Streaming Algorithm: AMS

Learning Goals

@ Streaming Algorithms
o Idea of AMS

@ k-wise Independence

Streaming Algorithm: AMS

Streaming Model

@ Sometimes a device with limited storage processes a huge amount of
data and must return statistics

Streaming Algorithm: AMS

Streaming Model

@ Sometimes a device with limited storage processes a huge amount of
data and must return statistics
o A network switch has a limited memory, and network traffic “streams”
through it

o At the end of the day, we may be interested in statistics such as
e How many different requests have there been?
e What is the most frequent request?
@ Variance of the package sizes?

Streaming Algorithm: AMS

Streaming Model

@ Sometimes a device with limited storage processes a huge amount of
data and must return statistics
o A network switch has a limited memory, and network traffic “streams”
through it
o At the end of the day, we may be interested in statistics such as

e How many different requests have there been?
e What is the most frequent request?
@ Variance of the package sizes?

@ Input: a sequence of indices i,...,i, € {1,---,d}

Streaming Algorithm: AMS

Streaming Model

@ Sometimes a device with limited storage processes a huge amount of
data and must return statistics

o A network switch has a limited memory, and network traffic “streams”
through it
o At the end of the day, we may be interested in statistics such as

e How many different requests have there been?
e What is the most frequent request?
@ Variance of the package sizes?

@ Input: a sequence of indices i,...,i, € {1,---,d}

o Frequency vector: x € Zd, with

= | {k i = j} .

Streaming Algorithm: AMS

Streaming Model

@ Sometimes a device with limited storage processes a huge amount of
data and must return statistics

o A network switch has a limited memory, and network traffic “streams”
through it
o At the end of the day, we may be interested in statistics such as

e How many different requests have there been?
e What is the most frequent request?
@ Variance of the package sizes?

@ Input: a sequence of indices i,...,i, € {1,---,d}

o Frequency vector: x € Zd, with
xj = | {k:ix=j}|

o Output: certain statistic of x, such as ||x||,, [|x|[o, etc.

2/18

Streaming Algorithm: AMS

Streaming Model

@ Sometimes a device with limited storage processes a huge amount of
data and must return statistics
o A network switch has a limited memory, and network traffic “streams’
through it

o At the end of the day, we may be interested in statistics such as
e How many different requests have there been?
e What is the most frequent request?
@ Variance of the package sizes?

3]

Input: a sequence of indices iy, ..., i, € {1,--- ,d}

Frequency vector: x € 79, with

= | {k i = j} .

Output: certain statistic of x, such as ||x||,, ||x]|o, etc.

The algorithm must use only O(log d) space.

Streaming Algorithm: AMS

Streaming Model

@ Sometimes a device with limited storage processes a huge amount of
data and must return statistics
o A network switch has a limited memory, and network traffic “streams’

through it
o At the end of the day, we may be interested in statistics such as

3]

e How many different requests have there been?
e What is the most frequent request?
@ Variance of the package sizes?

Input: a sequence of indices iy, ..., i, € {1,--- ,d}

Frequency vector: x € 79, with

= | {k i = j} .

Output: certain statistic of x, such as ||x||,, ||x]|o, etc.

The algorithm must use only O(log d) space.

We usually allow some error in the output

Streaming Algorithm: AMS

AMS

e Alon, Matias, Szegedy studied in 1996 the streaming problem for
x| = (32, x?)"/2, for which they won the Godel prize

Streaming Algorithm: AMS

AMS

e Alon, Matias, Szegedy studied in 1996 the streaming problem for
x| = (32, x?)"/2, for which they won the Godel prize

@ Naive solution using JL-transform:

3/18

Streaming Algorithm: AMS

AMS

e Alon, Matias, Szegedy studied in 1996 the streaming problem for
x| = (32, x?)"/2, for which they won the Godel prize

@ Naive solution using JL-transform:
e Maintain L € R™“ whose entries are i.i.d. from N(0, 1).

3/18

Streaming Algorithm: AMS

AMS

e Alon, Matias, Szegedy studied in 1996 the streaming problem for
x| = (32, x?)"/2, for which they won the Godel prize
@ Naive solution using JL-transform:

e Maintain L € R™“ whose entries are i.i.d. from N(0, 1).
o Initiate y = 0 € R".

