Learning Goals

- Streaming Algorithms
- Idea of AMS
- k-wise Independence

Streaming Model

- Sometimes a device with limited storage processes a huge amount of data and must return statistics

Streaming Model

- Sometimes a device with limited storage processes a huge amount of data and must return statistics
- A network switch has a limited memory, and network traffic "streams" through it
- At the end of the day, we may be interested in statistics such as
- How many different requests have there been?
- What is the most frequent request?
- Variance of the package sizes?

Streaming Model

- Sometimes a device with limited storage processes a huge amount of data and must return statistics
- A network switch has a limited memory, and network traffic "streams" through it
- At the end of the day, we may be interested in statistics such as
- How many different requests have there been?
- What is the most frequent request?
- Variance of the package sizes?
- Input: a sequence of indices $i_{1}, \ldots, i_{n} \in\{1, \cdots, d\}$

Streaming Model

- Sometimes a device with limited storage processes a huge amount of data and must return statistics
- A network switch has a limited memory, and network traffic "streams" through it
- At the end of the day, we may be interested in statistics such as
- How many different requests have there been?
- What is the most frequent request?
- Variance of the package sizes?
- Input: a sequence of indices $i_{1}, \ldots, i_{n} \in\{1, \cdots, d\}$
- Frequency vector: $x \in \mathbb{Z}^{d}$, with

$$
x_{j}:=\left|\left\{k: i_{k}=j\right\}\right| .
$$

Streaming Model

- Sometimes a device with limited storage processes a huge amount of data and must return statistics
- A network switch has a limited memory, and network traffic "streams" through it
- At the end of the day, we may be interested in statistics such as
- How many different requests have there been?
- What is the most frequent request?
- Variance of the package sizes?
- Input: a sequence of indices $i_{1}, \ldots, i_{n} \in\{1, \cdots, d\}$
- Frequency vector: $x \in \mathbb{Z}^{d}$, with

$$
x_{j}:=\left|\left\{k: i_{k}=j\right\}\right|
$$

- Output: certain statistic of x, such as $\|x\|_{p},\|x\|_{0}$, etc.

Streaming Model

- Sometimes a device with limited storage processes a huge amount of data and must return statistics
- A network switch has a limited memory, and network traffic "streams" through it
- At the end of the day, we may be interested in statistics such as
- How many different requests have there been?
- What is the most frequent request?
- Variance of the package sizes?
- Input: a sequence of indices $i_{1}, \ldots, i_{n} \in\{1, \cdots, d\}$
- Frequency vector: $x \in \mathbb{Z}^{d}$, with

$$
x_{j}:=\left|\left\{k: i_{k}=j\right\}\right|
$$

- Output: certain statistic of x, such as $\|x\|_{p},\|x\|_{0}$, etc.
- The algorithm must use only $O(\log d)$ space.

Streaming Model

- Sometimes a device with limited storage processes a huge amount of data and must return statistics
- A network switch has a limited memory, and network traffic "streams" through it
- At the end of the day, we may be interested in statistics such as
- How many different requests have there been?
- What is the most frequent request?
- Variance of the package sizes?
- Input: a sequence of indices $i_{1}, \ldots, i_{n} \in\{1, \cdots, d\}$
- Frequency vector: $x \in \mathbb{Z}^{d}$, with

$$
x_{j}:=\left|\left\{k: i_{k}=j\right\}\right|
$$

- Output: certain statistic of x, such as $\|x\|_{p},\|x\|_{0}$, etc.
- The algorithm must use only $O(\log d)$ space.
- We usually allow some error in the output

AMS

- Alon, Matias, Szegedy studied in 1996 the streaming problem for $\|x\|_{2}=\left(\sum_{i} x_{i}^{2}\right)^{1 / 2}$, for which they won the Gödel prize

AMS

- Alon, Matias, Szegedy studied in 1996 the streaming problem for $\|x\|_{2}=\left(\sum_{i} x_{i}^{2}\right)^{1 / 2}$, for which they won the Gödel prize
- Naïve solution using JL-transform:

AMS

- Alon, Matias, Szegedy studied in 1996 the streaming problem for $\|x\|_{2}=\left(\sum_{i} x_{i}^{2}\right)^{1 / 2}$, for which they won the Gödel prize
- Naïve solution using JL-transform:
- Maintain $L \in \mathbb{R}^{t \times d}$ whose entries are i.i.d. from $\mathcal{N}\left(0, \frac{1}{t}\right)$.

AMS

- Alon, Matias, Szegedy studied in 1996 the streaming problem for $\|x\|_{2}=\left(\sum_{i} x_{i}^{2}\right)^{1 / 2}$, for which they won the Gödel prize
- Naïve solution using JL-transform:
- Maintain $L \in \mathbb{R}^{t \times d}$ whose entries are i.i.d. from $\mathcal{N}\left(0, \frac{1}{t}\right)$.
- Initiate $y=0 \in \mathbb{R}^{t}$.

AMS

- Alon, Matias, Szegedy studied in 1996 the streaming problem for $\|x\|_{2}=\left(\sum_{i} x_{i}^{2}\right)^{1 / 2}$, for which they won the Gödel prize
- Naïve solution using JL-transform:
- Maintain $L \in \mathbb{R}^{t \times d}$ whose entries are i.i.d. from $\mathcal{N}\left(0, \frac{1}{t}\right)$.
- Initiate $y=0 \in \mathbb{R}^{t}$.
- When we see $i_{k}=j$, add the j-th column of L to y.

AMS

- Alon, Matias, Szegedy studied in 1996 the streaming problem for $\|x\|_{2}=\left(\sum_{i} x_{i}^{2}\right)^{1 / 2}$, for which they won the Gödel prize
- Naïve solution using JL-transform:
- Maintain $L \in \mathbb{R}^{t \times d}$ whose entries are i.i.d. from $\mathcal{N}\left(0, \frac{1}{t}\right)$.
- Initiate $y=0 \in \mathbb{R}^{t}$.
- When we see $i_{k}=j$, add the j-th column of L to y.
- Return $\|y\|$.

