
Streaming Algorithm: Heavy Hi�ers

Heavy Hi�ers

We are back to our basic streaming model:

i1, . . . , in ∈ [d] = {1, · · · , d}.
The frequency vector x ∈ Zd

: xj = | {t : it = j} |.

For an integer k > 1, if an item appeared in more than 1/k fraction of

the time, such an item is a heavey hi�er.
The heavy hi�er problem: at the end of the stream, output a set S:

If j is a heavy hi�er, i.e., xj > n/k, then j ∈ S;

If j is not a heavy hi�er, it is permi�ed to be in S;

|S| ≤ k − 1.

November 12, 2021 1 / 5

Streaming Algorithm: Heavy Hi�ers

Heavy Hi�ers

We are back to our basic streaming model:

i1, . . . , in ∈ [d] = {1, · · · , d}.
The frequency vector x ∈ Zd

: xj = | {t : it = j} |.
For an integer k > 1, if an item appeared in more than 1/k fraction of

the time, such an item is a heavey hi�er.

The heavy hi�er problem: at the end of the stream, output a set S:

If j is a heavy hi�er, i.e., xj > n/k, then j ∈ S;

If j is not a heavy hi�er, it is permi�ed to be in S;

|S| ≤ k − 1.

November 12, 2021 1 / 5

Streaming Algorithm: Heavy Hi�ers

Heavy Hi�ers

We are back to our basic streaming model:

i1, . . . , in ∈ [d] = {1, · · · , d}.
The frequency vector x ∈ Zd

: xj = | {t : it = j} |.
For an integer k > 1, if an item appeared in more than 1/k fraction of

the time, such an item is a heavey hi�er.
The heavy hi�er problem: at the end of the stream, output a set S:

If j is a heavy hi�er, i.e., xj > n/k, then j ∈ S;

If j is not a heavy hi�er, it is permi�ed to be in S;

|S| ≤ k − 1.

November 12, 2021 1 / 5

Streaming Algorithm: Heavy Hi�ers

Heavy Hi�ers

We are back to our basic streaming model:

i1, . . . , in ∈ [d] = {1, · · · , d}.
The frequency vector x ∈ Zd

: xj = | {t : it = j} |.
For an integer k > 1, if an item appeared in more than 1/k fraction of

the time, such an item is a heavey hi�er.
The heavy hi�er problem: at the end of the stream, output a set S:

If j is a heavy hi�er, i.e., xj > n/k, then j ∈ S;

If j is not a heavy hi�er, it is permi�ed to be in S;

|S| ≤ k − 1.

November 12, 2021 1 / 5

Streaming Algorithm: Heavy Hi�ers

Heavy Hi�ers

We are back to our basic streaming model:

i1, . . . , in ∈ [d] = {1, · · · , d}.
The frequency vector x ∈ Zd

: xj = | {t : it = j} |.
For an integer k > 1, if an item appeared in more than 1/k fraction of

the time, such an item is a heavey hi�er.
The heavy hi�er problem: at the end of the stream, output a set S:

If j is a heavy hi�er, i.e., xj > n/k, then j ∈ S;

If j is not a heavy hi�er, it is permi�ed to be in S;

|S| ≤ k − 1.

November 12, 2021 1 / 5

Streaming Algorithm: Heavy Hi�ers

Heavy Hi�ers by Count-Min or Count-Sketch

Intuitively, in frequency estimation, we dealt with a harder problem

The information from frequency sketch should su�ice to answer heavy

hi�er.

Using Count-Min or Count-Sketch, we can output S such that, with

high probability,

If j ∈ S, then xj ≥ (1

k − ε)n.

If j is a heavy hi�er, then j ∈ S.

The algorithm is relatively expensive:

we need to maintain Ω(1

ε log d) counters;

when each element arrives, we need to update all of these counters.

November 12, 2021 2 / 5

Streaming Algorithm: Heavy Hi�ers

Heavy Hi�ers by Count-Min or Count-Sketch

Intuitively, in frequency estimation, we dealt with a harder problem

The information from frequency sketch should su�ice to answer heavy

hi�er.

