
Applications of Cherno� Bound

Learning Goals

Apply Cherno� bound in typical scenarios

Understand analysis of �icksort

Develop quantitative understanding of the balls and bins process
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Applications of Cherno� Bound

�icksort

The proof for the expected height of a binary search tree for randomly
arriving elements implies the expected running time of �icksort is
O(n log n).

We now show that the running time of �icksort is O(n log n) with
high probability by applying the Cherno� bounds.

Recall: the procedure of �icksort can be represented by a binary tree,
where each node represents a pivoting, the two children being the two
subsets resulting from comparisons with the pivoting element.

The running time for each level in total is O(n), so we will show that
with high probability the height of the tree is O(log n).
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Applications of Cherno� Bound

Analysis of �icksort

Follow a path from the root, specified by “le�” or “right” at each step.

We say each step is “good” if the size of the array at the child is at
most 3

4 that of the parent; otherwise we say the step is “bad”.

There can be at most log n/ log 4
3 good steps before we are at a leaf.

Let’s bound the probability that, in 12 log n steps, there are fewer than
log 4

3
n good steps.

Let Xi be the indicator variable for the i-th step being good, then
E[Xi] ≥ 3

4 , and the Xi’s are i.i.d.

Let X be
∑12 log n

i=1 Xi . By Cherno� bound, we have

Pr
[
X <

log n
log 4

3

]
≤ Pr [X < E [X ]− 5 log n] ≤ exp

(
−2 · 25 log2 n

12 log n

)
= n−25/6.
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Applications of Cherno� Bound

Analysis of �icksort (Cont.)

There are n leaves.

By the union bound, the probability that any leaf has depth more than
12 log n is no more than n · n−25/6 = n−19/6.

Therefore, with high probability, the height of the tree is bounded by
12 log n.

Obviously the constants in the analysis were not finetuned.
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Applications of Cherno� Bound

The Negative Binomial Distribution

In the proof above, we wanted to bound the probability that, we take
more than 12 log n steps to see log4/3 n good ones; instead, we bounded
the probability that, within a 12 log n steps, there are fewer than
log4/3 n good ones.

Are these two probabilities equal?

Answer: Yes. A random variable counting the number of i.i.d. trials
before seeing k successful ones is said to have the negative binomial
distribution.
The probability that such a random variable is larger than n is equal to
the probability that, within n i.i.d. trials we have not seen k successful
ones.

The statement may seem obvious, but a formal argument needs either
“coupling” or some careful calculations.
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Applications of Cherno� Bound

Bins and Balls

When discussing hashing, we considered a naïve family of hash:
mapping elements of U uniformly random to an address.

In our first lecture, we considered n tasks sending requests uniformly
at random to one of the servers.

Such scenarios arise very o�en in algorithmic analysis. It is helpful to
develop an intuition for them.

This is o�en abstracted as a balls and bins model, where we have n balls
and m bins, and each ball is thrown uniformly at random to a bin.

Any bin receives in expectation n
m balls. If m = n, this is 1.

How about the bin that received the most balls? How many balls
should we expect to see there?
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Applications of Cherno� Bound

Balls and Bins when m = n

Let’s consider a particular bin. Let Xi be the indicator variable for the
event that the i-th ball falls in this bin.

Then Pr[Xi = 1] = 1
n .

Let X be
∑

i Xi . Note that E[X ] = 1.

For t > 0, we use Cherno� bound

Pr [X > (1 + t)E [X ]] ≤
(

et

(1 + t)1+t

)E[X ]

≤
(

e
1 + t

)1+t

.

We would like to find t to so that this probability is smaller than n−2.
Essentially we are asking what solves xx = n.
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Applications of Cherno� Bound

Balls and Bins when m = n (Cont.)

To estimate the solution of xx = n, we first take logarithm,
x log x = log n, log x + log log x = log log n.

Note that x < log n.
We have 2 log x ≥ log x + log log x = log log n ≥ log x , so

1
2
x ≤ log n

log log n
≤ x ⇒ x = Θ

(
log n

log log n

)
.

Let the solution to xx = n be γ(n), and let 1 + t = eγ(n), we have(
e

1 + t

)1+t

=

(
1

γ(n)

)eγ(n)

= n−e < n−2.

By union bound, with probability at least 1− 1
n , no bin receives more

than eγ(n) = Θ( log n
log log n) balls.
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Applications of Cherno� Bound

Balls and Bins When n� m

As n grows, the number of balls concentrates more sharply around its
means.

E.g., take n = 16n logm, with the previous notation, E[X ] = 16 logm.

Pr [X ≥ 32 logm] = Pr [X ≥ 2E [X ]] ≤ e−E[X ]/3 = m−16/3 <
1
m2 ;

Pr [X ≤ 8 logm] = Pr
[
X ≤ 1

2
E [X ]

]
≤ e−E[X ]/8 =

1
m2 .

Theorem

For n = Ω(m logm), with high probability, the number of balls every bin
receives is between half and twice the average.
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