AMS

- Alon, Matias, Szegedy studied in 1996 the streaming problem for $\|x\|_{2}=\left(\sum_{i} x_{i}^{2}\right)^{1 / 2}$, for which they won the Gödel prize
- Naïve solution using JL-transform:
- Maintain $L \in \mathbb{R}^{t \times d}$ whose entries are i.i.d. from $\mathcal{N}\left(0, \frac{1}{t}\right)$.
- Initiate $y=0 \in \mathbb{R}^{t}$.
- When we see $i_{k}=j$, add the j-th column of L to y.
- Return $\|y\|$.
- Guarantee: for any $\delta>0$, if we set $t=O\left(\log \left(\frac{1}{\delta}\right) / \epsilon^{2}\right)$, with probability at least $1-\delta$, we have $(1-\epsilon)\|x\| \leq\|y\| \leq(1+\epsilon)\|x\|$.

AMS

- Alon, Matias, Szegedy studied in 1996 the streaming problem for $\|x\|_{2}=\left(\sum_{i} x_{i}^{2}\right)^{1 / 2}$, for which they won the Gödel prize
- Naïve solution using JL-transform:
- Maintain $L \in \mathbb{R}^{t \times d}$ whose entries are i.i.d. from $\mathcal{N}\left(0, \frac{1}{t}\right)$.
- Initiate $y=0 \in \mathbb{R}^{t}$.
- When we see $i_{k}=j$, add the j-th column of L to y.
- Return $\|y\|$.
- Guarantee: for any $\delta>0$, if we set $t=O\left(\log \left(\frac{1}{\delta}\right) / \epsilon^{2}\right)$, with probability at least $1-\delta$, we have $(1-\epsilon)\|x\| \leq\|y\| \leq(1+\epsilon)\|x\|$.
- Issue: we must store $t \times d$ real numbers drawn from a Gaussian distribution!

AMS

- Alon, Matias, Szegedy studied in 1996 the streaming problem for $\|x\|_{2}=\left(\sum_{i} x_{i}^{2}\right)^{1 / 2}$, for which they won the Gödel prize
- Naïve solution using JL-transform:
- Maintain $L \in \mathbb{R}^{t \times d}$ whose entries are i.i.d. from $\mathcal{N}\left(0, \frac{1}{t}\right)$.
- Initiate $y=0 \in \mathbb{R}^{t}$.
- When we see $i_{k}=j$, add the j-th column of L to y.
- Return $\|y\|$.
- Guarantee: for any $\delta>0$, if we set $t=O\left(\log \left(\frac{1}{\delta}\right) / \epsilon^{2}\right)$, with probability at least $1-\delta$, we have $(1-\epsilon)\|x\| \leq\|y\| \leq(1+\epsilon)\|x\|$.
- Issue: we must store $t \times d$ real numbers drawn from a Gaussian distribution!
- Sampling them anew each time does not work - we must use the same linear transform for all the indices.

Reducing the Memory Needed

- We have an algorithm that unfortunately needs to store too much "randomness"

Reducing the Memory Needed

- We have an algorithm that unfortunately needs to store too much "randomness"
- We were in a similar situation when we thought about hashing.

Reducing the Memory Needed

- We have an algorithm that unfortunately needs to store too much "randomness"
- We were in a similar situation when we thought about hashing.
- The solution there was that we weakened the requirement on randomness (universal hashing), and have in return hash functions that take less space to store

Reducing the Memory Needed

- We have an algorithm that unfortunately needs to store too much "randomness"
- We were in a similar situation when we thought about hashing.
- The solution there was that we weakened the requirement on randomness (universal hashing), and have in return hash functions that take less space to store
- We had a small seed of randomness, and used that to grow a whole hashing function

Reducing the Memory Needed

- We have an algorithm that unfortunately needs to store too much "randomness"
- We were in a similar situation when we thought about hashing.
- The solution there was that we weakened the requirement on randomness (universal hashing), and have in return hash functions that take less space to store
- We had a small seed of randomness, and used that to grow a whole hashing function
- Let's try something similar.

Reducing the Memory Needed

- We have an algorithm that unfortunately needs to store too much "randomness"
- We were in a similar situation when we thought about hashing.
- The solution there was that we weakened the requirement on randomness (universal hashing), and have in return hash functions that take less space to store
- We had a small seed of randomness, and used that to grow a whole hashing function
- Let's try something similar.
- Recall the idea behind JL: if G_{1}, \cdots, G_{d} are i.i.d. from $\mathcal{N}(0,1)$, then $\sum_{i} G_{i} x_{i} \sim \mathcal{N}\left(0,\|x\|^{2}\right)$.

Reducing the Memory Needed

- We have an algorithm that unfortunately needs to store too much "randomness"
- We were in a similar situation when we thought about hashing.
- The solution there was that we weakened the requirement on randomness (universal hashing), and have in return hash functions that take less space to store
- We had a small seed of randomness, and used that to grow a whole hashing function
- Let's try something similar.
- Recall the idea behind JL: if G_{1}, \cdots, G_{d} are i.i.d. from $\mathcal{N}(0,1)$, then $\sum_{i} G_{i} x_{i} \sim \mathcal{N}\left(0,\|x\|^{2}\right)$.
- In general, if G_{1}, \cdots, G_{d} are independent random variables, then $\operatorname{Var}\left[\sum_{i} G_{i} x_{i}\right]=\sum_{i} x_{i}^{2} \operatorname{Var}\left[G_{i}\right]$.

Proof of Claim

Claim

If G_{1}, \cdots, G_{d} are independent random variables, then $\operatorname{Var}\left[\sum_{i} G_{i} x_{i}\right]=\sum_{i} x_{i}^{2} \operatorname{Var}\left[G_{i}\right]$.

Proof of Claim

Claim

If G_{1}, \cdots, G_{d} are independent random variables, then
$\operatorname{Var}\left[\sum_{i} G_{i} x_{i}\right]=\sum_{i} x_{i}^{2} \operatorname{Var}\left[G_{i}\right]$.