Using Count-Min or Count-Sketch, we can output S such that, with

high probability,

If j ∈ S, then xj ≥ (1

k − ε)n.

If j is a heavy hi�er, then j ∈ S.

The algorithm is relatively expensive:

we need to maintain Ω(1

ε log d) counters;

when each element arrives, we need to update all of these counters.

November 12, 2021 2 / 5

Streaming Algorithm: Heavy Hi�ers

Heavy Hi�ers by Count-Min or Count-Sketch

Intuitively, in frequency estimation, we dealt with a harder problem

The information from frequency sketch should su�ice to answer heavy

hi�er.

Using Count-Min or Count-Sketch, we can output S such that, with

high probability,

If j ∈ S, then xj ≥ (1

k − ε)n.

If j is a heavy hi�er, then j ∈ S.

The algorithm is relatively expensive:

we need to maintain Ω(1

ε log d) counters;

when each element arrives, we need to update all of these counters.

November 12, 2021 2 / 5

Streaming Algorithm: Heavy Hi�ers

Heavy Hi�ers by Count-Min or Count-Sketch

Intuitively, in frequency estimation, we dealt with a harder problem

The information from frequency sketch should su�ice to answer heavy

hi�er.

Using Count-Min or Count-Sketch, we can output S such that, with

high probability,

If j ∈ S, then xj ≥ (1

k − ε)n.

If j is a heavy hi�er, then j ∈ S.

The algorithm is relatively expensive:

we need to maintain Ω(1

ε log d) counters;

when each element arrives, we need to update all of these counters.

November 12, 2021 2 / 5

Streaming Algorithm: Heavy Hi�ers

Heavy Hi�ers by Count-Min or Count-Sketch

Intuitively, in frequency estimation, we dealt with a harder problem

The information from frequency sketch should su�ice to answer heavy

hi�er.

Using Count-Min or Count-Sketch, we can output S such that, with

high probability,

If j ∈ S, then xj ≥ (1

k − ε)n.

If j is a heavy hi�er, then j ∈ S.

The algorithm is relatively expensive:

we need to maintain Ω(1

ε log d) counters;

when each element arrives, we need to update all of these counters.

November 12, 2021 2 / 5

Streaming Algorithm: Heavy Hi�ers

Heavy Hi�ers by Count-Min or Count-Sketch

Intuitively, in frequency estimation, we dealt with a harder problem

The information from frequency sketch should su�ice to answer heavy

hi�er.

Using Count-Min or Count-Sketch, we can output S such that, with

high probability,

If j ∈ S, then xj ≥ (1

k − ε)n.

If j is a heavy hi�er, then j ∈ S.

The algorithm is relatively expensive:

we need to maintain Ω(1

ε log d) counters;

when each element arrives, we need to update all of these counters.

November 12, 2021 2 / 5

Streaming Algorithm: Heavy Hi�ers

Deterministic Algorithm for k = 2

Recall the algorithm we gave in our first lecture for Majority:

Keep one element and a counter: (j,C), initialize C to 0.

When it arrives, if j = it , C + +;

Otherwise if C > 0, then C −−;

Otherwise replace j ← it , C + +.

In the end, output j.

Correctness: a heavy hi�er element j (if it exists) must survive at the

end.

j can be “killed” only by non-heavy hi�ers, which are fewer.

Another way to think of it: there can be at most n/2 elimination

rounds.

November 12, 2021 3 / 5

Streaming Algorithm: Heavy Hi�ers

Deterministic Algorithm for k = 2

Recall the algorithm we gave in our first lecture for Majority:

Keep one element and a counter: (j,C), initialize C to 0.

When it arrives, if j = it , C + +;

Otherwise if C > 0, then C −−;

Otherwise replace j ← it , C + +.

In the end, output j.

Correctness: a heavy hi�er element j (if it exists) must survive at the

end.

j can be “killed” only by non-heavy hi�ers, which are fewer.