3/18

Streaming Algorithm: AMS

AMS

e Alon, Matias, Szegedy studied in 1996 the streaming problem for
x| = (32, x?)"/2, for which they won the Godel prize
@ Naive solution using JL-transform:

e Maintain L € R™“ whose entries are i.i.d. from N(0, 1).
o Initiate y = 0 € R".
o When we see iy = j, add the j-th column of L to y.

3/18

Streaming Algorithm: AMS

AMS

e Alon, Matias, Szegedy studied in 1996 the streaming problem for
x| = (32, x?)"/2, for which they won the Godel prize

1

@ Naive solution using JL-transform:

e Maintain L € R™“ whose entries are i.i.d. from N(0, 1).
o Initiate y = 0 € R".

o When we see iy = j, add the j-th column of L to y.

o Return ||y||.

3/18

Streaming Algorithm: AMS

AMS

e Alon, Matias, Szegedy studied in 1996 the streaming problem for
x| = (32, x?)"/2, for which they won the Godel prize

@ Naive solution using JL-transform:

e Maintain L € R™“ whose entries are i.i.d. from N(0, 1).
o Initiate y = 0 € R".

o When we see iy = j, add the j-th column of L to y.

o Return ||y||.

e Guarantee: for any § > 0, if we set t = O(log(3)/€?), with probability
at least 1 — d, we have (1 —€)||x|| < ||y|| < (1+ €)||x]|.

Streaming Algorithm: AMS

AMS

e Alon, Matias, Szegedy studied in 1996 the streaming problem for
x| = (32, x?)"/2, for which they won the Godel prize

1

@ Naive solution using JL-transform:

e Maintain L € R™“ whose entries are i.i.d. from N(0, 1).
o Initiate y = 0 € R".

o When we see iy = j, add the j-th column of L to y.

o Return ||y||.

e Guarantee: for any § > 0, if we set t = O(log(3)/€?), with probability
at least 1 — d, we have (1 —€)||x|| < ||y|| < (1+ €)||x]|.

@ Issue: we must store t X d real numbers drawn from a Gaussian
distribution!

Streaming Algorithm: AMS

AMS

e Alon, Matias, Szegedy studied in 1996 the streaming problem for
x| = (32, x?)"/2, for which they won the Godel prize

1

@ Naive solution using JL-transform:

e Maintain L € R™“ whose entries are i.i.d. from N(0, 1).
o Initiate y = 0 € R".

o When we see iy = j, add the j-th column of L to y.

o Return ||y||.

e Guarantee: for any § > 0, if we set t = O(log(3)/€?), with probability
at least 1 — d, we have (1 —¢)||x|| < ||yl < (1 + €)||x||-

@ Issue: we must store t X d real numbers drawn from a Gaussian
distribution!

e Sampling them anew each time does not work — we must use the same
linear transform for all the indices.

Streaming Algorithm: AMS

Reducing the Memory Needed

@ We have an algorithm that unfortunately needs to store too much
“randomness”

Streaming Algorithm: AMS

Reducing the Memory Needed

@ We have an algorithm that unfortunately needs to store too much
“randomness”

e We were in a similar situation when we thought about hashing.

Streaming Algorithm: AMS

Reducing the Memory Needed

@ We have an algorithm that unfortunately needs to store too much
“randomness”
e We were in a similar situation when we thought about hashing.
e The solution there was that we weakened the requirement on
randomness (universal hashing), and have in return hash functions that
take less space to store

Streaming Algorithm: AMS

Reducing the Memory Needed

@ We have an algorithm that unfortunately needs to store too much
“randomness”

e We were in a similar situation when we thought about hashing.
e The solution there was that we weakened the requirement on

randomness (universal hashing), and have in return hash functions that
take less space to store

e We had a small seed of randomness, and used that to grow a whole
hashing function

Streaming Algorithm: AMS

Reducing the Memory Needed

@ We have an algorithm that unfortunately needs to store too much
“randomness”
e We were in a similar situation when we thought about hashing.
e The solution there was that we weakened the requirement on

randomness (universal hashing), and have in return hash functions that
take less space to store

e We had a small seed of randomness, and used that to grow a whole
hashing function

o Let’s try something similar.