Proof.

$$
\begin{aligned}
& \operatorname{Var}\left[\sum_{i} G_{i} x_{i}\right]=\mathbf{E}\left[\left(\sum_{i} G_{i} x_{i}-\mathbf{E}\left[\sum_{i} G_{i} x_{i}\right]\right)^{2}\right] \\
& =\sum_{i} \mathbf{E}\left[\left(G_{i} x_{i}-\mathbf{E}\left[G_{i} x_{i}\right)^{2}\right]+\sum_{i \neq j} \mathbf{E}\left[\left(G_{i} x_{i}-\mathbf{E}\left[G_{i} x_{j}\right]\right) \cdot\left(G_{j} x_{j}-\mathbf{E}\left[G_{j} x_{j}\right]\right)\right]\right. \\
& =\sum_{i} x_{i}^{2} \operatorname{Var}\left[G_{i}\right]+\sum_{i \neq j} \mathbf{E}\left[G_{i} x_{i}-\mathbf{E}\left[G_{i} x_{i}\right]\right] \cdot \mathbf{E}\left[G_{j} x_{j}-\mathbf{E}\left[G_{j} x_{j}\right]\right] \\
& =\sum_{i} x_{i}^{2} \operatorname{Var}\left[G_{i}\right] .
\end{aligned}
$$

Pairwise Independence

The only place where we used independence was for $i \neq j$, $\mathbf{E}\left[G_{i} G_{j}\right]=\mathbf{E}\left[G_{i}\right] \mathbf{E}\left[G_{j}\right]$. But this is much weaker than requiring mutual independence for all G_{1}, \cdots, G_{n}.

Pairwise Independence

The only place where we used independence was for $i \neq j$, $\mathbf{E}\left[G_{i} G_{j}\right]=\mathbf{E}\left[G_{i}\right] \mathbf{E}\left[G_{j}\right]$. But this is much weaker than requiring mutual independence for all G_{1}, \cdots, G_{n}.

Definition

Random variables X_{1}, \cdots, X_{n} are said to be pairwise independent if for any $i \neq j, X_{i}$ and X_{j} are independent, i.e., for any a, b, $\operatorname{Pr}\left[X_{i}=a \wedge X_{j}=b\right]=\operatorname{Pr}\left[X_{i}=a\right] \cdot \operatorname{Pr}\left[x_{j}=b\right]$.

Pairwise Independence

The only place where we used independence was for $i \neq j$, $\mathbf{E}\left[G_{i} G_{j}\right]=\mathbf{E}\left[G_{i}\right] \mathbf{E}\left[G_{j}\right]$. But this is much weaker than requiring mutual independence for all G_{1}, \cdots, G_{n}.

Definition

Random variables X_{1}, \cdots, X_{n} are said to be pairwise independent if for any $i \neq j, X_{i}$ and X_{j} are independent, i.e., for any a, b, $\operatorname{Pr}\left[X_{i}=a \wedge X_{j}=b\right]=\operatorname{Pr}\left[X_{i}=a\right] \cdot \operatorname{Pr}\left[x_{j}=b\right]$.

In fact, we showed

Claim

If G_{1}, \cdots, G_{d} are pairwise independent random variables, then $\operatorname{Var}\left[\sum_{i} G_{i} x_{i}\right]=\sum_{i} x_{i}^{2} \operatorname{Var}\left[G_{i}\right]$.

Example of Pairwise Independent Random Variables

Let our sample space be $\{1,2,3,4\}$, each outcome having probability $\frac{1}{4}$.

Example of Pairwise Independent Random Variables

Let our sample space be $\{1,2,3,4\}$, each outcome having probability $\frac{1}{4}$.
Let Y_{1} take values $0,0,1,1$ for the four outcomes, respectively.

Example of Pairwise Independent Random Variables

Let our sample space be $\{1,2,3,4\}$, each outcome having probability $\frac{1}{4}$.
Let Y_{1} take values $0,0,1,1$ for the four outcomes, respectively.
Let Y_{2} take values $0,1,1,0$ for the four outcomes, respectively.

Example of Pairwise Independent Random Variables

Let our sample space be $\{1,2,3,4\}$, each outcome having probability $\frac{1}{4}$.
Let Y_{1} take values $0,0,1,1$ for the four outcomes, respectively.
Let Y_{2} take values $0,1,1,0$ for the four outcomes, respectively. Let Y_{3} take values $0,1,0,1$ for the four outcomes, respectively.

Example of Pairwise Independent Random Variables

Let our sample space be $\{1,2,3,4\}$, each outcome having probability $\frac{1}{4}$.
Let Y_{1} take values $0,0,1,1$ for the four outcomes, respectively.
Let Y_{2} take values $0,1,1,0$ for the four outcomes, respectively. Let Y_{3} take values $0,1,0,1$ for the four outcomes, respectively. Then Y_{1}, Y_{2}, Y_{3} are pairwise independent but not mutually independent.

Construction of Pairwise Independent Hashing

- Recall our construction of universal hashing:
- for a prime number q, let \mathbb{F}_{q} denote the equivalent classes of $0, \ldots, q-1$ $\bmod q$. All operations below are understood to be $\bmod q$.
- Let U be \mathbb{F}_{q}^{m}, for any $\vec{s}=\left(s_{1}, \ldots, s_{m}\right) \in \mathbb{F}_{q}^{m}$, define hash function

$$
h_{\bar{s}}\left(u=\left(u_{1}, \ldots, u_{m}\right)\right):=\sum_{i} s_{i} u_{i} .
$$

Construction of Pairwise Independent Hashing

- Recall our construction of universal hashing:
- for a prime number q, let \mathbb{F}_{q} denote the equivalent classes of $0, \ldots, q-1$ $\bmod q$. All operations below are understood to be $\bmod q$.
- Let U be \mathbb{F}_{q}^{m}, for any $\vec{s}=\left(s_{1}, \ldots, s_{m}\right) \in \mathbb{F}_{q}^{m}$, define hash function

$$
h_{\bar{s}}\left(u=\left(u_{1}, \ldots, u_{m}\right)\right):=\sum_{i} s_{i} u_{i} .
$$

- We can see this as a random number generator: \vec{s} is the seed, drawn uniformly at random from $\mathbb{F}_{q}^{k} ; u$ is arbitrary and fixed in \mathbb{F}_{q}^{k}.

Construction of Pairwise Independent Hashing

- Recall our construction of universal hashing:
- for a prime number q, let \mathbb{F}_{q} denote the equivalent classes of $0, \ldots, q-1$ $\bmod q$. All operations below are understood to be $\bmod q$.
- Let U be \mathbb{F}_{q}^{m}, for any $\vec{s}=\left(s_{1}, \ldots, s_{m}\right) \in \mathbb{F}_{q}^{m}$, define hash function

$$
h_{\vec{s}}\left(u=\left(u_{1}, \ldots, u_{m}\right)\right):=\sum_{i} s_{i} u_{i}
$$

- We can see this as a random number generator: \vec{s} is the seed, drawn uniformly at random from $\mathbb{F}_{q}^{k} ; u$ is arbitrary and fixed in \mathbb{F}_{q}^{k}.
- Consider the case $m=1$. For any $b \in \mathbb{F}_{q}, \operatorname{Pr}_{s}\left[h_{s}(u)=b\right]=\frac{1}{q}$.

