Learning Goals

- State the purpose of Bloom filters
- Understand the tradeoff between space and accuracy in Bloom filters
- Analyze the performance of a Bloom filter

э

< □ > < 同 > < 回 > < 回 > < 回 >

• Sometimes we'd like to check very quickly very quickly whether an element is in it.

3

< □ > < 同 > < 回 > < 回 > < 回 >

- Sometimes we'd like to check very quickly very quickly whether an element is in it.
- Scenario: An ISP (Internet Service Provider), when loading a webpage, may need to check if certain media files are cached

- Sometimes we'd like to check very quickly very quickly whether an element is in it.
- Scenario: An ISP (Internet Service Provider), when loading a webpage, may need to check if certain media files are cached
 - Modern Internet has multiple levels of caching

A D > A A > A > A

- Sometimes we'd like to check very quickly very quickly whether an element is in it.
- Scenario: An ISP (Internet Service Provider), when loading a webpage, may need to check if certain media files are cached
 - Modern Internet has multiple levels of caching
 - More contents are delivered by *Content Delivery Networks* (CDNs) such as Akamai and Fastly than from original servers

< ロト < 同ト < ヨト < ヨト

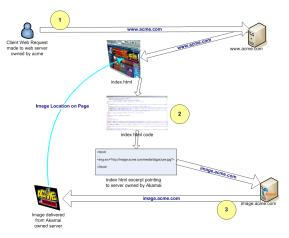
- Sometimes we'd like to check very quickly very quickly whether an element is in it.
- Scenario: An ISP (Internet Service Provider), when loading a webpage, may need to check if certain media files are cached
 - Modern Internet has multiple levels of caching
 - More contents are delivered by *Content Delivery Networks* (CDNs) such as Akamai and Fastly than from original servers
- We'd like to use O(n) space, but we can tolerate a few errors.

< ロト < 同ト < ヨト < ヨト

- Sometimes we'd like to check very quickly very quickly whether an element is in it.
- Scenario: An ISP (Internet Service Provider), when loading a webpage, may need to check if certain media files are cached
 - Modern Internet has multiple levels of caching
 - More contents are delivered by *Content Delivery Networks* (CDNs) such as Akamai and Fastly than from original servers
- We'd like to use O(n) space, but we can tolerate a few errors.
- Space requirement of hash table: even if we only store the keys, it would take Ω(n log U) space.

- Sometimes we'd like to check very quickly very quickly whether an element is in it.
- Scenario: An ISP (Internet Service Provider), when loading a webpage, may need to check if certain media files are cached
 - Modern Internet has multiple levels of caching
 - More contents are delivered by *Content Delivery Networks* (CDNs) such as Akamai and Fastly than from original servers
- We'd like to use O(n) space, but we can tolerate a few errors.
- Space requirement of hash table: even if we only store the keys, it would take Ω(n log U) space.

Illustration of Content Delivery Network (CDN)



Credit: Kim Meyrick — http://en.wikipedia.org/wiki/Image:Akamaiprocess.png

イロト 不得 トイラト イラト 一日

September 21, 2021

3/7

• The following variant of hashing is named after Burton Bloom.

イロト イヨト イヨト イヨト

э

- The following variant of hashing is named after Burton Bloom.
- A Bloom filter consists of an array B[0, ..., m-1] bits, together with k hash functions $h_1, ..., h_k : U \to \{0, ..., m-1\}$.

3

< □ > < 同 > < 回 > < 回 > < 回 >

- The following variant of hashing is named after Burton Bloom.
- A Bloom filter consists of an array $B[0, \ldots, m-1]$ bits, together with k hash functions $h_1, \cdots, h_k : U \to \{0, \ldots, m-1\}$.
- For the purpose of theoretical analysis, we assume h_1, \dots, h_k are mutually independent, ideal random functions.

イロト イヨト イヨト

Bloom Filters

- The following variant of hashing is named after Burton Bloom.
- A Bloom filter consists of an array $B[0, \ldots, m-1]$ bits, together with k hash functions $h_1, \cdots, h_k : U \to \{0, \ldots, m-1\}$.
- For the purpose of theoretical analysis, we assume h_1, \dots, h_k are mutually independent, ideal random functions.
 - Recall: the universal hashing function we constructed in the last lecture are not ideal random functions.

Bloom Filters

- The following variant of hashing is named after Burton Bloom.
- A Bloom filter consists of an array $B[0, \ldots, m-1]$ bits, together with k hash functions $h_1, \cdots, h_k : U \to \{0, \ldots, m-1\}$.
- For the purpose of theoretical analysis, we assume h_1, \dots, h_k are mutually independent, ideal random functions.
 - Recall: the universal hashing function we constructed in the last lecture are not ideal random functions.
 - In particular, for $x \neq y$ in U, and $p, q \in \{0, \dots, m-1\}$, $\mathbf{Pr}_h[h(x) = p, h(y) = q] \neq \frac{1}{m^2}$.