Streaming Algorithm: AMS

Reducing the Memory Needed

@ We have an algorithm that unfortunately needs to store too much
“randomness”
e We were in a similar situation when we thought about hashing.
e The solution there was that we weakened the requirement on

randomness (universal hashing), and have in return hash functions that
take less space to store

e We had a small seed of randomness, and used that to grow a whole
hashing function

o Let’s try something similar.

o Recall the idea behind JL: if Gy, - - , G4 are i.i.d. from A/(0, 1), then
22 Gixi ~ N(0, [[x][?).

Streaming Algorithm: AMS

Reducing the Memory Needed

@ We have an algorithm that unfortunately needs to store too much
“randomness”
e We were in a similar situation when we thought about hashing.
e The solution there was that we weakened the requirement on

randomness (universal hashing), and have in return hash functions that
take less space to store

e We had a small seed of randomness, and used that to grow a whole
hashing function

o Let’s try something similar.
o Recall the idea behind JL: if Gy, - - , G4 are i.i.d. from A/(0, 1), then
22 Gixi ~ N (0, [[x][?).

@ In general, if Gy, - , G4 are independent random variables, then
Var[y_. Gix;] = >, x? Var[G)].

Streaming Algorithm: AMS

Proof of Claim

If Gy, -, Gy are independent random variables, then
Var[}, Gixi] = >, x* Var[G/].

Streaming Algorithm: AMS

Proof of Claim

If Gq,--- , Gy are independent random variables, then
Var[>". Gixi)] = >, x? Var[G/].

)

=Y E[(Gxi —E[Gixi])’] + D> _E[(Gixi —E[Gix)]) - (Gjx; — E[Gjx])]
i i

= Zx,z Var [Gj] + Z E [Gix; — E[Gixi]] - E [Gjx; — E[Gx]]]
j i)

= Z x? Var [G;] .

Var

—
November 5, 2021 5/18

Streaming Algorithm: AMS

Pairwise Independence

The only place where we used independence was for i # j,

E[G,Gj| = E[G;] E[G|]. But this is much weaker than requiring mutual
independence for all Gy,-- -, Gy,

November 5, 2021

6/18

Streaming Algorithm: AMS

Pairwise Independence

The only place where we used independence was for i # j,
E[G,Gj| = E[G;] E[G|]. But this is much weaker than requiring mutual
independence for all Gy,-- -, Gy,

Definition

Random variables Xj, - - - , X;, are said to be pairwise independent if for any
i # j, Xi and Xj are independent, i.e., for any a, b,
Pr[X; = a A X; = b] = Pr[X; = a] - Pr[x; = b].

November 5, 2021 6/18

Streaming Algorithm: AMS

Pairwise Independence

The only place where we used independence was for i # j,
E[G,Gj| = E[G;] E[G|]. But this is much weaker than requiring mutual
independence for all Gy, -+, G,.

Definition

Random variables Xj, - - - , X;, are said to be pairwise independent if for any
i # j, Xi and Xj are independent, i.e., for any a, b,
Pr[X; = a A X; = b] = Pr[X; = a] - Pr[x; = b].

In fact, we showed

If Gy, -, Gg are pairwise independent random variables, then
Var[}~, Gixi] = >, x* Var[G/].

Streaming Algorithm: AMS

Example of Pairwise Independent Random Variables

Let our sample space be {1,2, 3,4}, each outcome having probability %.

Streaming Algorithm: AMS

Example of Pairwise Independent Random Variables

Let our sample space be {1,2, 3,4}, each outcome having probability %.
Let Y; take values 0,0, 1, 1 for the four outcomes, respectively.

7/18

Streaming Algorithm: AMS

Example of Pairwise Independent Random Variables

Let our sample space be {1,2, 3,4}, each outcome having probability %.

Let Y; take values 0,0, 1, 1 for the four outcomes, respectively.
Let Y, take values 0, 1, 1, 0 for the four outcomes, respectively.

November 5, 2021

7/18

Streaming Algorithm: AMS

Example of Pairwise Independent Random Variables

Let our sample space be {1,2, 3,4}, each outcome having probability %.
Let Y; take values 0,0, 1, 1 for the four outcomes, respectively.

Let Y, take values 0, 1, 1, 0 for the four outcomes, respectively. Let Y3 take
values 0, 1,0, 1 for the four outcomes, respectively.