Construction of Pairwise Independent Hashing

- Recall our construction of universal hashing:
- for a prime number q, let \mathbb{F}_{q} denote the equivalent classes of $0, \ldots, q-1$ $\bmod q$. All operations below are understood to be $\bmod q$.
- Let U be \mathbb{F}_{q}^{m}, for any $\vec{s}=\left(s_{1}, \ldots, s_{m}\right) \in \mathbb{F}_{q}^{m}$, define hash function

$$
h_{\vec{s}}\left(u=\left(u_{1}, \ldots, u_{m}\right)\right):=\sum_{i} s_{i} u_{i}
$$

- We can see this as a random number generator: \vec{s} is the seed, drawn uniformly at random from $\mathbb{F}_{q}^{k} ; u$ is arbitrary and fixed in \mathbb{F}_{q}^{k}.
- Consider the case $m=1$. For any $b \in \mathbb{F}_{q}, \operatorname{Pr}_{s}\left[h_{s}(u)=b\right]=\frac{1}{q}$.
- Now if we sample independent s_{1}, s_{2} uniformly from \mathbb{F}_{q}, then for any $u \in \mathbb{F}_{q}, h_{s_{1}, s_{2}}(u):=s_{1} u+s_{2}$ is a random number on \mathbb{F}_{q}.

Claim

Random variables $h_{s_{1}, s_{2}}(1), \cdots, h_{s_{1}, s_{2}}(q-1)$ are pairwise independent random variables, each distributed uniformly on \mathbb{F}_{q}.

Claim

Random variables $h_{s_{1}, s_{2}}(1), \cdots, h_{s_{1}, s_{2}}(q-1)$ are pairwise independent random variables, each distributed uniformly on \mathbb{F}_{q}.

Proof.

For any $b_{1}, b_{2} \in \mathbb{F}_{q}$, and for any $u \neq v \in \mathbb{F}_{q}$, the equation

$$
\left\{\begin{array}{l}
s_{1} u+s_{2}=b_{1} \\
s_{1} v+s_{2}=b_{2}
\end{array} \Rightarrow\left(\begin{array}{ll}
1 & u \\
1 & v
\end{array}\right) \cdot\binom{s_{1}}{s_{2}}=\binom{b_{1}}{b_{2}}\right.
$$

has a unique solution (since the coefficient matrix is full rank for $u \neq v$.)

Claim

Random variables $h_{s_{1}, s_{2}}(1), \cdots, h_{s_{1}, s_{2}}(q-1)$ are pairwise independent random variables, each distributed uniformly on \mathbb{F}_{q}.

Proof.

For any $b_{1}, b_{2} \in \mathbb{F}_{q}$, and for any $u \neq v \in \mathbb{F}_{q}$, the equation

$$
\left\{\begin{array}{l}
s_{1} u+s_{2}=b_{1} \\
s_{1} v+s_{2}=b_{2}
\end{array} \Rightarrow\left(\begin{array}{ll}
1 & u \\
1 & v
\end{array}\right) \cdot\binom{s_{1}}{s_{2}}=\binom{b_{1}}{b_{2}}\right.
$$

has a unique solution (since the coefficient matrix is full rank for $u \neq v$.) Therefore $\operatorname{Pr}\left[h_{s_{1}, s_{2}}(u)=b_{1} \wedge h_{s_{1}, s_{2}}(v)=b_{2}\right]=\frac{1}{q^{2}}$.

Claim

Random variables $h_{s_{1}, s_{2}}(1), \cdots, h_{s_{1}, s_{2}}(q-1)$ are pairwise independent random variables, each distributed uniformly on \mathbb{F}_{q}.

Proof.

For any $b_{1}, b_{2} \in \mathbb{F}_{q}$, and for any $u \neq v \in \mathbb{F}_{q}$, the equation

$$
\left\{\begin{array}{l}
s_{1} u+s_{2}=b_{1} \\
s_{1} v+s_{2}=b_{2}
\end{array} \Rightarrow\left(\begin{array}{ll}
1 & u \\
1 & v
\end{array}\right) \cdot\binom{s_{1}}{s_{2}}=\binom{b_{1}}{b_{2}}\right.
$$

has a unique solution (since the coefficient matrix is full rank for $u \neq v$.)
Therefore $\operatorname{Pr}\left[h_{s_{1}, s_{2}}(u)=b_{1} \wedge h_{s_{1}, s_{2}}(v)=b_{2}\right]=\frac{1}{q^{2}}$.
This implies that $h_{s_{1}, s_{2}}(u)$ is uniformly distributed on \mathbb{F}_{q}.

k-wise Independence

Definition

Random variables X_{1}, \cdots, X_{n} are said to be k-wise independent if any k of them are mutually independent.

k-wise Independence

Definition

Random variables X_{1}, \cdots, X_{n} are said to be k-wise independent if any k of them are mutually independent.

Definition

A family \mathcal{H} of hash functions from U to $\{0, \ldots, m\}$ is k-universal if for any k distinct key values $u_{1}, \ldots, u_{k} \in U$, and any k (not necessarily distinct) hash addresses $b_{1}, \ldots, b_{k} \in\{0, \ldots, m-1\}$,

$$
\operatorname{Pr}_{h \sim \mathcal{H}}\left[h\left(u_{1}\right)=b_{1} \wedge \cdots \wedge h\left(u_{k}\right)=b_{k}\right]=\left(\frac{1}{m}\right)^{k}
$$

Construction of k-wise independent random variables

For prime q, let U be \mathbb{F}_{q}. Let random seeds s_{1}, \ldots, s_{k} be independent uniform samples from \mathbb{F}_{q}. Define

$$
h_{\left(s_{1}, \ldots, s_{k}\right)}(u):=s_{1} u^{k-1}+s_{2} u^{k_{2}}+\ldots+s_{k-1} u+s_{k}
$$

Construction of k-wise independent random variables

For prime q, let U be \mathbb{F}_{q}. Let random seeds s_{1}, \ldots, s_{k} be independent uniform samples from \mathbb{F}_{q}. Define

$$
h_{\left(s_{1}, \ldots, s_{k}\right)}(u):=s_{1} u^{k-1}+s_{2} u^{k_{2}}+\ldots+s_{k-1} u+s_{k}
$$

Theorem

The set of $h_{\vec{s}}$ thus defined is a k-universal hash family.

