Learning Goals

- Define variance and standard deviation
- State Chebyshev inequality and Chernoff inequality
- Compare the conditions and strengths of Markov, Chebyshev and Chernoff inequalities
- Understand the main idea and steps in its proof
- Have intuitive understanding of the bounds given by simplified forms of Chernoff inequality

Definition

The *variance* of a random variable X is $Var[X] := E[(X - E[X])^2] = E[X^2] - (E[X])^2$. Its square root, $\sqrt{Var[X]}$, is the *standard deviation* of X, and is often denoted as σ .

Definition

The *variance* of a random variable X is $Var[X] := E[(X - E[X])^2] = E[X^2] - (E[X])^2$. Its square root, $\sqrt{Var[X]}$, is the *standard deviation* of X, and is often denoted as σ .

Theorem (Chebyshev Inequality)

For any $\alpha > 0$, $\Pr[|X - \mathbb{E}[X]| > \alpha \sigma] \le \frac{1}{\alpha^2}$.

Definition

The *variance* of a random variable X is $Var[X] := E[(X - E[X])^2] = E[X^2] - (E[X])^2$. Its square root, $\sqrt{Var[X]}$, is the *standard deviation* of X, and is often denoted as σ .

Theorem (Chebyshev Inequality)

For any
$$\alpha > 0$$
, $\Pr[|X - \mathbb{E}[X]| > \alpha\sigma] \le \frac{1}{\alpha^2}$.

Proof.

Apply Markov inequality to the random variable $(X - \mathbf{E}[X])^2$:

$$\Pr\left[|X - \mathsf{E}\left[X\right]| \ge \alpha \sigma\right] = \Pr\left[(X - \mathsf{E}\left[X\right])^2 \ge \alpha^2 \operatorname{Var}\left[X\right]\right] \le \frac{1}{\alpha^2}$$

Definition

The *variance* of a random variable X is $Var[X] := E[(X - E[X])^2] = E[X^2] - (E[X])^2$. Its square root, $\sqrt{Var[X]}$, is the *standard deviation* of X, and is often denoted as σ .

Theorem (Chebyshev Inequality)

For any
$$\alpha > 0$$
, $\Pr[|X - \mathbb{E}[X]| > \alpha\sigma] \le \frac{1}{\alpha^2}$.

Proof.

Apply Markov inequality to the random variable $(X - \mathbf{E}[X])^2$:

$$\Pr\left[|X - \mathsf{E}\left[X\right]| \ge \alpha \sigma\right] = \Pr\left[(X - \mathsf{E}\left[X\right])^2 \ge \alpha^2 \operatorname{Var}\left[X\right]\right] \le \frac{1}{\alpha^2}$$

Distribution where Chebyshev inequality is tight?

ж

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Distribution where Chebyshev inequality is tight?

It must be distributions for which the Markov inequality in the proof is tight.

Distribution where Chebyshev inequality is tight?

It must be distributions for which the Markov inequality in the proof is tight.

A distribution where $|X - \mathbf{E}[X]|$ takes two values: 0 and $\alpha\sigma$

Distribution where Chebyshev inequality is tight?

It must be distributions for which the Markov inequality in the proof is tight.

A distribution where $|X - \mathbf{E}[X]|$ takes two values: 0 and $\alpha\sigma$

 \Rightarrow X takes three values: **E**[X], **E**[X] + $\alpha\sigma$ and **E**[X] - $\alpha\sigma$.

Lemma

If X and Y are independent random variables, then $E[XY] = E[X] \cdot E[Y]$, and Var[X + Y] = Var[X] + Var[Y].