November 5, 2021

7/18

Streaming Algorithm: AMS

Example of Pairwise Independent Random Variables

Let our sample space be {1,2, 3,4}, each outcome having probability %.
Let Y; take values 0,0, 1, 1 for the four outcomes, respectively.
Let Y, take values 0, 1, 1, 0 for the four outcomes, respectively. Let Y3 take

values 0, 1,0, 1 for the four outcomes, respectively.
Then Y7, Ys, Y3 are pairwise independent but not mutually independent.

Streaming Algorithm: AMS

Construction of Pairwise Independent Hashing

@ Recall our construction of universal hashing:

o for a prime number g, let IF; denote the equivalent classes of 0,...,q— 1
mod q. All operations below are understood to be mod gq.
o Let Ube Fy, for any 5= (s15---55m) € [y, define hash function

hs(u=(ur,...,uy)) = Zs,-u,.

Streaming Algorithm: AMS

Construction of Pairwise Independent Hashing

@ Recall our construction of universal hashing:

o for a prime number g, let IF; denote the equivalent classes of 0,...,q— 1
mod q. All operations below are understood to be mod gq.
o Let Ube Fy, for any 5= (s15---55m) € [y, define hash function

hs(u=(ur,...,uy)) = Zs,-u,.

@ We can see this as a random number generator: 5 is the seed, drawn
uniformly at random from FX; u is arbitrary and fixed in Fg.

Streaming Algorithm: AMS

Construction of Pairwise Independent Hashing

@ Recall our construction of universal hashing:

o for a prime number g, let IF; denote the equivalent classes of 0,...,q— 1
mod q. All operations below are understood to be mod gq.
o Let Ube Fy, for any 5= (s15---55m) € [y, define hash function

hs(u=(ur,...,uy)) = Zs,-u,.

@ We can see this as a random number generator: 5 is the seed, drawn
uniformly at random from FX; u is arbitrary and fixed in Fg.

e Consider the case m = 1. For any b € Fg, Pri[hs(u) = b] = %}‘

Streaming Algorithm: AMS

Construction of Pairwise Independent Hashing

@ Recall our construction of universal hashing:

o for a prime number g, let IF; denote the equivalent classes of 0,...,q— 1
mod q. All operations below are understood to be mod gq.
o Let Ube Fy, for any 5= (s15---55m) € [y, define hash function

hs(u=(ur,...,uy)) = Zs,-u,.

@ We can see this as a random number generator: 5 is the seed, drawn
uniformly at random from FX; u is arbitrary and fixed in Fg.

e Consider the case m = 1. For any b € Fg, Pri[hs(u) = b] = %}‘

e Now if we sample independent sy, s, uniformly from [y, then for
any u € Fy, hy, s,(u) == syu+ s, is a random number on [F.

Random variables hg, 5,(1), - - , hs, 5,(q — 1) are pairwise independent
random variables, each distributed uniformly on IF.

] November 5,2021 9/18

Streaming Algorithm: AMS

Random variables hg, 5,(1), - - , hs, 5,(q — 1) are pairwise independent
random variables, each distributed uniformly on IF.

For any by, b, € Fg, and for any u # v € I, the equation

s1u+ sp = by N Tu) (s1)_(b
S1V+52:b2 1 v S2 - b2

has a unique solution (since the coefficient matrix is full rank for u # v.)

9/18

Streaming Algorithm: AMS

Random variables hg, 5,(1), - - , hs, 5,(q — 1) are pairwise independent
random variables, each distributed uniformly on IF.

For any by, b, € Fg, and for any u # v € I, the equation

{51U+52=b1:>(1u)‘<s1)_(b1>

siv+ s = by 1 v L) b,

has a unique solution (since the coefficient matrix is full rank for u # v.)
Therefore Pr[hs, 5,(u) = by A hs, 5,(v) = by] = %_

Streaming Algorithm: AMS

Random variables hg, 5,(1), - - , hs, 5,(q — 1) are pairwise independent
random variables, each distributed uniformly on IF.

For any by, b, € Fg, and for any u # v € I, the equation

s1u+ sp = by N Tu) (s1)_(b
S1V aF Sy — bz 1 v S2 - bz
has a unique solution (since the coefficient matrix is full rank for u # v.)

Therefore Pr[hs, 5,(u) = b1 A hs, 5,(v) = by] = %_
This implies that hg, ,(u) is uniformly distributed on F,.