Another way to think of it: there can be at most n/2 elimination

rounds.

November 12, 2021 3 / 5

Streaming Algorithm: Heavy Hi�ers

Deterministic Algorithm for k = 2

Recall the algorithm we gave in our first lecture for Majority:

Keep one element and a counter: (j,C), initialize C to 0.

When it arrives, if j = it , C + +;

Otherwise if C > 0, then C −−;

Otherwise replace j ← it , C + +.

In the end, output j.

Correctness: a heavy hi�er element j (if it exists) must survive at the

end.

j can be “killed” only by non-heavy hi�ers, which are fewer.

Another way to think of it: there can be at most n/2 elimination

rounds.

November 12, 2021 3 / 5

Streaming Algorithm: Heavy Hi�ers

Deterministic Algorithm for k = 2

Recall the algorithm we gave in our first lecture for Majority:

Keep one element and a counter: (j,C), initialize C to 0.

When it arrives, if j = it , C + +;

Otherwise if C > 0, then C −−;

Otherwise replace j ← it , C + +.

In the end, output j.

Correctness: a heavy hi�er element j (if it exists) must survive at the

end.

j can be “killed” only by non-heavy hi�ers, which are fewer.

Another way to think of it: there can be at most n/2 elimination

rounds.

November 12, 2021 3 / 5

Streaming Algorithm: Heavy Hi�ers

Deterministic Algorithm for k = 2

Recall the algorithm we gave in our first lecture for Majority:

Keep one element and a counter: (j,C), initialize C to 0.

When it arrives, if j = it , C + +;

Otherwise if C > 0, then C −−;

Otherwise replace j ← it , C + +.

In the end, output j.

Correctness: a heavy hi�er element j (if it exists) must survive at the

end.

j can be “killed” only by non-heavy hi�ers, which are fewer.

Another way to think of it: there can be at most n/2 elimination

rounds.

November 12, 2021 3 / 5

Streaming Algorithm: Heavy Hi�ers

Deterministic Algorithm for k = 2

Recall the algorithm we gave in our first lecture for Majority:

Keep one element and a counter: (j,C), initialize C to 0.

When it arrives, if j = it , C + +;

Otherwise if C > 0, then C −−;

Otherwise replace j ← it , C + +.

In the end, output j.

Correctness: a heavy hi�er element j (if it exists) must survive at the

end.

j can be “killed” only by non-heavy hi�ers, which are fewer.

Another way to think of it: there can be at most n/2 elimination

rounds.

November 12, 2021 3 / 5

Streaming Algorithm: Heavy Hi�ers

Deterministic Algorithm for k = 2

Recall the algorithm we gave in our first lecture for Majority:

Keep one element and a counter: (j,C), initialize C to 0.

When it arrives, if j = it , C + +;

Otherwise if C > 0, then C −−;

Otherwise replace j ← it , C + +.

In the end, output j.

Correctness: a heavy hi�er element j (if it exists) must survive at the

end.

j can be “killed” only by non-heavy hi�ers, which are fewer.

Another way to think of it: there can be at most n/2 elimination

rounds.

November 12, 2021 3 / 5

Streaming Algorithm: Heavy Hi�ers

Deterministic Algorithm for k = 2

Recall the algorithm we gave in our first lecture for Majority:

Keep one element and a counter: (j,C), initialize C to 0.

When it arrives, if j = it , C + +;

Otherwise if C > 0, then C −−;

Otherwise replace j ← it , C + +.

In the end, output j.

Correctness: a heavy hi�er element j (if it exists) must survive at the

end.

j can be “killed” only by non-heavy hi�ers, which are fewer.

Another way to think of it: there can be at most n/2 elimination

rounds.

November 12, 2021 3 / 5

Streaming Algorithm: Heavy Hi�ers

Deterministic Algorithm for k = 2

Recall the algorithm we gave in our first lecture for Majority:

Keep one element and a counter: (j,C), initialize C to 0.