Construction of k-wise independent random variables

For prime q, let U be \mathbb{F}_{q}. Let random seeds s_{1}, \ldots, s_{k} be independent uniform samples from \mathbb{F}_{q}. Define

$$
h_{\left(s_{1}, \ldots, s_{k}\right)}(u):=s_{1} u^{k-1}+s_{2} u^{k_{2}}+\ldots+s_{k-1} u+s_{k}
$$

Theorem

The set of $h_{\vec{s}}$ thus defined is a k-universal hash family.

Proof.

For any distinct $u_{1}, \ldots, u_{k} \in \mathbb{F}_{q}$, and $b_{1}, \ldots, b_{k} \in \mathbb{F}_{q}$ that are not necessarily distinct, we show that there is a unique $\vec{s}=\left(s_{1}, \ldots, s_{k}\right)$ such that $h_{\vec{s}}\left(u_{i}\right)=b_{i}$ for $i=1, \cdots, k$.

Proof of k-Universality (Cont.)

(Continued).

$$
\begin{aligned}
& \left\{\begin{array}{l}
s_{1} u_{1}^{k-1}+\ldots+s_{k-1} u_{1}+s_{K}=b_{1} \\
s_{1} u_{2}^{k-1}+\ldots+s_{k-1} u_{2}+s_{K}=b_{2} \\
\cdots \\
s_{1} u_{k}^{k-1}+\ldots+s_{k-1} u_{k}+s_{k}=b_{k}
\end{array}\right.
\end{aligned}
$$

The coefficient matrix is a van der Monder matrix. For distinct u_{1}, \ldots, u_{k} it has full rank. So the system has a unique solution.

Brief Introduction to Finite Fields

- In the construction of universal hashing, our hash function mapped $U=\mathbb{F}_{q}^{m}$ to \mathbb{F}_{q}. Our construction of k-universal hashing so far only allows mapping from \mathbb{F}_{q} to \mathbb{F}_{q}.

Brief Introduction to Finite Fields

- In the construction of universal hashing, our hash function mapped $U=\mathbb{F}_{q}^{m}$ to \mathbb{F}_{q}. Our construction of k-universal hashing so far only allows mapping from \mathbb{F}_{q} to \mathbb{F}_{q}.
- What if we'd like h to map from \mathbb{F}_{q}^{m} to \mathbb{F}_{q}^{ℓ}, for $\ell<m$?

Brief Introduction to Finite Fields

- In the construction of universal hashing, our hash function mapped $U=\mathbb{F}_{q}^{m}$ to \mathbb{F}_{q}. Our construction of k-universal hashing so far only allows mapping from \mathbb{F}_{q} to \mathbb{F}_{q}.
- What if we'd like h to map from \mathbb{F}_{q}^{m} to \mathbb{F}_{q}^{ℓ}, for $\ell<m$?
- If we have k-universal hashing from \mathbb{F}_{q}^{m} to \mathbb{F}_{q}^{m}, then we may take, say, the first k coordinates of the hash code.

Brief Introduction to Finite Fields

- In the construction of universal hashing, our hash function mapped $U=\mathbb{F}_{q}^{m}$ to \mathbb{F}_{q}. Our construction of k-universal hashing so far only allows mapping from \mathbb{F}_{q} to \mathbb{F}_{q}.
- What if we'd like h to map from \mathbb{F}_{q}^{m} to \mathbb{F}_{q}^{ℓ}, for $\ell<m$?
- If we have k-universal hashing from \mathbb{F}_{q}^{m} to \mathbb{F}_{q}^{m}, then we may take, say, the first k coordinates of the hash code.
- The whole construction would go through if \mathbb{F}_{q}^{m} supports the same operations as \mathbb{F}_{q}.

Brief Introduction to Finite Fields

- In the construction of universal hashing, our hash function mapped $U=\mathbb{F}_{q}^{m}$ to \mathbb{F}_{q}. Our construction of k-universal hashing so far only allows mapping from \mathbb{F}_{q} to \mathbb{F}_{q}.
- What if we'd like h to map from \mathbb{F}_{q}^{m} to \mathbb{F}_{q}^{ℓ}, for $\ell<m$?
- If we have k-universal hashing from \mathbb{F}_{q}^{m} to \mathbb{F}_{q}^{m}, then we may take, say, the first k coordinates of the hash code.
- The whole construction would go through if \mathbb{F}_{q}^{m} supports the same operations as \mathbb{F}_{q}.
- Obviously, \mathbb{F}_{q}^{m} as a vector space supports addition and subtraction.

Brief Introduction to Finite Fields

- In the construction of universal hashing, our hash function mapped $U=\mathbb{F}_{q}^{m}$ to \mathbb{F}_{q}. Our construction of k-universal hashing so far only allows mapping from \mathbb{F}_{q} to \mathbb{F}_{q}.
- What if we'd like h to map from \mathbb{F}_{q}^{m} to \mathbb{F}_{q}^{ℓ}, for $\ell<m$?
- If we have k-universal hashing from \mathbb{F}_{q}^{m} to \mathbb{F}_{q}^{m}, then we may take, say, the first k coordinates of the hash code.
- The whole construction would go through if \mathbb{F}_{q}^{m} supports the same operations as \mathbb{F}_{q}.
- Obviously, \mathbb{F}_{q}^{m} as a vector space supports addition and subtraction.
- How do we define multiplication between vectors while satisfying commutativity, associativity and distributive law?

Field Extension

- Answer: we see a vector in \mathbb{F}_{q}^{m} as coefficients of a polynomial of degree $m-1$, and do multiplication of vectors as polynomial multiplications modulo a degree n irreducible polynomial.

Field Extension

- Answer: we see a vector in \mathbb{F}_{q}^{m} as coefficients of a polynomial of degree $m-1$, and do multiplication of vectors as polynomial multiplications modulo a degree n irreducible polynomial.
- Example: On \mathbb{F}_{2}, the polynomial $x^{2}+x+1$ is irreducible.

Field Extension

- Answer: we see a vector in \mathbb{F}_{q}^{m} as coefficients of a polynomial of degree $m-1$, and do multiplication of vectors as polynomial multiplications modulo a degree n irreducible polynomial.
- Example: On \mathbb{F}_{2}, the polynomial $x^{2}+x+1$ is irreducible.
- $(1,1) \cdot(1,0)=(0,1)$ because $(x+1) x=x^{2}+x \equiv 1 \bmod \left(x^{2}+x+1\right)$.