9/18

Streaming Algorithm: AMS

k-wise Independence

Definition

Random variables Xi, - - - | X;, are said to be k-wise independent if any k of
them are mutually independent.

Streaming Algorithm: AMS

k-wise Independence

Definition

Random variables Xi, - - - | X;, are said to be k-wise independent if any k of
them are mutually independent.

v

A family H of hash functions from U to {0, ..., m} is k-universal if for any k

distinct key values uy, ..., ux € U, and any k (not necessarily distinct) hash
addresses by, ..., by € {0,...,m— 1},

k
Prioy [A(ur) = by A+ A h(uy) = b] = (%) .

Streaming Algorithm: AMS

Construction of k-wise independent random variables

For prime g, let U be IF,. Let random seeds sy, ..., sx be independent
uniform samples from [F. Define

hisys)(U) = 10"+ 0 + L+ s qu+ sy

11/18

Streaming Algorithm: AMS

Construction of k-wise independent random variables

For prime g, let U be IF,. Let random seeds sy, ..., sx be independent
uniform samples from [F. Define

hisys)(U) = 10"+ 0 + L+ s qu+ sy

The set of hs thus defined is a k-universal hash family.

Streaming Algorithm: AMS

Construction of k-wise independent random variables

For prime g, let U be IF,. Let random seeds sy, ..., sx be independent
uniform samples from [F. Define

hisys)(U) = 10"+ 0 + L+ s qu+ sy

The set of hs thus defined is a k-universal hash family.

For any distinct uy, ..., ux € Fg, and by, ..., by € [Fy that are not
necessarily distinct, we show that there is a unique 5= (s, ..., s¢) such
that hs(u;) = bifori=1,--- k.

Streaming Algorithm: AMS

Proof of k-Universality (Cont.)

(Continued).

S1U1_ +...+Sk71U1 + sk = b1
s1u2_ + ...+ SkqUy + sk = bz

Siup, o Sk—Ug Sk = by

k=1 k—1
u}(u}(ceeoup 1 51 b
—1 =7
o u, u, e Uy 1 ky) _ b,
ul,f1 ul,:*1 ceeoug 1 Sk by
The coefficient matrix is a van der Monder matrix. For distinct uq, . .., uy it
has full rank. So the system has a unique solution. Ol

'

Streaming Algorithm: AMS

Brief Introduction to Finite Fields

@ In the construction of universal hashing, our hash function mapped
U = Fg to Fq. Our construction of k-universal hashing so far only
allows mapping from [, to IF,.

Streaming Algorithm: AMS

Brief Introduction to Finite Fields

@ In the construction of universal hashing, our hash function mapped
U = Fg to Fq. Our construction of k-universal hashing so far only

allows mapping from [, to IF,.
o What if we'd like h to map from F7' to IFf;, for ¢ < m?

Streaming Algorithm: AMS

Brief Introduction to Finite Fields

@ In the construction of universal hashing, our hash function mapped
U = Fg to Fq. Our construction of k-universal hashing so far only
allows mapping from [, to IF,.

o What if we'd like h to map from F7' to IFf;, for ¢ < m?

o If we have k-universal hashing from F¢' to I, then we may take, say,
the first k coordinates of the hash code.

Streaming Algorithm: AMS

Brief Introduction to Finite Fields

In the construction of universal hashing, our hash function mapped
U = Fg to Fq. Our construction of k-universal hashing so far only
allows mapping from [, to IF,.

o What if we'd like h to map from F7' to IFf;, for ¢ < m?

o If we have k-universal hashing from F¢' to I, then we may take, say,
the first k coordinates of the hash code.

The whole construction would go through if FJ' supports the same
operations as [F.

Streaming Algorithm: AMS

Brief Introduction to Finite Fields

In the construction of universal hashing, our hash function mapped
U = Fg to Fq. Our construction of k-universal hashing so far only
allows mapping from [, to IF,.

o What if we'd like h to map from F7' to IFf;, for ¢ < m?

o If we have k-universal hashing from F¢' to I, then we may take, say,
the first k coordinates of the hash code.

The whole construction would go through if FJ' supports the same
operations as [F.
o Obviously, F7' as a vector space supports addition and subtraction.