When it arrives, if j = it , C + +;

Otherwise if C > 0, then C −−;

Otherwise replace j ← it , C + +.

In the end, output j.

Correctness: a heavy hi�er element j (if it exists) must survive at the

end.

j can be “killed” only by non-heavy hi�ers, which are fewer.

Another way to think of it: there can be at most n/2 elimination

rounds.

November 12, 2021 3 / 5

Streaming Algorithm: Heavy Hi�ers

Generalization to k > 2

Algorithm due to Misra and Gries (1982):

Maintain k − 1 pairs of elements and their counters:

(s1,C1), . . . , (sk−1,Ck−1). Initialize the counters to 0.

At input it :
if there exists sj = it , then Cj ++;

else, if there exists Cj = 0, then sj ← it ,Cj ++;

else, for all j = 1, · · · , k − 1, Cj −−.

In the end, output s1, . . . , sk−1.

November 12, 2021 4 / 5

Streaming Algorithm: Heavy Hi�ers

Generalization to k > 2

Algorithm due to Misra and Gries (1982):

Maintain k − 1 pairs of elements and their counters:

(s1,C1), . . . , (sk−1,Ck−1). Initialize the counters to 0.

At input it :
if there exists sj = it , then Cj ++;

else, if there exists Cj = 0, then sj ← it ,Cj ++;

else, for all j = 1, · · · , k − 1, Cj −−.

In the end, output s1, . . . , sk−1.

November 12, 2021 4 / 5

Streaming Algorithm: Heavy Hi�ers

Generalization to k > 2

Algorithm due to Misra and Gries (1982):

Maintain k − 1 pairs of elements and their counters:

(s1,C1), . . . , (sk−1,Ck−1). Initialize the counters to 0.

At input it :

if there exists sj = it , then Cj ++;

else, if there exists Cj = 0, then sj ← it ,Cj ++;

else, for all j = 1, · · · , k − 1, Cj −−.

In the end, output s1, . . . , sk−1.

November 12, 2021 4 / 5

Streaming Algorithm: Heavy Hi�ers

Generalization to k > 2

Algorithm due to Misra and Gries (1982):

Maintain k − 1 pairs of elements and their counters:

(s1,C1), . . . , (sk−1,Ck−1). Initialize the counters to 0.

At input it :
if there exists sj = it , then Cj ++;

else, if there exists Cj = 0, then sj ← it ,Cj ++;

else, for all j = 1, · · · , k − 1, Cj −−.

In the end, output s1, . . . , sk−1.

November 12, 2021 4 / 5

Streaming Algorithm: Heavy Hi�ers

Generalization to k > 2

Algorithm due to Misra and Gries (1982):

Maintain k − 1 pairs of elements and their counters:

(s1,C1), . . . , (sk−1,Ck−1). Initialize the counters to 0.

At input it :
if there exists sj = it , then Cj ++;

else, if there exists Cj = 0, then sj ← it ,Cj ++;

else, for all j = 1, · · · , k − 1, Cj −−.

In the end, output s1, . . . , sk−1.

November 12, 2021 4 / 5

Streaming Algorithm: Heavy Hi�ers

Generalization to k > 2

Algorithm due to Misra and Gries (1982):

Maintain k − 1 pairs of elements and their counters:

(s1,C1), . . . , (sk−1,Ck−1). Initialize the counters to 0.

At input it :
if there exists sj = it , then Cj ++;

else, if there exists Cj = 0, then sj ← it ,Cj ++;

else, for all j = 1, · · · , k − 1, Cj −−.

In the end, output s1, . . . , sk−1.

November 12, 2021 4 / 5

Streaming Algorithm: Heavy Hi�ers

Generalization to k > 2

Algorithm due to Misra and Gries (1982):

Maintain k − 1 pairs of elements and their counters:

(s1,C1), . . . , (sk−1,Ck−1). Initialize the counters to 0.

At input it :
if there exists sj = it , then Cj ++;

else, if there exists Cj = 0, then sj ← it ,Cj ++;

else, for all j = 1, · · · , k − 1, Cj −−.