Lemma

If X and Y are independent random variables, then $E[XY] = E[X] \cdot E[Y]$, and Var[X + Y] = Var[X] + Var[Y].

$$\mathbf{E}[XY] = \sum_{x,y} (xy) \operatorname{Pr} [X = x, Y = y]$$

Lemma

If X and Y are independent random variables, then $E[XY] = E[X] \cdot E[Y]$, and Var[X + Y] = Var[X] + Var[Y].

$$\mathbf{E} [XY] = \sum_{x,y} (xy) \operatorname{Pr} [X = x, Y = y]$$
$$= \sum_{x,y} (xy) \operatorname{Pr} [X = x] \operatorname{Pr} [Y = y]$$

Lemma

If X and Y are independent random variables, then $E[XY] = E[X] \cdot E[Y]$, and Var[X + Y] = Var[X] + Var[Y].

$$\mathbf{E} [XY] = \sum_{x,y} (xy) \operatorname{Pr} [X = x, Y = y]$$

=
$$\sum_{x,y} (xy) \operatorname{Pr} [X = x] \operatorname{Pr} [Y = y]$$

=
$$\sum_{x} x \operatorname{Pr} [X = x] \sum_{y} y \operatorname{Pr} [Y = y] = \mathbf{E} [X] \cdot \mathbf{E} [Y].$$

Lemma

If X and Y are independent random variables, then $E[XY] = E[X] \cdot E[Y]$, and Var[X + Y] = Var[X] + Var[Y].

$$\mathbf{E} [XY] = \sum_{x,y} (xy) \operatorname{Pr} [X = x, Y = y]$$

=
$$\sum_{x,y} (xy) \operatorname{Pr} [X = x] \operatorname{Pr} [Y = y]$$

=
$$\sum_{x} x \operatorname{Pr} [X = x] \sum_{y} y \operatorname{Pr} [Y = y] = \mathbf{E} [X] \cdot \mathbf{E} [Y].$$

Lemma

If X and Y are independent random variables, then $E[XY] = E[X] \cdot E[Y]$, and Var[X + Y] = Var[X] + Var[Y].

Proof.

$$\mathbf{E} [XY] = \sum_{x,y} (xy) \operatorname{Pr} [X = x, Y = y]$$

=
$$\sum_{x,y} (xy) \operatorname{Pr} [X = x] \operatorname{Pr} [Y = y]$$

=
$$\sum_{x} x \operatorname{Pr} [X = x] \sum_{y} y \operatorname{Pr} [Y = y] = \mathbf{E} [X] \cdot \mathbf{E} [Y].$$

The part for variance is left as an easy exercise.

Theorem

Let X_1, X_2, \cdots be independently, identically distributed (i.i.d.) random variables, and each has finite variance. For each $n \ge 1$, let \overline{X}_n be $\frac{1}{n} \sum_{i=1}^n X_i$. Then for any $\delta > 0$, $\lim_{n\to\infty} \Pr[|\overline{X}_n - \mathbb{E}[\overline{X}_n]| > \delta] = 0$.

Theorem

Let X_1, X_2, \dots be independently, identically distributed (i.i.d.) random variables, and each has finite variance. For each $n \ge 1$, let \overline{X}_n be $\frac{1}{n} \sum_{i=1}^n X_i$. Then for any $\delta > 0$, $\lim_{n\to\infty} \Pr[|\overline{X}_n - \mathbb{E}[\overline{X}_n]| > \delta] = 0$.

Proof.

By independence,
$$\operatorname{Var}[\overline{X}_n] = \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}[X_i] = \frac{1}{n} \operatorname{Var}[X_1].$$

Theorem

Let X_1, X_2, \dots be independently, identically distributed (i.i.d.) random variables, and each has finite variance. For each $n \ge 1$, let \overline{X}_n be $\frac{1}{n} \sum_{i=1}^n X_i$. Then for any $\delta > 0$, $\lim_{n\to\infty} \Pr[|\overline{X}_n - \mathbb{E}[\overline{X}_n]| > \delta] = 0$.

Proof.

By independence, $\operatorname{Var}[\overline{X}_n] = \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}[X_i] = \frac{1}{n} \operatorname{Var}[X_1].$ By Chebyshev inequality, $\operatorname{Pr}[|\overline{X}_n - \operatorname{E}[\overline{X}_n]| > \delta] \leq \frac{\operatorname{Var}[X_1]}{n\delta^2}.$

Theorem

Let X_1, X_2, \dots be independently, identically distributed (i.i.d.) random variables, and each has finite variance. For each $n \ge 1$, let \overline{X}_n be $\frac{1}{n} \sum_{i=1}^n X_i$. Then for any $\delta > 0$, $\lim_{n\to\infty} \Pr[|\overline{X}_n - \mathbb{E}[\overline{X}_n]| > \delta] = 0$.