Streaming Algorithm: AMS

Brief Introduction to Finite Fields

In the construction of universal hashing, our hash function mapped
U = Fg to Fq. Our construction of k-universal hashing so far only
allows mapping from [, to IF,.

o What if we'd like h to map from F7' to IFf;, for ¢ < m?

o If we have k-universal hashing from F¢' to I, then we may take, say,
the first k coordinates of the hash code.

The whole construction would go through if FJ' supports the same
operations as [F.
o Obviously, F7' as a vector space supports addition and subtraction.
o How do we define multiplication between vectors while satisfying
commutativity, associativity and distributive law?

Streaming Algorithm: AMS

Field Extension

® Answer: we see a vector in F' as coefficients of a polynomial of degree
m — 1, and do multiplication of vectors as polynomial multiplications
modulo a degree n irreducible polynomial.

Streaming Algorithm: AMS

Field Extension

® Answer: we see a vector in F' as coefficients of a polynomial of degree
m — 1, and do multiplication of vectors as polynomial multiplications
modulo a degree n irreducible polynomial.

e Example: On [, the polynomial x* + x + 1 is irreducible.

Streaming Algorithm: AMS

Field Extension

® Answer: we see a vector in F' as coefficients of a polynomial of degree
m — 1, and do multiplication of vectors as polynomial multiplications
modulo a degree n irreducible polynomial.

e Example: On [, the polynomial x* + x + 1 is irreducible.
e (1,1)-(1,0) = (0, 1) because (x + 1)x = x> +x =1 mod (x*+ x+1).

Streaming Algorithm: AMS

Field Extension

® Answer: we see a vector in F' as coefficients of a polynomial of degree
m — 1, and do multiplication of vectors as polynomial multiplications
modulo a degree n irreducible polynomial.

e Example: On [, the polynomial x* + x + 1 is irreducible.
e (1,1)-(1,0) = (0, 1) because (x + 1)x = x> +x =1 mod (x*+ x+1).

o Alternatively, you may think of extending the field F, with an
additional element « satisfying a? = o + 1.

Streaming Algorithm: AMS

Field Extension

® Answer: we see a vector in F' as coefficients of a polynomial of degree
m — 1, and do multiplication of vectors as polynomial multiplications
modulo a degree n irreducible polynomial.

Example: On [y, the polynomial x*> + x + 1 is irreducible.
(1,1)-(1,0) = (0, 1) because (x + 1)x = x>+ x =1 mod (x*+x+1).

Alternatively, you may think of extending the field F, with an
additional element « satisfying a? = o + 1.

o In much of the same way, the complex field is the extension of the real
field with the addition of i that solves i* = —1.

Streaming Algorithm: AMS

Field Extension

® Answer: we see a vector in F' as coefficients of a polynomial of degree
m — 1, and do multiplication of vectors as polynomial multiplications
modulo a degree n irreducible polynomial.

Example: On [y, the polynomial x*> + x + 1 is irreducible.
(1,1)-(1,0) = (0, 1) because (x + 1)x = x>+ x =1 mod (x*+x+1).

Alternatively, you may think of extending the field F, with an
additional element « satisfying a? = o + 1.

o In much of the same way, the complex field is the extension of the real
field with the addition of i that solves i* = —1.
o So(a+Na=a?+a=1

Streaming Algorithm: AMS

Field Extension

® Answer: we see a vector in F' as coefficients of a polynomial of degree
m — 1, and do multiplication of vectors as polynomial multiplications
modulo a degree n irreducible polynomial.

e Example: On [, the polynomial x* + x + 1 is irreducible.

e (1,1)-(1,0) = (0,1) because (x + 1)x = x* +x =1 mod (x> + x+1).

o Alternatively, you may think of extending the field F, with an
additional element « satisfying a? = o + 1.

o In much of the same way, the complex field is the extension of the real
field with the addition of i that solves i* = —1.
o So(a+Na=a?+a=1

@ One can show that degree nirreducible polynomials always exist for
[F4. So we can construct fields F,m for any positive integer m.

Streaming Algorithm: AMS

JL with k-wise Independent Hash

o Let’s use k-wise independent variables Ly, - - - , Ly, each distributed
evenly on {—1,41}, to emulate JL.

o We'll decide k later.