In the end, output s1, . . . , sk−1.

November 12, 2021 4 / 5

Streaming Algorithm: Heavy Hi�ers

Generalization to k > 2

Algorithm due to Misra and Gries (1982):

Maintain k − 1 pairs of elements and their counters:

(s1,C1), . . . , (sk−1,Ck−1). Initialize the counters to 0.

At input it :
if there exists sj = it , then Cj ++;

else, if there exists Cj = 0, then sj ← it ,Cj ++;

else, for all j = 1, · · · , k − 1, Cj −−.

In the end, output s1, . . . , sk−1.

November 12, 2021 4 / 5

Streaming Algorithm: Heavy Hi�ers

Proof of Correctness

We must show that any heavy hi�er j is output in the end.

How many elimination rounds can there be?

Think of each newly arrived element as joining a queue if it makes a

counter increase;

And it is “killed’ if either it causes an elimination or if it stands at the

head of the queue when an elimination round happens;

Each elimination round “kills” k elements, so there can be at most b n
k c

such rounds.

Each heavy hi�er occurs strictly more than
n
k times, so not all of its

occurrences are killed at the end.

November 12, 2021 5 / 5

Streaming Algorithm: Heavy Hi�ers

Proof of Correctness

We must show that any heavy hi�er j is output in the end.

How many elimination rounds can there be?

Think of each newly arrived element as joining a queue if it makes a

counter increase;

And it is “killed’ if either it causes an elimination or if it stands at the

head of the queue when an elimination round happens;

Each elimination round “kills” k elements, so there can be at most b n
k c

such rounds.

Each heavy hi�er occurs strictly more than
n
k times, so not all of its

occurrences are killed at the end.

November 12, 2021 5 / 5

Streaming Algorithm: Heavy Hi�ers

Proof of Correctness

We must show that any heavy hi�er j is output in the end.

How many elimination rounds can there be?

Think of each newly arrived element as joining a queue if it makes a

counter increase;

And it is “killed’ if either it causes an elimination or if it stands at the

head of the queue when an elimination round happens;

Each elimination round “kills” k elements, so there can be at most b n
k c

such rounds.

Each heavy hi�er occurs strictly more than
n
k times, so not all of its

occurrences are killed at the end.

November 12, 2021 5 / 5

Streaming Algorithm: Heavy Hi�ers

Proof of Correctness

We must show that any heavy hi�er j is output in the end.

How many elimination rounds can there be?

Think of each newly arrived element as joining a queue if it makes a

counter increase;

And it is “killed’ if either it causes an elimination or if it stands at the

head of the queue when an elimination round happens;

Each elimination round “kills” k elements, so there can be at most b n
k c

such rounds.

Each heavy hi�er occurs strictly more than
n
k times, so not all of its

occurrences are killed at the end.

November 12, 2021 5 / 5

Streaming Algorithm: Heavy Hi�ers

Proof of Correctness

We must show that any heavy hi�er j is output in the end.

How many elimination rounds can there be?

Think of each newly arrived element as joining a queue if it makes a

counter increase;

And it is “killed’ if either it causes an elimination or if it stands at the

head of the queue when an elimination round happens;

Each elimination round “kills” k elements, so there can be at most b n
k c

such rounds.

Each heavy hi�er occurs strictly more than
n
k times, so not all of its

occurrences are killed at the end.

November 12, 2021 5 / 5

Streaming Algorithm: Heavy Hi�ers

Proof of Correctness

We must show that any heavy hi�er j is output in the end.

How many elimination rounds can there be?

Think of each newly arrived element as joining a queue if it makes a

counter increase;

And it is “killed’ if either it causes an elimination or if it stands at the

head of the queue when an elimination round happens;

Each elimination round “kills” k elements, so there can be at most b n
k c

such rounds.

Each heavy hi�er occurs strictly more than
n
k times, so not all of its

occurrences are killed at the end.

November 12, 2021 5 / 5

	Streaming Algorithm: Heavy Hitters

