- We are back to our basic streaming model: $i_1, \ldots, i_n \in [d] = \{1, \cdots, d\}.$
- The frequency vector $x \in \mathbb{Z}^d$: $x_j = |\{t : i_t = j\}|$.

イロト 人間 とくほ とくほ とう

- We are back to our basic streaming model: $i_1, \ldots, i_n \in [d] = \{1, \cdots, d\}.$
- The frequency vector $x \in \mathbb{Z}^d$: $x_j = |\{t : i_t = j\}|$.
- For an integer *k* > 1, if an item appeared in more than 1/*k* fraction of the time, such an item is a *heavey hitter*.

- We are back to our basic streaming model: $i_1, \ldots, i_n \in [d] = \{1, \cdots, d\}.$
- The frequency vector $x \in \mathbb{Z}^d$: $x_j = |\{t : i_t = j\}|$.
- For an integer k > 1, if an item appeared in more than 1/k fraction of the time, such an item is a *heavey hitter*.
- The heavy hitter problem: at the end of the stream, output a set S:
 - If *j* is a heavy hitter, i.e., $x_j > n/k$, then $j \in S$;

(日)

- We are back to our basic streaming model: $i_1, \ldots, i_n \in [d] = \{1, \cdots, d\}.$
- The frequency vector $x \in \mathbb{Z}^d$: $x_j = |\{t : i_t = j\}|$.
- For an integer k > 1, if an item appeared in more than 1/k fraction of the time, such an item is a *heavey hitter*.
- The heavy hitter problem: at the end of the stream, output a set S:
 - If *j* is a heavy hitter, i.e., $x_j > n/k$, then $j \in S$;
 - If *j* is not a heavy hitter, it is permitted to be in *S*;

- We are back to our basic streaming model: $i_1, \ldots, i_n \in [d] = \{1, \cdots, d\}.$
- The frequency vector $x \in \mathbb{Z}^d$: $x_j = |\{t : i_t = j\}|$.
- For an integer k > 1, if an item appeared in more than 1/k fraction of the time, such an item is a *heavey hitter*.
- The heavy hitter problem: at the end of the stream, output a set S:
 - If *j* is a heavy hitter, i.e., $x_j > n/k$, then $j \in S$;
 - If *j* is not a heavy hitter, it is permitted to be in *S*;

•
$$|S| \leq k-1$$
.

• Intuitively, in frequency estimation, we dealt with a harder problem

イロト イロト イヨト イヨ

- Intuitively, in frequency estimation, we dealt with a harder problem
- The information from frequency sketch should suffice to answer heavy hitter.

- Intuitively, in frequency estimation, we dealt with a harder problem
- The information from frequency sketch should suffice to answer heavy hitter.
- Using COUNT-MIN or COUNT-SKETCH, we can output S such that, with high probability,
 - If $j \in S$, then $x_j \ge (\frac{1}{k} \epsilon)n$.

- Intuitively, in frequency estimation, we dealt with a harder problem
- The information from frequency sketch should suffice to answer heavy hitter.
- Using COUNT-MIN or COUNT-SKETCH, we can output S such that, with high probability,
 - If $j \in S$, then $x_j \ge (\frac{1}{k} \epsilon)n$.
 - If *j* is a heavy hitter, then $j \in S$.

- Intuitively, in frequency estimation, we dealt with a harder problem
- The information from frequency sketch should suffice to answer heavy hitter.
- Using COUNT-MIN or COUNT-SKETCH, we can output S such that, with high probability,
 - If $j \in S$, then $x_j \ge (\frac{1}{k} \epsilon)n$.
 - If *j* is a heavy hitter, then $j \in S$.
- The algorithm is relatively expensive:
 - we need to maintain $\Omega(\frac{1}{\epsilon} \log d)$ counters;

- Intuitively, in frequency estimation, we dealt with a harder problem
- The information from frequency sketch should suffice to answer heavy hitter.
- Using COUNT-MIN or COUNT-SKETCH, we can output S such that, with high probability,
 - If $j \in S$, then $x_j \ge (\frac{1}{k} \epsilon)n$.
 - If *j* is a heavy hitter, then $j \in S$.
- The algorithm is relatively expensive:
 - we need to maintain $\Omega(\frac{1}{\epsilon} \log d)$ counters;
 - when each element arrives, we need to update all of these counters.

• Recall the algorithm we gave in our first lecture for *Majority*:

- Recall the algorithm we gave in our first lecture for Majority:
 - Keep one element and a counter: (j, C), initialize C to 0.

- Recall the algorithm we gave in our first lecture for Majority:
 - Keep one element and a counter: (j, C), initialize C to 0.
 - When i_t arrives, if $j = i_t$, C + +;

• Recall the algorithm we gave in our first lecture for Majority:

- Keep one element and a counter: (j, C), initialize C to 0.
- When i_t arrives, if $j = i_t$, C + +;
- Otherwise if C > 0, then C -;

• Recall the algorithm we gave in our first lecture for Majority:

- Keep one element and a counter: (j, C), initialize C to 0.
- When i_t arrives, if $j = i_t$, C + +;
- Otherwise if C > 0, then C -;
- Otherwise replace $j \leftarrow i_t, C + +$.

• Recall the algorithm we gave in our first lecture for Majority:

- Keep one element and a counter: (j, C), initialize C to 0.
- When i_t arrives, if $j = i_t$, C + +;
- Otherwise if C > 0, then C -;
- Otherwise replace $j \leftarrow i_t, C + +$.
- In the end, output *j*.

