
Bloom Filters

Learning Goals

State the purpose of Bloom filters
Understand the tradeoff between space and accuracy in Bloom filters
Analyze the performance of a Bloom filter
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Bloom Filters

Membership Checking

Sometimes we’d like to check very quickly very quickly whether an
element is in it.

Scenario: An ISP (Internet Service Provider), when loading a
webpage, may need to check if certain media files are cached

Modern Internet has multiple levels of caching
More contents are delivered by Content Delivery Networks (CDNs)
such as Akamai and Fastly than from original servers

We’d like to use O(n) space, but we can tolerate a few errors.
Space requirement of hash table: even if we only store the keys, it
would take Ω(n logU) space.
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Bloom Filters

Illustration of Content Delivery Network (CDN)

Credit: Kim Meyrick — http://en.wikipedia.org/wiki/Image:Akamaiprocess.png
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Bloom Filters

Bloom Filters

The following variant of hashing is named after Burton Bloom.

A Bloom filter consists of an array B[0, . . . ,m− 1] bits, together with
k hash functions h1, · · · , hk : U → {0, . . . ,m − 1}.
For the purpose of theoretical analysis, we assume h1, · · · , hk are
mutually independent, ideal random functions.

Recall: the universal hashing function we constructed in the last lecture
are not ideal random functions.
In particular, for x 6= y in U, and p, q ∈ {0, . . . ,m − 1},
Prh[h(x) = p, h(y) = q] 6= 1

m2 .
Later in the course, we’ll see hash functions that guarantee pairwise
independence.

For every entry x ∈ S , mark B[h1(x)] = · · · = B[hk(x)] = 1.
When checking the membership of a key x , return “Yes” if
B[h1(x)] = · · · = B[hk(x)] = 1; if any of these is 0, return “No”.
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Bloom Filters

Illustration

h1

h2

www.bilibili.com

baidu.com

0

0

1

0

0

0

0

1

0

1

Bloom Filter

September 21, 2021 5 / 7



Bloom Filters

Analysis

Whenever we answer No, we are always correct.

When we answer Yes, there is some chance we are wrong.
Such an error is called a false positive.

The probability that a bit in B remains 0 is (1− 1
m )kn ≈ e−kn/m.

Denote e−kn/m by p, then k = −m
n ln p.

For a key not in S , the probability of a false positive is roughly
(1− p)k = (1− e−kn/m)k .
Minimize this probability by minimizing its logarithm:
ln[(1− p)k ] = k ln(1− p) = −m

n ln p ln(1− p).
By symmetry this is minimized at p = 1

2 , so k = ln 2 · (m/n).

The false positive rate is roughly (1/2)ln 2·(m/n) ≈ (0.61850)m/n.
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Bloom Filters

Overall Performance

If we’d like to achieve false positive rate δ > 0, we should have
m = Θ(n log(1/δ)) and use k = dlog(1/δ)e hash functions.

To achieve 1% false positive rate, we’ll use a Bloom filter of 10n bits
and 7 hash functions.
Using a filter of 32n bits (equivalent to one integer per entry) and 22
hash functions, we achieve false positive rate of about 2 · 10−7.
In practice, the theoretical assumption we made works pretty well,
even though the hash functions are not ideal random functions.
The idea of increased efficiency at the cost of some fault toleration is
a recurring theme in handling with big data.
This clever use of hash functions will also reappear later in the course.
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