Bloom Filters

- The following variant of hashing is named after Burton Bloom.
- A Bloom filter consists of an array B[0, ..., m-1] bits, together with k hash functions $h_1, ..., h_k : U \to \{0, ..., m-1\}$.
- For the purpose of theoretical analysis, we assume h_1, \dots, h_k are mutually independent, ideal random functions.
 - Recall: the universal hashing function we constructed in the last lecture are not ideal random functions.
 - In particular, for $x \neq y$ in U, and $p, q \in \{0, \dots, m-1\}$, $\mathbf{Pr}_h[h(x) = p, h(y) = q] \neq \frac{1}{m^2}$.
 - Later in the course, we'll see hash functions that guarantee pairwise independence.

イロト 不得 トイヨト イヨト 二日

Bloom Filters

- The following variant of hashing is named after Burton Bloom.
- A Bloom filter consists of an array $B[0, \ldots, m-1]$ bits, together with k hash functions $h_1, \cdots, h_k : U \to \{0, \ldots, m-1\}$.
- For the purpose of theoretical analysis, we assume h_1, \dots, h_k are mutually independent, ideal random functions.
 - Recall: the universal hashing function we constructed in the last lecture are not ideal random functions.
 - In particular, for $x \neq y$ in U, and $p, q \in \{0, \ldots, m-1\}$, $\mathbf{Pr}_h[h(x) = p, h(y) = q] \neq \frac{1}{m^2}$.
 - Later in the course, we'll see hash functions that guarantee pairwise independence.

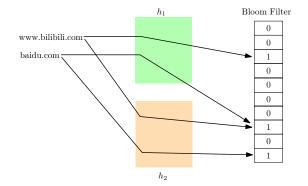
• For every entry $x \in S$, mark $B[h_1(x)] = \cdots = B[h_k(x)] = 1$.

イロト 不得下 イヨト イヨト 二日

- The following variant of hashing is named after Burton Bloom.
- A Bloom filter consists of an array $B[0, \ldots, m-1]$ bits, together with k hash functions $h_1, \cdots, h_k : U \to \{0, \ldots, m-1\}$.
- For the purpose of theoretical analysis, we assume h_1, \dots, h_k are mutually independent, ideal random functions.
 - Recall: the universal hashing function we constructed in the last lecture are not ideal random functions.
 - In particular, for $x \neq y$ in U, and $p, q \in \{0, \dots, m-1\}$, $\mathbf{Pr}_h[h(x) = p, h(y) = q] \neq \frac{1}{m^2}$.
 - Later in the course, we'll see hash functions that guarantee pairwise independence.
- For every entry $x \in S$, mark $B[h_1(x)] = \cdots = B[h_k(x)] = 1$.
- When checking the membership of a key x, return "YES" if $B[h_1(x)] = \cdots = B[h_k(x)] = 1$; if any of these is 0, return "No".

イロト イポト イヨト イヨト

Illustration



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣

 \bullet Whenever we answer No , we are always correct.

æ

<ロト <問ト < 目ト < 目ト

- \bullet Whenever we answer $\mathrm{No},$ we are always correct.
- \bullet When we answer $\rm YES,$ there is some chance we are wrong.

3

< □ > < 同 > < 回 > < 回 > < 回 >

- Whenever we answer No, we are always correct.
- \bullet When we answer $\rm Yes,$ there is some chance we are wrong.
 - Such an error is called a *false positive*.
- The probability that a bit in B remains 0 is $(1 \frac{1}{m})^{kn} \approx e^{-kn/m}$.

< □ > < 同 > < 回 > < 回 > < 回 >

- Whenever we answer No, we are always correct.
- \bullet When we answer $\rm YES,$ there is some chance we are wrong.
 - Such an error is called a *false positive*.
- The probability that a bit in B remains 0 is $(1 \frac{1}{m})^{kn} \approx e^{-kn/m}$.
 - Denote $e^{-kn/m}$ by p, then $k = -\frac{m}{n} \ln p$.

- Whenever we answer No, we are always correct.
- \bullet When we answer $\rm YES,$ there is some chance we are wrong.
 - Such an error is called a *false positive*.
- The probability that a bit in B remains 0 is $(1 \frac{1}{m})^{kn} \approx e^{-kn/m}$.
 - Denote $e^{-kn/m}$ by p, then $k = -\frac{m}{n} \ln p$.
- For a key not in S, the probability of a false positive is roughly $(1-p)^k = (1-e^{-kn/m})^k$.