• Recall the algorithm we gave in our first lecture for Majority:

- Keep one element and a counter: (j, C), initialize C to 0.
- When i_t arrives, if $j = i_t$, C + +;
- Otherwise if C > 0, then C -;
- Otherwise replace $j \leftarrow i_t, C + +$.
- In the end, output *j*.
- Correctness: a heavy hitter element *j* (if it exists) must survive at the end.

• Recall the algorithm we gave in our first lecture for Majority:

- Keep one element and a counter: (j, C), initialize C to 0.
- When i_t arrives, if $j = i_t$, C + +;
- Otherwise if C > 0, then C -;
- Otherwise replace $j \leftarrow i_t, C + +$.
- In the end, output *j*.
- Correctness: a heavy hitter element *j* (if it exists) must survive at the end.
- *j* can be "killed" only by non-heavy hitters, which are fewer.

- Recall the algorithm we gave in our first lecture for Majority:
 - Keep one element and a counter: (j, C), initialize C to 0.
 - When i_t arrives, if $j = i_t$, C + +;
 - Otherwise if C > 0, then C -;
 - Otherwise replace $j \leftarrow i_t, C + +$.
 - In the end, output *j*.
- Correctness: a heavy hitter element *j* (if it exists) must survive at the end.
- *j* can be "killed" only by non-heavy hitters, which are fewer.
- Another way to think of it: there can be at most n/2 elimination rounds.

• Algorithm due to Misra and Gries (1982):

э

- Algorithm due to Misra and Gries (1982):
 - Maintain k 1 pairs of elements and their counters: $(s_1, C_1), \ldots, (s_{k-1}, C_{k-1})$. Initialize the counters to 0.

- Algorithm due to Misra and Gries (1982):
 - Maintain k 1 pairs of elements and their counters: $(s_1, C_1), \ldots, (s_{k-1}, C_{k-1})$. Initialize the counters to 0.
 - At input *i*_t:

- Algorithm due to Misra and Gries (1982):
 - Maintain k 1 pairs of elements and their counters: $(s_1, C_1), \ldots, (s_{k-1}, C_{k-1})$. Initialize the counters to 0.
 - At input i_t :
 - if there exists $s_j = i_t$, then $C_j + +$;

- Algorithm due to Misra and Gries (1982):
 - Maintain k 1 pairs of elements and their counters: $(s_1, C_1), \ldots, (s_{k-1}, C_{k-1})$. Initialize the counters to 0.
 - At input i_t :
 - if there exists $s_j = i_t$, then $C_j + +$;
 - else, if there exists $C_j = 0$, then $s_j \leftarrow i_t, C_j + +;$

- Algorithm due to Misra and Gries (1982):
 - Maintain k 1 pairs of elements and their counters: $(s_1, C_1), \ldots, (s_{k-1}, C_{k-1})$. Initialize the counters to 0.
 - At input i_t :
 - if there exists $s_j = i_t$, then $C_j + +$;
 - else, if there exists $C_j = 0$, then $s_j \leftarrow i_t, C_j + +;$
 - else, for all $j = 1, \dots, k 1, C_j -$.

- Algorithm due to Misra and Gries (1982):
 - Maintain k 1 pairs of elements and their counters: $(s_1, C_1), \ldots, (s_{k-1}, C_{k-1})$. Initialize the counters to 0.
 - At input *i*_t:
 - if there exists $s_j = i_t$, then $C_j + +$;
 - else, if there exists $C_j = 0$, then $s_j \leftarrow i_t, C_j + +;$
 - else, for all $j = 1, \dots, k 1, C_j -$.
 - In the end, output s_1, \ldots, s_{k-1} .

- Algorithm due to Misra and Gries (1982):
 - Maintain k 1 pairs of elements and their counters: $(s_1, C_1), \ldots, (s_{k-1}, C_{k-1})$. Initialize the counters to 0.
 - At input *i*_t:
 - if there exists $s_j = i_t$, then $C_j + +$;
 - else, if there exists $C_j = 0$, then $s_j \leftarrow i_t, C_j + +;$
 - else, for all $j = 1, \dots, k 1, C_j -$.
 - In the end, output s_1, \ldots, s_{k-1} .

• We must show that any heavy hitter *j* is output in the end.

- We must show that any heavy hitter *j* is output in the end.
- How many elimination rounds can there be?

- We must show that any heavy hitter *j* is output in the end.
- How many elimination rounds can there be?
 - Think of each newly arrived element as joining a queue if it makes a counter increase;

- We must show that any heavy hitter *j* is output in the end.
- How many elimination rounds can there be?
 - Think of each newly arrived element as joining a queue if it makes a counter increase;
 - And it is "killed' if either it causes an elimination or if it stands at the head of the queue when an elimination round happens;

- We must show that any heavy hitter *j* is output in the end.
- How many elimination rounds can there be?
 - Think of each newly arrived element as joining a queue if it makes a counter increase;
 - And it is "killed' if either it causes an elimination or if it stands at the head of the queue when an elimination round happens;
 - Each elimination round "kills" k elements, so there can be at most $\lfloor \frac{n}{k} \rfloor$ such rounds.

- We must show that any heavy hitter *j* is output in the end.
- How many elimination rounds can there be?
 - Think of each newly arrived element as joining a queue if it makes a counter increase;
 - And it is "killed' if either it causes an elimination or if it stands at the head of the queue when an elimination round happens;
 - Each elimination round "kills" k elements, so there can be at most $\lfloor \frac{n}{k} \rfloor$ such rounds.
- Each heavy hitter occurs strictly more than $\frac{n}{k}$ times, so not all of its occurrences are killed at the end.

(日)