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Applications of Johnson-Lindenstrauss Transform

(Approximate) Nearest Neighbor Search

We are given n points x1, . . . , xn ∈ Rd

Task: Given a new point y ∈ Rd
, output x∗ = argmini ||xi − y||.

Assume mini 6=j ||xi − xj|| ≥ 1, and maxi,j ||xi − xj|| ≤ R for some R > 0.

Naïve solution: go over all data points, in time O(nd).

In an ε-approximate Nearest Neighbor problem, given y ∈ Rd
, we must

return x∗ ∈ {x1, . . . , xn} such that ||y − x∗|| ≤ (1 + ε)mini ||y − xi||.
Goal: running time O(d, log n, 1/ε).
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Applications of Johnson-Lindenstrauss Transform

Point Location in Equal Balls

We reduce ε-approximate nearest neighbor problem to the following

problem:

Definition (Point Location in Equal Balls, ε-PLEB(r))

We are given n points x1, . . . , xn ∈ Rd
and radius r . Let

B(x, r) := {z ∈ Rd : ||z − x|| ≤ r} denote the Euclidean ball of radius r
around x . Given a query point y ∈ Rd

:

If there exists xi such that y ∈ B(xi, r), we must return Yes and an xj
such that y ∈ B(xj, (1 + ε)r);

If there exists no xi such that y ∈ B(xi, (1 + ε)r), we must return No.

Otherwise, we can say either Yes or No. If we return Yes, we must also

return an xj such that y ∈ B(xj, (1 + ε)r).
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Applications of Johnson-Lindenstrauss Transform

Reduction from ε-NN to PLEB

Claim

Given an algorithm A that solves ε-PLEB(r), we can solve ε-NN with

O(log R/ε) calls to A.

Proof.

We can do a binary search with an ε-PLEB(r) oracle and find an r∗ such

that ε-PLEB( r∗
1+ε) returns No and ε-PLEB(r∗) returns Yes with an x∗. This

takes log
1+ε R = O( log Rε ) calls.

We then know minj ||y − xj|| ≥ r∗
1+ε , and ||y − x∗|| ≤ r∗(1 + ε). So

||y − x∗|| ≤ (1 + ε)2 minj ||y − xj|| ≤ (1 + 2ε)minj ||y − xj|| for ε ≤ 1.
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Applications of Johnson-Lindenstrauss Transform

Solving PLEB

Plan of a�ack:

1 Give a brute-force algorithm with pre-processing
2 Use JL-transform and run the brute-force algorithm in the low

dimensional space

Step 1: Brute-force algorithm for PLEB

Pre-processing:

Divide Rd
into small cuboids with side length

εr√
d

.

The idea is that the longest distance between any two points in a cube is εr .

Create a hash table. For each xi , and for each cuboid C that intersects

with B(xi, r), hash the pair (C, xi).
C is the key, xi is the satellite

�ery:

To query y , calculate the cuboid C to which y belongs; query key

value C.

If (C, xi) exists in the hash table, return Yes and xi ; otherwise return No.
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Applications of Johnson-Lindenstrauss Transform

Analysis of Pre-processing

Correctness:

When we return Yes and xi , we know for some point y ′ ∈ C,

||x − y ′|| ≤ r , so ||x − y|| ≤ ||x − y ′||+ ||y ′ − y|| ≤ (1 + ε)r .

When we return No, we know for all xi , ||y − xi|| ≥ r (otherwise (C, xi)
should have been hashed).

Running time:

Preprocessing: the volume of B(xi, r) is 2
O(d)rd/dd/2

; the volume of each

cuboid is ( εr√
d
)d ; so for each xi hash O( 1

ε )
d

cuboids.

For even d , the volume of a radius r Euclidean ball is
πd/2

( d
2
)!
rd .

�ery: Compute C takes time O(d). �ery the hash table takes time

O(1).
�ery time is satisfactory, but pre-processing time is exponential in d !
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Applications of Johnson-Lindenstrauss Transform

Step 2: Dimension Reduction

Using JL-transform, we can first map x1, . . . , xn to z1, . . . , zn ∈ Rt

where t = O(log n/ε2).

When querying y ∈ Rd
, first map it to y ′ ∈ Rt

with the same random

matrix. With high probability,

(1− ε)||y ′ − zi|| ≤ ||y − xi|| ≤ (1 + ε)||y ′ − zi|| for every i.

Pre-processing now takes time O(1/ε)t = nlog(1/ε)/ε
2

.

Each query for PLEB takes time O(td) = O( d log n
ε2

).

The whole picture for solving ε-NN:

Preprocessing time:

nO(log(1/ε)/ε
2) · O

(
log R
ε

)
.

�ery time: O(td) + O(log( log Rε )) · O(t).
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