< ロト < 同ト < ヨト < ヨト

- Whenever we answer No, we are always correct.
- \bullet When we answer $\rm YES,$ there is some chance we are wrong.
 - Such an error is called a *false positive*.
- The probability that a bit in B remains 0 is $(1 \frac{1}{m})^{kn} \approx e^{-kn/m}$.
 - Denote $e^{-kn/m}$ by p, then $k = -\frac{m}{n} \ln p$.
- For a key not in S, the probability of a false positive is roughly $(1-p)^k = (1-e^{-kn/m})^k$.
- Minimize this probability by minimizing its logarithm: $\ln[(1-p)^k] = k \ln(1-p) = -\frac{m}{n} \ln p \ln(1-p).$

- Whenever we answer No, we are always correct.
- \bullet When we answer $\rm YES,$ there is some chance we are wrong.
 - Such an error is called a *false positive*.
- The probability that a bit in B remains 0 is $(1 \frac{1}{m})^{kn} \approx e^{-kn/m}$.
 - Denote $e^{-kn/m}$ by p, then $k = -\frac{m}{n} \ln p$.
- For a key not in S, the probability of a false positive is roughly $(1-p)^k = (1-e^{-kn/m})^k$.
- Minimize this probability by minimizing its logarithm: $\ln[(1-p)^k] = k \ln(1-p) = -\frac{m}{n} \ln p \ln(1-p).$
- By symmetry this is minimized at $p = \frac{1}{2}$, so $k = \ln 2 \cdot (m/n)$.

- Whenever we answer No, we are always correct.
- \bullet When we answer $\rm YES,$ there is some chance we are wrong.
 - Such an error is called a *false positive*.
- The probability that a bit in B remains 0 is $(1 \frac{1}{m})^{kn} \approx e^{-kn/m}$.
 - Denote $e^{-kn/m}$ by p, then $k = -\frac{m}{n} \ln p$.
- For a key not in S, the probability of a false positive is roughly $(1-p)^k = (1-e^{-kn/m})^k$.
- Minimize this probability by minimizing its logarithm: $\ln[(1-p)^k] = k \ln(1-p) = -\frac{m}{n} \ln p \ln(1-p).$
- By symmetry this is minimized at $p = \frac{1}{2}$, so $k = \ln 2 \cdot (m/n)$.
- The false positive rate is roughly $(1/2)^{\ln 2 \cdot (m/n)} \approx (0.61850)^{m/n}$.

• If we'd like to achieve false positive rate $\delta > 0$, we should have $m = \Theta(n \log(1/\delta))$ and use $k = \lceil \log(1/\delta) \rceil$ hash functions.

3

・ロト ・四ト ・ヨト ・ヨト

- If we'd like to achieve false positive rate $\delta > 0$, we should have $m = \Theta(n \log(1/\delta))$ and use $k = \lceil \log(1/\delta) \rceil$ hash functions.
- To achieve 1% false positive rate, we'll use a Bloom filter of 10*n* bits and 7 hash functions.

イロト イヨト イヨト

- If we'd like to achieve false positive rate $\delta > 0$, we should have $m = \Theta(n \log(1/\delta))$ and use $k = \lceil \log(1/\delta) \rceil$ hash functions.
- To achieve 1% false positive rate, we'll use a Bloom filter of 10*n* bits and 7 hash functions.
- Using a filter of 32n bits (equivalent to one integer per entry) and 22 hash functions, we achieve false positive rate of about $2 \cdot 10^{-7}$.

- If we'd like to achieve false positive rate $\delta > 0$, we should have $m = \Theta(n \log(1/\delta))$ and use $k = \lceil \log(1/\delta) \rceil$ hash functions.
- To achieve 1% false positive rate, we'll use a Bloom filter of 10*n* bits and 7 hash functions.
- Using a filter of 32n bits (equivalent to one integer per entry) and 22 hash functions, we achieve false positive rate of about $2 \cdot 10^{-7}$.
- In practice, the theoretical assumption we made works pretty well, even though the hash functions are not ideal random functions.

- If we'd like to achieve false positive rate $\delta > 0$, we should have $m = \Theta(n \log(1/\delta))$ and use $k = \lceil \log(1/\delta) \rceil$ hash functions.
- To achieve 1% false positive rate, we'll use a Bloom filter of 10*n* bits and 7 hash functions.
- Using a filter of 32n bits (equivalent to one integer per entry) and 22 hash functions, we achieve false positive rate of about $2 \cdot 10^{-7}$.
- In practice, the theoretical assumption we made works pretty well, even though the hash functions are not ideal random functions.
- The idea of increased efficiency at the cost of some fault toleration is a recurring theme in handling with big data.

- If we'd like to achieve false positive rate $\delta > 0$, we should have $m = \Theta(n \log(1/\delta))$ and use $k = \lceil \log(1/\delta) \rceil$ hash functions.
- To achieve 1% false positive rate, we'll use a Bloom filter of 10*n* bits and 7 hash functions.
- Using a filter of 32n bits (equivalent to one integer per entry) and 22 hash functions, we achieve false positive rate of about $2 \cdot 10^{-7}$.
- In practice, the theoretical assumption we made works pretty well, even though the hash functions are not ideal random functions.
- The idea of increased efficiency at the cost of some fault toleration is a recurring theme in handling with big data.
- This clever use of hash functions will also reappear later in the course.

イロト イポト イヨト イヨト