional revenue does not assume conditions
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on the reserve price or the valuation distribution; only in the last step do we use the property of
monopoly reserves and the valuation distribution’s regularity.

Fix a bidder i, we condition on all other bidders’ valuations. Denote by hL−i the highest valuation
among these other bidders, i.e., hL−i = maxj{vj |j 6= i}. Denote by hE−i the highest valuation among
bidders except i who bid above their reserve prices, i.e., hE−i = maxj{vj | j 6= i, vj ≥ rj}. Clearly,
hL−i ≥ hE−i.

When hL−i ≤ ri, the revenue extracted from bidder i is exactly the same in VCG-E and VCG-L,
because in both auctions, bidder i will make a payment if and only if his bid is at least ri, in which
case he pays ri. Therefore we need only consider the case hL−i > ri.

In VCG-L, bidder i makes a payment of hL−i if and only if his valuation is above hL−i (since
hL−i > ri). The expected revenue from him is then hL−i(1− Fi(h

L
−i)). In VCG-E, bidder i makes a

payment if and only if his valuation is above both ri and hE−i, and the payment is pEi = max{ri, hE−i}.
The expected revenue from i is therefore pEi (1− Fi(p

E
i )). Note that hL−i ≥ max{ri, hE−i} = pEi .

But the revenues hL−i(1− Fi(h
L
−i)) and pEi (1− Fi(p

E
i )) are simply the expected revenue we get

by setting a price of hL−i or pEi to bidder i, respectively. By regularity of the valuation distribution,
the expected revenue monotonically decreases as we raise the price above the monopoly reserve.
Since hL−i ≥ pEi ≥ ri = rmon

i , we have

hL−i(1− Fi(h
L
−i)) ≤ pEi (1− Fi(p

E
i )).

The above is a conditional analysis, but we see that the expected revenue in VCG-LM from
each bidder i is no more than the expected revenue in VCG-EM from the same bidder, no matter
what the other bidders bid. Our theorem immediately follows.

Theorem B.2. For independent private value settings with matroid feasibility constraints and
regular valuation distributions, the VCG-E auction has weakly better social welfare than VCG-L,
and when the reserves are at least the monopoly reserves, the VCG-E auction also obtains weakly
more revenue than VCG-L.

Proof. As in the proof of Theorem B.1, we focus on the expected revenue from a fixed bidder i,
conditioning on all other bidders’ valuations. Let pVCGL

i and pVCGE
i denote the VCG payment for

bidder i in VCG-L and VCG-E, respectively. (Note that the actual payment to be made by bidder i
in these auctions is the higher of the reserve ri and the VCG threshold; but we will focus mostly
on the VCG thresholds in this proof.) The key step is to show pVCGL

i ≥ pVCGE
i . Recall that in

VCG-E, bidders with valuations below their reserve prices are excluded from both the allocation
and payment calculation. Effectively, such bidders’ bids are replaced by 0 in the calculation of
VCG payments. This constitutes the only difference in computing pVCGL

i and pVCGE
i . It therefore

suffices to show that bidder i’s VCG payment weakly decreases as other bidders’ bids are zeroed
out.

We show this by expressing pVCGL
i and pVCGE

i in terms of a submodular function. Define a set
function f : 2[n] → R by

f(S) = max
T⊆S,T∈I

∑
j∈T

v′j ,

where v′j = vj for j 6= i and v′i =
∑

j 6=i vj + 1. Then pVCGL
i = f([n] \ {i}) − (f([n] − v′i). This

is because f([n] \ {i}) represents the social welfare of the other bidders if i were not present, and
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f([n])− v′i represents the social welfare of the other bidders if i were to be a winner (v′i is set high
enough such that the optimal set has to include i). The difference between the two is then the
externality that i imposes on the other bidders by his winning, and therefore is equal to the VCG
threshold pVCGL

i . Similarly, let U denote the set of bidders whose valuations are above their reserve
prices, i.e., U = {j | vj ≥ rj}, then pVCGE

i = f(U)− (f(U ∪ {i})− v′i).
f is defined to be the result of a linear maximization over a matroid, and is well known to

be submodular. Therefore, as U ⊆ [n], f([n]) − f([n] \ {i}) ≤ f(U ∪ {i}) − f(U). This gives
pVCGL
i ≥ pVCGE

i .
With this, the proof to Theorem B.1 easily generalizes by replacing hL−i and hE−i with pVCGL

i

and pVCGE
i , respectively, and we omit the rest of the proof.

Corollary B.3 (15). In matroid settings where bidders’ valuations are drawn independently from
regular distributions, the VCG-E auction with monopoly reserve prices gives at least half of the
optimal revenue.

Remark 1. For more general environments (even downward closed), it need not be true that pVCGL
i

is at least pVCGE
i . For example, consider I = {∅, {1}, {2}, {1, 2}, {3}}. In this feasibility system,

bidder 1’s VCG payment weakly increases when v2 decreases. So pVCGL
1 can be lower than pVCGE

1 .
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