Proof.

By independence, $\operatorname{Var}[\overline{X}_n] = \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}[X_i] = \frac{1}{n} \operatorname{Var}[X_1]$. By Chebyshev inequality, $\operatorname{Pr}[|\overline{X}_n - \operatorname{E}[\overline{X}_n]| > \delta] \leq \frac{\operatorname{Var}[X_1]}{n\delta^2}$. The right hand side goes to 0 as *n* goes to infinity.

- Markov inequality gives a constant bound for deviating from the expectation by a constant factor.
 - Non-negativity is required.

- Markov inequality gives a constant bound for deviating from the expectation by a constant factor.
 - Non-negativity is required.
- If the variacne is small, Chebyshev can be better. It measures the deviation as a multiple of the standard deviation.
 - Effective when the standard deviation is small.

- Markov inequality gives a constant bound for deviating from the expectation by a constant factor.
 - Non-negativity is required.
- If the variacne is small, Chebyshev can be better. It measures the deviation as a multiple of the standard deviation.
 - Effective when the standard deviation is small.
 - In the weak law of large numbers, the dependence of the bound on both n and $\frac{1}{\delta}$ is polynomial.

- Markov inequality gives a constant bound for deviating from the expectation by a constant factor.
 - Non-negativity is required.
- If the variacne is small, Chebyshev can be better. It measures the deviation as a multiple of the standard deviation.
 - Effective when the standard deviation is small.
 - In the weak law of large numbers, the dependence of the bound on both n and $\frac{1}{\delta}$ is polynomial.
- Sometimes we need much tighter bounds.

- Markov inequality gives a constant bound for deviating from the expectation by a constant factor.
 - Non-negativity is required.
- If the variacne is small, Chebyshev can be better. It measures the deviation as a multiple of the standard deviation.
 - Effective when the standard deviation is small.
 - In the weak law of large numbers, the dependence of the bound on both n and $\frac{1}{\delta}$ is polynomial.
- Sometimes we need much tighter bounds.
- Methodologically, the proof of Chebyshev inequality amplifies the deviation |X E[X]| by taking its square.

- Markov inequality gives a constant bound for deviating from the expectation by a constant factor.
 - Non-negativity is required.
- If the variacne is small, Chebyshev can be better. It measures the deviation as a multiple of the standard deviation.
 - Effective when the standard deviation is small.
 - In the weak law of large numbers, the dependence of the bound on both n and $\frac{1}{\delta}$ is polynomial.
- Sometimes we need much tighter bounds.
- Methodologically, the proof of Chebyshev inequality amplifies the deviation |X E[X]| by taking its square.
 - Take a nonnegative, fast growing function $f(\cdot)$ and apply Markov inequality to f(X).

<ロ> (四) (四) (三) (三) (三)

- Markov inequality gives a constant bound for deviating from the expectation by a constant factor.
 - Non-negativity is required.
- If the variacne is small, Chebyshev can be better. It measures the deviation as a multiple of the standard deviation.
 - Effective when the standard deviation is small.
 - In the weak law of large numbers, the dependence of the bound on both n and $\frac{1}{\delta}$ is polynomial.
- Sometimes we need much tighter bounds.
- Methodologically, the proof of Chebyshev inequality amplifies the deviation |X E[X]| by taking its square.
 - Take a nonnegative, fast growing function $f(\cdot)$ and apply Markov inequality to f(X).
 - Chebyshev \rightarrow Markov \rightarrow Kolmogorov

・ロト ・ ア・ ・ ア・ ・ ア・ ア

- Markov inequality gives a constant bound for deviating from the expectation by a constant factor.
 - Non-negativity is required.
- If the variacne is small, Chebyshev can be better. It measures the deviation as a multiple of the standard deviation.
 - Effective when the standard deviation is small.
 - In the weak law of large numbers, the dependence of the bound on both n and $\frac{1}{\delta}$ is polynomial.
- Sometimes we need much tighter bounds.
- Methodologically, the proof of Chebyshev inequality amplifies the deviation |X E[X]| by taking its square.
 - Take a nonnegative, fast growing function $f(\cdot)$ and apply Markov inequality to f(X).
 - $\bullet \ \ Chebyshev \rightarrow Markov \rightarrow Kolmogorov$
 - Bernstein and Chernoff exploited the idea by looking at $f(x) = e^{\lambda x}$.

