Applications of Chernoff Bound

Learning Goals

e Apply Chernoff bound in typical scenarios
@ Understand analysis of Quicksort

@ Develop quantitative understanding of the balls and bins process

1/9



Quicksort

@ The proof for the expected height of a binary search tree for randomly
arriving elements implies the expected running time of Quicksort is
O(nlog n).



Applications of Chernoff Bound

Quicksort

@ The proof for the expected height of a binary search tree for randomly

arriving elements implies the expected running time of Quicksort is
O(nlog n).

@ We now show that the running time of Quicksort is O(nlog n) with
high probability by applying the Chernoff bounds.



Quicksort

@ The proof for the expected height of a binary search tree for randomly
arriving elements implies the expected running time of Quicksort is
O(nlog n).

@ We now show that the running time of Quicksort is O(nlog n) with
high probability by applying the Chernoff bounds.

@ Recall: the procedure of Quicksort can be represented by a binary tree,
where each node represents a pivoting, the two children being the two
subsets resulting from comparisons with the pivoting element.



Quicksort

@ The proof for the expected height of a binary search tree for randomly
arriving elements implies the expected running time of Quicksort is
O(nlog n).

@ We now show that the running time of Quicksort is O(nlog n) with
high probability by applying the Chernoff bounds.

@ Recall: the procedure of Quicksort can be represented by a binary tree,
where each node represents a pivoting, the two children being the two
subsets resulting from comparisons with the pivoting element.

@ The running time for each level in total is O(n), so we will show that
with high probability the height of the tree is O(log n).
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Analysis of Quicksort

@ Follow a path from the root, specified by “left” or “right” at each step.

e We say each step is “good” if the size of the array at the child is at
most % that of the parent; otherwise we say the step is “bad”.

@ There can be at most log n/ Iog% good steps before we are at a leaf.

@ Let’s bound the probability that, in 12 log n steps, there are fewer than
logs n good steps.
3
o Let X; be the indicator variable for the i-th step being good, then
E[X] > 2, and the X;’s are i.i.d.

o Let X be Z}-ilfg" X;. By Chernoff bound, we have

|
Pr [x < Iog"

25log? n
<Pr[X<E[X]—5logn <exp|—2-—"—
12logn

4
3

— /6



Analysis of Quicksort (Cont.)

@ There are n leaves.



Analysis of Quicksort (Cont.)

@ There are n leaves.

@ By the union bound, the probability that any leaf has depth more than
12 log n is no more than n- n=2/6 = p=19/6,



Analysis of Quicksort (Cont.)

@ There are n leaves.

@ By the union bound, the probability that any leaf has depth more than
12 log n is no more than n- n=2/6 = p=19/6,

@ Therefore, with high probability, the height of the tree is bounded by
12 log n.

4/9



Analysis of Quicksort (Cont.)

@ There are n leaves.

@ By the union bound, the probability that any leaf has depth more than
12 log n is no more than n- n=2/6 = p=19/6,

@ Therefore, with high probability, the height of the tree is bounded by
12 log n.

@ Obviously the constants in the analysis were not finetuned.
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The Negative Binomial Distribution

@ In the proof above, we wanted to bound the probability that, we take
more than 12log n steps to see log, /3 n good ones; instead, we bounded
the probability that, within a 12log n steps, there are fewer than
log, /3 n good ones.

@ Are these two probabilities equal?

@ Answer: Yes. A random variable counting the number of i.i.d. trials
before seeing k successful ones is said to have the negative binomial
distribution.

@ The probability that such a random variable is larger than nis equal to
the probability that, within ni.i.d. trials we have not seen k successful
ones.

o The statement may seem obvious, but a formal argument needs either
“coupling” or some careful calculations.
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Bins and Balls

@ When discussing hashing, we considered a naive family of hash:
mapping elements of U uniformly random to an address.

@ In our first lecture, we considered n tasks sending requests uniformly
at random to one of the servers.

@ Such scenarios arise very often in algorithmic analysis. It is helpful to
develop an intuition for them.

@ This is often abstracted as a balls and bins model, where we have n balls

and m bins, and each ball is thrown uniformly at random to a bin.
@ Any bin receives in expectation - balls. If m = n, this is 1.

e How about the bin that received the most balls? How many balls
should we expect to see there?
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e Let’s consider a particular bin. Let X; be the indicator variable for the
event that the i-th ball falls in this bin.

o Then Pr[X; =1] = 1.
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Balls and Bins when m = n

Let’s consider a particular bin. Let X; be the indicator variable for the
event that the i-th ball falls in this bin.

Then Pr[X; = 1] = %
Let X be >, X;. Note that E[X] = 1.
For t > 0, we use Chernoff bound

PriX > (1+)E[X]] < (%)Em < ( ¢ )Ht.

(1+1¢ 1+t

@ We would like to find t to so that this probability is smaller than n—2.

Essentially we are asking what solves x* = n.
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@ To estimate the solution of x* = n, we first take logarithm,
x log x = log n, log x + log log x = log log n.

o Note that x < log n.

@ We have 2log x > log x + log log x = log log n > log x, so

Te<c togn o e )
2 log log n log log n

o Let the solution to x* = nbe y(n), and let 1+ t = ey(n), we have

e 1+t 1 ev(n) - 5
(5 ~Gw) e

@ By union bound, with probability at least 1 — %, no bin receives more

than ey(n) = @(log’ign) balls.
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Balls and Bins When n > m

@ As n grows, the number of balls concentrates more sharply around its
means.

e E.g., take n = 16nlog m, with the previous notation, E[X] = 16 log m.

1

Pr[X > 32logm] = Pr[X > 2E[X]] < e *W/3 = m10/3 < —;
m

1 —E[X 1
Pr[X < 8log m] = Pr [ngE[X]} <e H/SZE,

For n = Q(mlog m), with high probability, the number of balls every bin
receives is between half and twice the average.
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