Field Extension

- Answer: we see a vector in \mathbb{F}_{q}^{m} as coefficients of a polynomial of degree $m-1$, and do multiplication of vectors as polynomial multiplications modulo a degree n irreducible polynomial.
- Example: On \mathbb{F}_{2}, the polynomial $x^{2}+x+1$ is irreducible.
- $(1,1) \cdot(1,0)=(0,1)$ because $(x+1) x=x^{2}+x \equiv 1 \bmod \left(x^{2}+x+1\right)$.
- Alternatively, you may think of extending the field \mathbb{F}_{2} with an additional element α satisfying $\alpha^{2}=\alpha+1$.

Field Extension

- Answer: we see a vector in \mathbb{F}_{q}^{m} as coefficients of a polynomial of degree $m-1$, and do multiplication of vectors as polynomial multiplications modulo a degree n irreducible polynomial.
- Example: On \mathbb{F}_{2}, the polynomial $x^{2}+x+1$ is irreducible.
- $(1,1) \cdot(1,0)=(0,1)$ because $(x+1) x=x^{2}+x \equiv 1 \bmod \left(x^{2}+x+1\right)$.
- Alternatively, you may think of extending the field \mathbb{F}_{2} with an additional element α satisfying $\alpha^{2}=\alpha+1$.
- In much of the same way, the complex field is the extension of the real field with the addition of i that solves $i^{2}=-1$.

Field Extension

- Answer: we see a vector in \mathbb{F}_{q}^{m} as coefficients of a polynomial of degree $m-1$, and do multiplication of vectors as polynomial multiplications modulo a degree n irreducible polynomial.
- Example: On \mathbb{F}_{2}, the polynomial $x^{2}+x+1$ is irreducible.
- $(1,1) \cdot(1,0)=(0,1)$ because $(x+1) x=x^{2}+x \equiv 1 \bmod \left(x^{2}+x+1\right)$.
- Alternatively, you may think of extending the field \mathbb{F}_{2} with an additional element α satisfying $\alpha^{2}=\alpha+1$.
- In much of the same way, the complex field is the extension of the real field with the addition of i that solves $i^{2}=-1$.
- So $(\alpha+1) \alpha=\alpha^{2}+\alpha=1$.

Field Extension

- Answer: we see a vector in \mathbb{F}_{q}^{m} as coefficients of a polynomial of degree $m-1$, and do multiplication of vectors as polynomial multiplications modulo a degree n irreducible polynomial.
- Example: On \mathbb{F}_{2}, the polynomial $x^{2}+x+1$ is irreducible.
- $(1,1) \cdot(1,0)=(0,1)$ because $(x+1) x=x^{2}+x \equiv 1 \bmod \left(x^{2}+x+1\right)$.
- Alternatively, you may think of extending the field \mathbb{F}_{2} with an additional element α satisfying $\alpha^{2}=\alpha+1$.
- In much of the same way, the complex field is the extension of the real field with the addition of i that solves $i^{2}=-1$.
- So $(\alpha+1) \alpha=\alpha^{2}+\alpha=1$.
- One can show that degree n irreducible polynomials always exist for \mathbb{F}_{q}. So we can construct fields $\mathbb{F}_{p^{m}}$ for any positive integer m.

JL with k-wise Independent Hash

- Let's use k-wise independent variables L_{1}, \cdots, L_{d}, each distributed evenly on $\{-1,+1\}$, to emulate JL.
- We'll decide k later.

JL with k-wise Independent Hash

- Let's use k-wise independent variables L_{1}, \cdots, L_{d}, each distributed evenly on $\{-1,+1\}$, to emulate JL.
- We'll decide k later.
- For a k-universal hash function $h \sim \mathcal{H}$ with seed s, let $L_{j}=h_{s}(j)$.

JL with k-wise Independent Hash

- Let's use k-wise independent variables L_{1}, \cdots, L_{d}, each distributed evenly on $\{-1,+1\}$, to emulate JL.
- We'll decide k later.
- For a k-universal hash function $h \sim \mathcal{H}$ with seed s, let $L_{j}=h_{s}(j)$.
- Consider $y:=\sum_{i} L_{i} x_{i}$.

JL with k-wise Independent Hash

- Let's use k-wise independent variables L_{1}, \cdots, L_{d}, each distributed evenly on $\{-1,+1\}$, to emulate JL.
- We'll decide k later.
- For a k-universal hash function $h \sim \mathcal{H}$ with seed s, let $L_{j}=h_{s}(j)$.
- Consider $y:=\sum_{i} L_{i} x_{i}$.
- $\mathbf{E}[y]=0$ because $\mathbf{E}\left[L_{i}\right]=0$ for each i.

JL with k-wise Independent Hash

- Let's use k-wise independent variables L_{1}, \cdots, L_{d}, each distributed evenly on $\{-1,+1\}$, to emulate JL.
- We'll decide k later.
- For a k-universal hash function $h \sim \mathcal{H}$ with seed s, let $L_{j}=h_{s}(j)$.
- Consider $y:=\sum_{i} L_{i} x_{i}$.
- $\mathbf{E}[y]=0$ because $\mathbf{E}\left[L_{i}\right]=0$ for each i.
- The variance of $L_{i} x_{i}$ is $\mathbf{E}\left[L_{i}^{2} x_{i}^{2}\right]=x_{i}^{2}$. As long as L_{1}, \cdots, L_{d} are pairwise independent, we have $\operatorname{Var}[y]=\sum_{i} x_{i}^{2}=\|x\|^{2}$. On the other hand, we have $\operatorname{Var}[y]=\mathbf{E}\left[y^{2}\right]-(\mathbf{E}[y])^{2}=\mathbf{E}\left[y^{2}\right]$.

JL with k-wise Independent Hash

- Let's use k-wise independent variables L_{1}, \cdots, L_{d}, each distributed evenly on $\{-1,+1\}$, to emulate JL.
- We'll decide k later.
- For a k-universal hash function $h \sim \mathcal{H}$ with seed s, let $L_{j}=h_{s}(j)$.
- Consider $y:=\sum_{i} L_{i} x_{i}$.
- $\mathbf{E}[y]=0$ because $\mathbf{E}\left[L_{i}\right]=0$ for each i.
- The variance of $L_{i} x_{i}$ is $\mathbf{E}\left[L_{i}^{2} x_{i}^{2}\right]=x_{i}^{2}$. As long as L_{1}, \cdots, L_{d} are pairwise independent, we have $\operatorname{Var}[y]=\sum_{i} x_{i}^{2}=\|x\|^{2}$. On the other hand, we have $\operatorname{Var}[y]=\mathbf{E}\left[y^{2}\right]-(\mathbf{E}[y])^{2}=\mathbf{E}\left[y^{2}\right]$.
- We would like to estimate $\|x\|^{2}$, so we would like y^{2} to concentrate around its expectation.