Streaming Algorithm: AMS

JL with k-wise Independent Hash

o Let’s use k-wise independent variables Ly, - - - , Ly, each distributed
evenly on {—1,41}, to emulate JL.

o We'll decide k later.
o For a k-universal hash function h ~ H with seed s, let L; = hy(j).

Streaming Algorithm: AMS

JL with k-wise Independent Hash

o Let’s use k-wise independent variables Ly, - - - , Ly, each distributed
evenly on {—1,41}, to emulate JL.

o We'll decide k later.
o For a k-universal hash function h ~ H with seed s, let L; = hy(j).

o Consider y :=). Lix;.

15/18

Streaming Algorithm: AMS

JL with k-wise Independent Hash

o Let’s use k-wise independent variables Ly, - - - , Ly, each distributed
evenly on {—1,41}, to emulate JL.

o We'll decide k later.

o For a k-universal hash function h ~ H with seed s, let L; = hy(j).
o Consider y :=). Lix;.

o E[y] = 0 because E[L;] = 0 for each i.

15/18

Streaming Algorithm: AMS

JL with k-wise Independent Hash

o Let’s use k-wise independent variables Ly, - - - , Ly, each distributed
evenly on {—1,41}, to emulate JL.
o We'll decide k later.
o For a k-universal hash function h ~ H with seed s, let L; = hy(j).
o Consider y :=). Lix;.
o E[y] = 0 because E[L;] = 0 for each i.
o The variance of L;x; is E[L?x?] = x?. As long as Ly, - - , Ly are pairwise
independent, we have Var[y] = . x? = ||x||% On the other hand, we
have Var[y] = E[y’] — (E[y])* = E[y?].

Streaming Algorithm: AMS

JL with k-wise Independent Hash

o Let’s use k-wise independent variables Ly, - - - , Ly, each distributed
evenly on {—1,41}, to emulate JL.

o We'll decide k later.
o For a k-universal hash function h ~ H with seed s, let L; = hy(j).

o Consider y :=). Lix;.
o E[y] = 0 because E[L;] = 0 for each i.
o The variance of L;x; is E[L?x?] = x?. As long as Ly, - - , Ly are pairwise
independent, we have Var[y] = . x? = ||x||% On the other hand, we

have Var[y] = E[y”] — (E[y])* = E[y’].
o We would like to estimate ||x||%, so we would like y? to concentrate
around its expectation.

Streaming Algorithm: AMS

JL with k-wise Independent Hash

o Let’s use k-wise independent variables Ly, - - - , Ly, each distributed
evenly on {—1,41}, to emulate JL.
o We'll decide k later.
o For a k-universal hash function h ~ H with seed s, let L; = hy(j).
o Consider y :=). Lix;.
o E[y] = 0 because E[L;] = 0 for each i.
o The variance of L;x; is E[L?x?] = x?. As long as Ly, - - , Ly are pairwise
independent, we have Var[y] = . x? = ||x||% On the other hand, we
have Var[y] = E[y*] — (E[y])* = E[y*].
o We would like to estimate ||x||%, so we would like y? to concentrate
around its expectation.
o We cannot afford the Chernoff bound. But we may use Chebyshev
inequality if we can bound Var[y?]!

Streaming Algorithm: AMS

Variance of 3 . y?

wrsareoffpe)

= > E[LLyLiL] X%, X,
J1j2:J3:44€[n]

November 5, 2021

16/18

Streaming Algorithm: AMS

Variance of 3 . y?

wrsareoffpe)

= > E[LLyLiL] X%, X,
Jrs2sssia€ln]
Now to simplify the analysis, we will require that Lq,--- , Ly be 4-wise

independent.

Streaming Algorithm: AMS

Variance of 3 . y?

wrsareoffpe)

= > E[LLyLiL] X%, X,
Jrs2sssia€ln]
Now to simplify the analysis, we will require that Lq,--- , Ly be 4-wise

independent.
Whenever some j € [n] appears only once among ji, j2, j3, ja, the term
E[Lj,L,L;L;] = 0.

16/18

Streaming Algorithm: AMS

Variance of 3 . y?

wrsareoffpe)

= > E[LLyLiL] X%, X,

Jrs2sssia€ln]
Now to simplify the analysis, we will require that Lq,--- , Ly be 4-wise

independent.
Whenever some j € [n] appears only once among ji, j2, j3, ja, the term
E[Lj,L,L;L;] = 0.
Only two kinds of factors remain non-zero:
® j1 = j» = j3 = js = J, each such term appears once, contributing xf to

the sum.

