Bloom Filters

Learning Goals

@ State the purpose of Bloom filters
@ Understand the tradeoff between space and accuracy in Bloom filters

@ Analyze the performance of a Bloom filter
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lllustration of Content Delivery Network (CDN)

Client Web Request
made to web server
owned by acme

Image Location on Page @

index html excerpt pointing

to server owned by Akamai @
3
Image delivered

from Akamai
owned server

Credit: Kim Meyrick — http://en.wikipedia.org/wiki/Image:Akamaiprocess.png
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The following variant of hashing is named after Burton Bloom.

A Bloom filter consists of an array B0, ..., m — 1] bits, together with
k hash functions hy,--- ,hx: U —{0,...,m—1}.

For the purpose of theoretical analysis, we assume hy,--- , h; are
mutually independent, ideal random functions.

o Recall: the universal hashing function we constructed in the last lecture
are not ideal random functions.

o In particular, for x # y in U, and p,q € {0,...,m — 1},
Pri[h(x) = p, h(y) = q] # =

o Later in the course, we'll see hash functions that guarantee pairwise

independence.
e For every entry x € S, mark B[hi(x)] = --- = B[hk(x)] = 1.
@ When checking the membership of a key x, return “YES" if
Blhi(x)] = - - - = B[hk(x)] = 1, if any of these is 0, return “NO".
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[[lustration
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e Such an error is called a false positive.
@ The probability that a bit in B remains 0 is (1 — %)k” ~ e kn/m.
o Denote e k"™ by p, then k = —2np.
@ For a key not in S, the probability of a false positive is roughly
(1 p) = (1 — e kn/myk.
@ Minimize this probability by minimizing its logarithm:
In[(1 — p)¥] = kIn(1 — p) = =T Inpln(1 - p).
o By symmetry this is minimized at p =1, so k =In2-(m/n).
@ The false positive rate is roughly (1/2)""2(m/") ~ (0.61850)™/".
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o If we'd like to achieve false positive rate é > 0, we should have
m = ©(nlog(1/6)) and use k = [log(1/d)] hash functions.

o To achieve 1% false positive rate, we'll use a Bloom filter of 10n bits
and 7 hash functions.

@ Using a filter of 32n bits (equivalent to one integer per entry) and 22
hash functions, we achieve false positive rate of about 2 - 1077.

@ In practice, the theoretical assumption we made works pretty well,
even though the hash functions are not ideal random functions.

@ The idea of increased efficiency at the cost of some fault toleration is
a recurring theme in handling with big data.

@ This clever use of hash functions will also reappear later in the course.
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