JL with k-wise Independent Hash

- Let's use k-wise independent variables L_{1}, \cdots, L_{d}, each distributed evenly on $\{-1,+1\}$, to emulate JL.
- We'll decide k later.
- For a k-universal hash function $h \sim \mathcal{H}$ with seed s, let $L_{j}=h_{s}(j)$.
- Consider $y:=\sum_{i} L_{i} x_{i}$.
- $\mathbf{E}[y]=0$ because $\mathbf{E}\left[L_{i}\right]=0$ for each i.
- The variance of $L_{i} x_{i}$ is $\mathbf{E}\left[L_{i}^{2} x_{i}^{2}\right]=x_{i}^{2}$. As long as L_{1}, \cdots, L_{d} are pairwise independent, we have $\operatorname{Var}[y]=\sum_{i} x_{i}^{2}=\|x\|^{2}$. On the other hand, we have $\operatorname{Var}[y]=\mathbf{E}\left[y^{2}\right]-(\mathbf{E}[y])^{2}=\mathbf{E}\left[y^{2}\right]$.
- We would like to estimate $\|x\|^{2}$, so we would like y^{2} to concentrate around its expectation.
- We cannot afford the Chernoff bound. But we may use Chebyshev inequality if we can bound $\operatorname{Var}\left[y^{2}\right]$!

$$
\operatorname{Pr}\left[\left|y^{2}-\mathbf{E}\left[y^{2}\right]\right|>\alpha\right] \leq \frac{\operatorname{Var}\left[y^{2}\right]}{\alpha^{2}}
$$

Variance of $\sum_{i} y^{2}$

$$
\begin{aligned}
& \operatorname{Var}\left[y^{2}\right] \leq \mathbf{E}\left[y^{4}\right]=\mathbf{E}\left[\left(\sum_{i} L_{i} x_{i}\right)^{4}\right] \\
= & \sum_{j_{1}, j_{2}, j_{3}, j_{4} \in[n]} \mathbf{E}\left[L_{j_{1}} L_{j_{2}} L_{j_{3}} L_{j_{4}}\right] x_{j_{1}} x_{j_{2}} x_{j_{3}} x_{j_{4}} .
\end{aligned}
$$

Variance of $\sum_{i} y^{2}$

$$
\begin{aligned}
& \operatorname{Var}\left[y^{2}\right] \leq \mathbf{E}\left[y^{4}\right]=\mathbf{E}\left[\left(\sum_{i} L_{i} x_{i}\right)^{4}\right] \\
= & \sum_{j_{1}, j_{2}, j_{3}, j_{4} \in[n]} \mathbf{E}\left[L_{j} L_{j} L_{j_{2}} L_{j_{3}} L_{\left.j_{4}\right]}\right] x_{j_{1} x_{2} x_{2} x_{j_{3}} x_{j_{4}} .}
\end{aligned}
$$

Now to simplify the analysis, we will require that L_{1}, \cdots, L_{d} be 4 -wise independent.

Variance of $\sum_{i} y^{2}$

$$
\begin{aligned}
& \operatorname{Var}\left[y^{2}\right] \leq \mathbf{E}\left[y^{4}\right]=\mathbf{E}\left[\left(\sum_{i} L_{i} x_{i}\right)^{4}\right] \\
= & \sum_{j_{1}, j_{2}, j_{3}, j_{4} \in[n]} \mathbf{E}\left[L_{j_{1}} L_{j_{2}} L_{j_{3}} L_{j_{4}}\right] x_{j_{1}} x_{j_{2}} x_{j_{3}} x_{j_{4}} .
\end{aligned}
$$

Now to simplify the analysis, we will require that L_{1}, \cdots, L_{d} be 4-wise independent.
Whenever some $j \in[n]$ appears only once among $j_{1}, \dot{j}_{2}, \dot{j}_{3}, j_{4}$, the term $\mathbf{E}\left[L_{j_{1}} L_{j_{2}} L_{j_{3}} L_{j_{4}}\right]=0$.

Variance of $\sum_{i} y^{2}$

$$
\begin{aligned}
& \operatorname{Var}\left[y^{2}\right] \leq \mathbf{E}\left[y^{4}\right]=\mathbf{E}\left[\left(\sum_{i} L_{i} x_{i}\right)^{4}\right] \\
= & \sum_{j_{1}, j_{2}, j_{3}, j_{4} \in[n]} \mathbf{E}\left[L_{j_{1}} L_{j_{2}} L_{j_{3}} L_{j_{4}}\right] x_{j_{1}} x_{j_{2}} x_{j_{3}} x_{j_{4}} .
\end{aligned}
$$

Now to simplify the analysis, we will require that L_{1}, \cdots, L_{d} be 4 -wise independent.
Whenever some $j \in[n]$ appears only once among $j_{1}, \dot{j}_{2}, \dot{j}_{3}, j_{4}$, the term $\mathbf{E}\left[L_{j_{1}} L_{j_{2}} L_{j_{3}} L_{j_{4}}\right]=0$.
Only two kinds of factors remain non-zero:

- $j_{1}=j_{2}=j_{3}=j_{4}=j$, each such term appears once, contributing x_{j}^{4} to the sum.