・ロト ・ ア・ ・ ア・ ・ ア・ ア

Chernoff Bound: I.I.D. Case

Let X_1, \dots, X_n be i.i.d. Bernoulli variables, such that $\Pr[X_i = 1] = p$ and $\Pr[X_i = 0] = q := 1 - p$ for each *i*. Define $X = \sum_{i=1}^n X_i$.

Theorem (Chernoff Bound)

For any t > 0,

$$\Pr\left[X > (p+t)n\right] \le \exp\left\{\left(-(p+t)\ln\frac{p+t}{p} - (q-t)\ln\frac{q-t}{q}\right)n\right\}.$$

Proof.

For any $\lambda > 0$, we have

$$\Pr\left[X > (p+t)n\right] = \Pr\left[e^{\lambda X} \ge e^{\lambda(p+t)n}\right] \le \frac{\mathsf{E}[e^{\lambda X}]}{e^{\lambda(p+t)n}}$$

Chernoff Bound: I.I.D. Case

Let X_1, \dots, X_n be i.i.d. Bernoulli variables, such that $\Pr[X_i = 1] = p$ and $\Pr[X_i = 0] = q := 1 - p$ for each *i*. Define $X = \sum_{i=1}^n X_i$.

Theorem (Chernoff Bound)

For any t > 0,

$$\Pr\left[X > (p+t)n\right] \le \exp\left\{\left(-(p+t)\ln\frac{p+t}{p} - (q-t)\ln\frac{q-t}{q}\right)n\right\}.$$

Proof.

For any $\lambda > 0$, we have

$$\Pr\left[X > (p+t)n\right] = \Pr\left[e^{\lambda X} \ge e^{\lambda(p+t)n}\right] \le \frac{\mathsf{E}[e^{\lambda X}]}{e^{\lambda(p+t)n}}$$

By independence, we have $\mathbf{E}[e^{\lambda X_i}] = \mathbf{E}[e^{\sum_i \lambda X_i}] = \prod_i \mathbf{E}[e^{\lambda X_i}] = (pe^{\lambda} + q)^n$.

Proof of Chernoff Bound (Cont.)

So far we have
$$\Pr[X \ge (p+t)n] \le \left(\frac{pe^{\lambda}+q}{e^{\lambda(p+t)}}\right)^n$$
.

イロト イロト イヨト

Proof of Chernoff Bound (Cont.)

So far we have
$$\Pr[X \ge (p+t)n] \le \left(\frac{pe^{\lambda}+q}{e^{\lambda(p+t)}}\right)^n$$
.
Take a λ that minimizes the RHS: let e^{λ} be $\frac{q}{p} \cdot \frac{p+t}{q-t}$, we get the bound in the

P

theorem statement.

イロト イロト イヨト イ

Proof of Chernoff Bound (Cont.)

So far we have
$$\Pr[X \ge (p+t)n] \le \left(\frac{pe^{\lambda}+q}{e^{\lambda(p+t)}}\right)^n$$
.
Take a λ that minimizes the RHS: let e^{λ} be $\frac{q}{p} \cdot \frac{p+t}{q-t}$, we get the bound in the theorem statement.

Interpretation of the bound:

• Note the exponential decay with *n*;

<ロト <回 > < 回 > < 三 > < 三

Proof of Chernoff Bound (Cont.)

So far we have $\Pr[X \ge (p+t)n] \le \left(\frac{pe^{\lambda}+q}{e^{\lambda(p+t)}}\right)^n$. Take a λ that minimizes the RHS: let e^{λ} be $\frac{q}{p} \cdot \frac{p+t}{q-t}$, we get the bound in the theorem statement.

Interpretation of the bound:

- Note the exponential decay with *n*;
- The coefficient $(p + t) \log \frac{p+t}{p} + (q t) \log \frac{q-t}{q}$ is the *relative entropy distance* of the distribution p + t, q t from the distribution p, q on the two-point space $\{1, 0\}$.

Proof of Chernoff Bound (Cont.)