16/18

Streaming Algorithm: AMS

Variance of 3 . y?

wrsareoffpe)

= > E[LLyLiL] X%, X,

Jrs2sssia€ln]
Now to simplify the analysis, we will require that Lq,--- , Ly be 4-wise

independent.
Whenever some j € [n] appears only once among ji, j2, j3, ja, the term
E[Lj,L,L;L;] = 0.
Only two kinds of factors remain non-zero:
® j1 = j» = j3 = js = J, each such term appears once, contributing xf to
the sum.
® j1, J2,J3, Ja are split into two equal pairs For each i1, iy € [n], it < iy,

these terms contribute altogether 6x“ pe

Streaming Algorithm: AMS

Multiple Samples

So we have Var[y?] < el X630 xixp < 2[|x||

n-n

Streaming Algorithm: AMS

Multiple Samples

So we have Var[y?] < el X X6 o xixi < 2||x|[*. Therefore
Pr{y? — ||x||?| > o] < 2||x||* /a We are interested in o = e[| x||%

Streaming Algorithm: AMS

Multiple Samples

So we have Var[y?] < el X X6 o xixi < 2||x|[*. Therefore
Pr{y? — ||x||?| > o] < 2||x||* /a We are interested in o = e[| x||%

@ To make the error rate smaller, let’s have t independent estimates
Vi, YVt

17/18

Streaming Algorithm: AMS

Multiple Samples

n-n
Pr{ly? — ||x|]?| > a] < 2||x||*/a?. We are interested in o = || x]|%

@ To make the error rate smaller, let’s have t independent estimates

So we have Var[y?] < el X} 63, i, xixi, < 2||x]|*. Therefore

y], ey yt-
o This uses a matrix L € {+1,—1}*9, whose rows are indepedent, but
within each row, L; 1, - - -, L; 4 are only 4-wise independent.

17/18

Streaming Algorithm: AMS

Multiple Samples

So we have Var[y?] < Z]E[n] 630, o, xixi < 2[|x||*. Therefore
Pr{ly? — ||x|]?| > a] < 2||x||*/a?. We are interested in o = || x]|%

@ To make the error rate smaller, let’s have t independent estimates

y], ey yt-
o This uses a matrix L € {+1,—1}*9, whose rows are indepedent, but
within each row, L; 1, - - -, L; 4 are only 4-wise independent.

@ The variance of 1 : >_; i is bounded by ZHX”

17/18

Streaming Algorithm: AMS

Multiple Samples

So we have Var[y?] < Z]E[n] + 6 i, xixi < 2||x|[*. Therefore
Pr{y? — ||x||?| > o] < 2||x||* /a . We are interested in o = €||x||.

@ To make the error rate smaller, let’s have t independent estimates

y], ey yt-
o This uses a matrix L € {+1,—1}*9, whose rows are indepedent, but
within each row, L; 1, - - -, L; 4 are only 4-wise independent.

@ The variance of 1 : >_; i is bounded by ZHX”

@ So as long as Z <4, ie,t> ﬁ, we would have that
Pr(l 22 vi — [IxII? > elIx]]] < 6.

17/18

Streaming Algorithm: AMS

Space requirement

@ We need to store yq, ..., y; throughout the algorithm, each using
O(log d) space.

Streaming Algorithm: AMS

Space requirement

@ We need to store yq, ..., y; throughout the algorithm, each using
O(log d) space.

@ We need to store the hash functions we use to generate each row of L.

Streaming Algorithm: AMS

Space requirement

@ We need to store yq, ..., y; throughout the algorithm, each using
O(log d) space.
@ We need to store the hash functions we use to generate each row of L.
o For k-universal hashing from [d], the seed takes space O(k log d).

Streaming Algorithm: AMS

Space requirement

@ We need to store yq, ..., y; throughout the algorithm, each using
O(log d) space.
@ We need to store the hash functions we use to generate each row of L.
o For k-universal hashing from [d], the seed takes space O(k log d).
o We used 4-universal hashing, so each hash function takes O(log d)

space, and there are t of them.

e Altogether the space used is O(IZ§5d).

	Streaming Algorithm: AMS