Variance of $\sum_{i} y^{2}$

$$
\begin{aligned}
& \operatorname{Var}\left[y^{2}\right] \leq \mathbf{E}\left[y^{4}\right]=\mathbf{E}\left[\left(\sum_{i} L_{i} x_{i}\right)^{4}\right] \\
= & \sum_{j_{1}, j_{2}, j_{3}, j_{4} \in[n]} \mathbf{E}\left[L_{j_{1}} L_{j_{2}} L_{j_{3}} L_{j_{4}}\right] x_{j_{1}} x_{j_{2}} x_{j_{3}} x_{j_{4}} .
\end{aligned}
$$

Now to simplify the analysis, we will require that L_{1}, \cdots, L_{d} be 4 -wise independent.
Whenever some $j \in[n]$ appears only once among $j_{1}, \dot{j}_{2}, \dot{j}_{3}, j_{4}$, the term $\mathbf{E}\left[L_{j_{1}} L_{j_{2}} L_{j_{3}} L_{j_{4}}\right]=0$.
Only two kinds of factors remain non-zero:

- $j_{1}=j_{2}=j_{3}=j_{4}=j$, each such term appears once, contributing x_{j}^{4} to the sum.
- $j_{1}, j_{2}, j_{3}, j_{4}$ are split into two equal pairs. For each $i_{1}, i_{2} \in[n], i_{1}<i_{2}$, these terms contribute altogether $6 x_{i_{1}}^{2} x_{i_{2}}^{2}$.

Multiple Samples

So we have $\operatorname{Var}\left[y^{2}\right] \leq \sum_{j \in[n]} x_{j}^{4}+6 \sum_{i_{1}<i_{2}} x_{i_{1}}^{2} x_{i_{2}}^{2} \leq 2\|x\|^{4}$.

Multiple Samples

So we have $\operatorname{Var}\left[y^{2}\right] \leq \sum_{j \in[n]} x_{j}^{4}+6 \sum_{i_{1}<i_{2}} x_{i_{1}}^{2} x_{i_{2}}^{2} \leq 2\|x\|^{4}$. Therefore $\operatorname{Pr}\left[\left|y^{2}-\|x\|^{2}\right|>\alpha\right] \leq 2\|x\|^{4} / \alpha^{2}$. We are interested in $\alpha=\epsilon\|x\|^{2}$.

Multiple Samples

So we have $\operatorname{Var}\left[y^{2}\right] \leq \sum_{j \in[n]} x_{j}^{4}+6 \sum_{i_{1}<i_{2}} x_{i_{1}}^{2} x_{i_{2}}^{2} \leq 2\|x\|^{4}$. Therefore $\operatorname{Pr}\left[\left|y^{2}-\|x\|^{2}\right|>\alpha\right] \leq 2\|x\|^{4} / \alpha^{2}$. We are interested in $\alpha=\epsilon\|x\|^{2}$.

- To make the error rate smaller, let's have t independent estimates y_{1}, \ldots, y_{t}.

Multiple Samples

So we have $\operatorname{Var}\left[y^{2}\right] \leq \sum_{j \in[n]} x_{j}^{4}+6 \sum_{i_{1}<i_{2}} x_{i_{1}}^{2} x_{i_{2}}^{2} \leq 2\|x\|^{4}$. Therefore $\operatorname{Pr}\left[\left|y^{2}-\|x\|^{2}\right|>\alpha\right] \leq 2\|x\|^{4} / \alpha^{2}$. We are interested in $\alpha=\epsilon\|x\|^{2}$.

- To make the error rate smaller, let's have t independent estimates y_{1}, \ldots, y_{t}.
- This uses a matrix $L \in\{+1,-1\}^{t \times d}$, whose rows are indepedent, but within each row, $L_{i, 1}, \cdots, L_{i, d}$ are only 4 -wise independent.

Multiple Samples

So we have $\operatorname{Var}\left[y^{2}\right] \leq \sum_{j \in[n]} x_{j}^{4}+6 \sum_{i_{1}<i_{2}} x_{i_{1}}^{2} x_{i_{2}}^{2} \leq 2\|x\|^{4}$. Therefore $\operatorname{Pr}\left[\left|y^{2}-\|x\|^{2}\right|>\alpha\right] \leq 2\|x\|^{4} / \alpha^{2}$. We are interested in $\alpha=\epsilon\|x\|^{2}$.

- To make the error rate smaller, let's have t independent estimates y_{1}, \ldots, y_{t}.
- This uses a matrix $L \in\{+1,-1\}^{t \times d}$, whose rows are indepedent, but within each row, $L_{i, 1}, \cdots, L_{i, d}$ are only 4 -wise independent.
- The variance of $\frac{1}{t} \sum_{i} y_{i}$ is bounded by $\frac{2\|x\|^{4}}{t}$.

Multiple Samples

So we have $\operatorname{Var}\left[y^{2}\right] \leq \sum_{j \in[n]} x_{j}^{4}+6 \sum_{i_{1}<i_{2}} x_{i_{1}}^{2} x_{i_{2}}^{2} \leq 2\|x\|^{4}$. Therefore $\operatorname{Pr}\left[\left|y^{2}-\|x\|^{2}\right|>\alpha\right] \leq 2\|x\|^{4} / \alpha^{2}$. We are interested in $\alpha=\epsilon\|x\|^{2}$.

- To make the error rate smaller, let's have t independent estimates y_{1}, \ldots, y_{t}.
- This uses a matrix $L \in\{+1,-1\}^{t \times d}$, whose rows are indepedent, but within each row, $L_{i, 1}, \cdots, L_{i, d}$ are only 4 -wise independent.
- The variance of $\frac{1}{t} \sum_{i} y_{i}$ is bounded by $\frac{2\|x\|^{4}}{t}$.
- So as long as $\frac{2}{\epsilon^{2} t} \leq \delta$, i.e., $t \geq \frac{2}{\epsilon^{2} \delta}$, we would have that $\operatorname{Pr}\left[\left|\frac{1}{t} \sum_{i} y_{i}-\|x\|^{2}\right|>\epsilon\|x\|^{2}\right]<\delta$.

Space requirement

- We need to store y_{1}, \ldots, y_{t} throughout the algorithm, each using $O(\log d)$ space.

Space requirement

- We need to store y_{1}, \ldots, y_{t} throughout the algorithm, each using $O(\log d)$ space.
- We need to store the hash functions we use to generate each row of L.

Space requirement

- We need to store y_{1}, \ldots, y_{t} throughout the algorithm, each using $O(\log d)$ space.
- We need to store the hash functions we use to generate each row of L.
- For k-universal hashing from [d], the seed takes space $O(k \log d)$.

Space requirement

- We need to store y_{1}, \ldots, y_{t} throughout the algorithm, each using $O(\log d)$ space.
- We need to store the hash functions we use to generate each row of L.
- For k-universal hashing from [d], the seed takes space $O(k \log d)$.
- We used 4-universal hashing, so each hash function takes $O(\log d)$ space, and there are t of them.
- Altogether the space used is $O\left(\frac{\log d}{\epsilon^{2} \delta}\right)$.