So far we have $\Pr[X \ge (p+t)n] \le \left(\frac{pe^{\lambda}+q}{e^{\lambda(p+t)}}\right)^n$. Take a λ that minimizes the RHS: let e^{λ} be $\frac{q}{p} \cdot \frac{p+t}{q-t}$, we get the bound in the theorem statement.

Interpretation of the bound:

- Note the exponential decay with *n*;
- The coefficient $(p + t) \log \frac{p+t}{p} + (q t) \log \frac{q-t}{q}$ is the *relative entropy distance* of the distribution p + t, q t from the distribution p, q on the two-point space $\{1, 0\}$.

The same proof yields the same bound for $\Pr[X \le (p - t)n]$.

<ロ> <四> <四> <四> <三</td>

Chernoff Bound: Heterogeneous Bernoulli Variables

What if X_1, \dots, X_n are independent Bernoulli variables but not identically distributed?

<ロト <回 > < 回 > < 三 > < 三

Chernoff Bound: Heterogeneous Bernoulli Variables

What if X_1, \dots, X_n are independent Bernoulli variables but not identically distributed?

Suppose $\Pr[X_i = 1] = p_i$, and $\Pr[X_i = 0] = q_i$ for each *i*, and let $p = \frac{1}{n} \sum_i p_i$ and q = 1 - p.

(日) (同) (E) (E) (E)

Chernoff Bound: Heterogeneous Bernoulli Variables

What if X_1, \dots, X_n are independent Bernoulli variables but not identically distributed?

Suppose $\Pr[X_i = 1] = p_i$, and $\Pr[X_i = 0] = q_i$ for each *i*, and let $p = \frac{1}{n} \sum_i p_i$ and q = 1 - p. In the proof where we calculated $\mathbf{E}[e^{\lambda X}]$, we have that it is equal to

 $\prod_{i} (p_i e^{\lambda} + q_i) \le (p e^{\lambda} + q)^n$ by the AM-GM inequality.

Chernoff Bound: Heterogeneous Bernoulli Variables

What if X_1, \dots, X_n are independent Bernoulli variables but not identically distributed?

Suppose $\Pr[X_i = 1] = p_i$, and $\Pr[X_i = 0] = q_i$ for each *i*, and let $p = \frac{1}{n} \sum_i p_i$ and q = 1 - p.

In the proof where we calculated $\mathbf{E}[e^{\lambda X}]$, we have that it is equal to $\prod_i (p_i e^{\lambda} + q_i) \leq (p e^{\lambda} + q)^n$ by the AM-GM inequality. The rest of the proof follows exactly as before.

<ロ> (四) (四) (三) (三) (三) (三)

Chernoff Bound: Heterogeneous Bernoulli Variables

What if X_1, \dots, X_n are independent Bernoulli variables but not identically distributed?

Suppose $\Pr[X_i = 1] = p_i$, and $\Pr[X_i = 0] = q_i$ for each *i*, and let $p = \frac{1}{n} \sum_i p_i$ and q = 1 - p. In the proof where we calculated $\mathbf{E}[e^{\lambda X}]$, we have that it is equal to $\prod_i (p_i e^{\lambda} + q_i) \le (p e^{\lambda} + q)^n$ by the AM-GM inequality. The rest of the proof follows exactly as before.

Theorem

For any t > 0,

$$\Pr\left[X > (p+t)n\right] \le \exp\left\{\left(-(p+t)\ln\frac{p+t}{p} - (q-t)\ln\frac{q-t}{q}\right)n\right\}.$$

・ロト ・ ア・ ・ ア・ ・ ア・ ア

What if X_1, \dots, X_n always take values from [0, 1] but not necessarily $\{0, 1\}$? Suppose $\mathbf{E}[X_i] = p_i$, $q_i = 1 - p_i$ for each *i*, and let $p = \frac{1}{n} \sum_i p_i$ and $q = 1 - p_i$.

イロト イポト イヨト イヨト 一日

What if X_1, \dots, X_n always take values from [0, 1] but not necessarily $\{0, 1\}$? Suppose $\mathbf{E}[X_i] = p_i$, $q_i = 1 - p_i$ for each *i*, and let $p = \frac{1}{n} \sum_i p_i$ and q = 1 - p. Observation: on [0, 1], $e^{\lambda x} \le \alpha x + \beta$ for $\alpha = e^{\lambda} - 1$ and $\beta = 1$.

What if X_1, \dots, X_n always take values from [0, 1] but not necessarily $\{0, 1\}$? Suppose $\mathbf{E}[X_i] = p_i$, $q_i = 1 - p_i$ for each *i*, and let $p = \frac{1}{n} \sum_i p_i$ and q = 1 - p. Observation: on [0, 1], $e^{\lambda x} \le \alpha x + \beta$ for $\alpha = e^{\lambda} - 1$ and $\beta = 1$. So $\mathbf{E}[e^{\lambda X_i}] \le \mathbf{E}[(e^{\lambda} - 1)X_i + 1] = p_i e^{\lambda} + q_i$.

What if X_1, \dots, X_n always take values from [0, 1] but not necessarily $\{0, 1\}$? Suppose $\mathbf{E}[X_i] = p_i$, $q_i = 1 - p_i$ for each *i*, and let $p = \frac{1}{n} \sum_i p_i$ and q = 1 - p. Observation: on [0, 1], $e^{\lambda x} \le \alpha x + \beta$ for $\alpha = e^{\lambda} - 1$ and $\beta = 1$. So $\mathbf{E}[e^{\lambda X_i}] \le \mathbf{E}[(e^{\lambda} - 1)X_i + 1] = p_i e^{\lambda} + q_i$. Therefore $\mathbf{E}[e^{\lambda X}] = \prod_i \mathbf{E}[e^{\lambda X_i}] \le \prod_i (p_i e^{\lambda} + q_i) \le (p e^{\lambda} + q)^n$.

What if X_1, \dots, X_n always take values from [0, 1] but not necessarily $\{0, 1\}$? Suppose $\mathbf{E}[X_i] = p_i$, $q_i = 1 - p_i$ for each *i*, and let $p = \frac{1}{n} \sum_i p_i$ and q = 1 - p. Observation: on [0, 1], $e^{\lambda x} \le \alpha x + \beta$ for $\alpha = e^{\lambda} - 1$ and $\beta = 1$. So $\mathbf{E}[e^{\lambda X_i}] \le \mathbf{E}[(e^{\lambda} - 1)X_i + 1] = p_i e^{\lambda} + q_i$. Therefore $\mathbf{E}[e^{\lambda X}] = \prod_i \mathbf{E}[e^{\lambda X_i}] \le \prod_i (p_i e^{\lambda} + q_i) \le (p e^{\lambda} + q)^n$. The rest of the proof remains the same.

イロト イポト イヨト イヨト 二日

What if X_1, \dots, X_n always take values from [0, 1] but not necessarily $\{0, 1\}$? Suppose $\mathbf{E}[X_i] = p_i$, $q_i = 1 - p_i$ for each *i*, and let $p = \frac{1}{n} \sum_i p_i$ and q = 1 - p. Observation: on [0, 1], $e^{\lambda x} \le \alpha x + \beta$ for $\alpha = e^{\lambda} - 1$ and $\beta = 1$. So $\mathbf{E}[e^{\lambda X_i}] \le \mathbf{E}[(e^{\lambda} - 1)X_i + 1] = p_i e^{\lambda} + q_i$. Therefore $\mathbf{E}[e^{\lambda X}] = \prod_i \mathbf{E}[e^{\lambda X_i}] \le \prod_i (p_i e^{\lambda} + q_i) \le (p e^{\lambda} + q)^n$. The rest of the proof remains the same.

Theorem

For any t > 0,

$$\Pr\left[X > (p+t)n\right] \le \exp\left\{\left(-(p+t)\ln\frac{p+t}{p} - (q-t)\ln\frac{q-t}{q}\right)n\right\}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Useful Forms of Chernoff Bound

Corollary

Let X_1, \dots, X_n be independently distributed on [0, 1] and $X = \sum_i X_i$. • For all t > 0,

$$\Pr\left[X > \mathsf{E}\left[X
ight] + t
ight], \Pr\left[X < \mathsf{E}\left[X
ight] - t
ight] \leq e^{-2t^2/n};$$

• For any $\epsilon < 1$,

$$\Pr\left[X > (1+\epsilon) \operatorname{\mathsf{E}}[X]\right] \le \left(\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right)^{\operatorname{\mathsf{E}}[X]} \le \exp\left(-\frac{\epsilon^2}{3} \operatorname{\mathsf{E}}[X]\right);$$

$$\Pr\left[X < (1-\epsilon) \operatorname{\mathsf{E}}[X]\right] \le \left(\frac{e^{-\epsilon}}{(1-\epsilon)^{1-\epsilon}}\right)^{\operatorname{\mathsf{E}}[X]} \le \exp\left(-\frac{\epsilon^2}{2} \operatorname{\mathsf{E}}[X]\right).$$

イロト イヨト イヨト イヨト

Useful Forms of Chernoff Bound (Cont.)

Corollary ((Cont.))

• For any $\epsilon > 1$,

$$\Pr\left[X > (1+\epsilon) \operatorname{\mathsf{E}}[X]\right] \leq \left(\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right)^{\operatorname{\mathsf{E}}[X]} \leq \exp\left(-\frac{\epsilon}{3} \operatorname{\mathsf{E}}[X]\right);$$

• If $t > 2e \mathbf{E}[X]$, then

 $\Pr[X > t] \le 2^{-t}.$

■ ◆ 王 ◆ 王 ◆ へへ October 15, 2021 12/13

イロト イロト イヨト イヨト

Proof Sketch.

• Let f(t) be $(p+t) \ln \frac{p+t}{p} + (q-t) \ln \frac{q-t}{q}$. Show $f(t) \ge 2t^2$ by showing f(0) = f'(0) = 0 and $f''(t) \ge 4$ for all $0 \le t \le q$ followed by Taylor's theorem with remainder.

イロト イロト イヨト イヨト

Proof Sketch.

- Let f(t) be $(p+t) \ln \frac{p+t}{p} + (q-t) \ln \frac{q-t}{q}$. Show $f(t) \ge 2t^2$ by showing f(0) = f'(0) = 0 and $f''(t) \ge 4$ for all $0 \le t \le q$ followed by Taylor's theorem with remainder.
- Let g(x) be f(px), then g'(0) = pf'(px), and so g(0) = g'(0) = 0. Show $g'(1) > p \ln 2 > \frac{2}{3}p$. Deduce that for $x \in (0, 1)$, $g(x) \ge px^2/3$.

Proof Sketch.

- Let f(t) be $(p+t) \ln \frac{p+t}{p} + (q-t) \ln \frac{q-t}{q}$. Show $f(t) \ge 2t^2$ by showing f(0) = f'(0) = 0 and $f''(t) \ge 4$ for all $0 \le t \le q$ followed by Taylor's theorem with remainder.
- Let g(x) be f(px), then g'(0) = pf'(px), and so g(0) = g'(0) = 0. Show $g'(1) > p \ln 2 > \frac{2}{3}p$. Deduce that for $x \in (0, 1)$, $g(x) \ge px^2/3$.
- Set h(x) := g(-x). Then h'(x) = -g'(-x), and h(0) = h'(0) = 0. Show then $h''(x) \le p$ for $x \in (0, 1)$. Deduce that $h(x) \ge px^2/2$.

イロト イポト イヨト イヨト 一日

Proof Sketch.

- Let f(t) be $(p+t) \ln \frac{p+t}{p} + (q-t) \ln \frac{q-t}{q}$. Show $f(t) \ge 2t^2$ by showing f(0) = f'(0) = 0 and $f''(t) \ge 4$ for all $0 \le t \le q$ followed by Taylor's theorem with remainder.
- Let g(x) be f(px), then g'(0) = pf'(px), and so g(0) = g'(0) = 0. Show $g'(1) > p \ln 2 > \frac{2}{3}p$. Deduce that for $x \in (0, 1)$, $g(x) \ge px^2/3$.
- Set h(x) := g(-x). Then h'(x) = -g'(-x), and h(0) = h'(0) = 0. Show then $h''(x) \le p$ for $x \in (0, 1)$. Deduce that $h(x) \ge px^2/2$.

See reading for more details. Or take them as exercises.

イロト イポト イヨト イヨト 一日