Learning Goals

- Concept of dimensenality reduction
- Correctly state the procedure and guarantee of Johnson-Lindenstrauss transform
- Proof idea of JL-transform

Dimensionality Reduction

- Data points can often live in very high dimensions

Dimensionality Reduction

- Data points can often live in very high dimensions
- Images

Dimensionality Reduction

- Data points can often live in very high dimensions
- Images
- Vector representation of articles

Dimensionality Reduction

- Data points can often live in very high dimensions
- Images
- Vector representation of articles
- Vector representation of words

Dimensionality Reduction

- Data points can often live in very high dimensions
- Images
- Vector representation of articles
- Vector representation of words
- Many algorithms are very slow when run on high dimensional input
- Curse of dimensionality

Dimensionality Reduction

- Data points can often live in very high dimensions
- Images
- Vector representation of articles
- Vector representation of words
- Many algorithms are very slow when run on high dimensional input
- Curse of dimensionality
- Dimensionality reduction: Transform data to lower dimensions while preserving information useful for analysis/application

Johnson-Lindenstrauss

- Distances between data points are often meaningful

Johnson-Lindenstrauss

- Distances between data points are often meaningful
- For $x \in \mathbb{R}^{d}$, the ℓ_{2} norm of x is

$$
\|x\|=\left(\sum_{i=1}^{d} x_{i}^{2}\right)^{1 / 2}
$$

For $x, y \in \mathbb{R}^{d},\|x-y\|$ is their ℓ_{2}-distance, or Euclidean distance.

Johnson-Lindenstrauss

- Distances between data points are often meaningful
- For $x \in \mathbb{R}^{d}$, the ℓ_{2} norm of x is

$$
\|x\|=\left(\sum_{i=1}^{d} x_{i}^{2}\right)^{1 / 2}
$$

For $x, y \in \mathbb{R}^{d},\|x-y\|$ is their ℓ_{2}-distance, or Euclidean distance.

- The Johnson-Lindenstrauss transform is a randomized dimensionality reduction algorithm that approximately preserves Euclidean distances.

JL Statement

Theorem (Johnson-Lindenstrauss)

For arbitrary $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$, and any $\epsilon \in(0,1)$, there is $t=O\left(\log n / \epsilon^{2}\right)$ such that there are $y_{1}, \ldots, y_{n} \in \mathbb{R}^{t}$ with

$$
\begin{aligned}
(1-\epsilon)\left\|x_{j}\right\| & \leq\left\|y_{j}\right\| \leq(1+\epsilon)\left\|x_{j}\right\|, \quad \forall j \\
(1-\epsilon)\left\|x_{j}-x_{j^{\prime}}\right\| & \leq\left\|y_{j}-y_{j^{\prime}}\right\| \leq(1+\epsilon)\left\|x_{j}-x_{j^{\prime}}\right\|, \quad \forall j, j^{\prime} .
\end{aligned}
$$

Moreover, y_{1}, \ldots, y_{n} can be computed in polynomial time.

Main Lemma

Lemma

Distributional JL For any $\epsilon, \delta \in(0,1]$, there is a $t=O\left(\log (1 / \delta) / \epsilon^{2}\right)$ and a random linear map $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{t}$, such that, for any $v \in \mathbb{R}^{d}$ with $\|v\|=1$,

$$
\operatorname{Pr}\left[1-\epsilon \leq \frac{\|f(v)\|}{\sqrt{t}} \leq 1+\epsilon\right] \geq 1-2 \delta .
$$

Main Lemma

Lemma

Distributional JL For any $\epsilon, \delta \in(0,1]$, there is a $t=O\left(\log (1 / \delta) / \epsilon^{2}\right)$ and a random linear map $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{t}$, such that, for any $v \in \mathbb{R}^{d}$ with $\|v\|=1$,

$$
\operatorname{Pr}\left[1-\epsilon \leq \frac{\|f(v)\|}{\sqrt{t}} \leq 1+\epsilon\right] \geq 1-2 \delta .
$$

Proof of Theorem using Lemma.

Consider $W=\left\{x_{1}, \ldots, x_{n}\right\} \cup\left\{x_{i}-x_{j}: i \neq j\right\}$.

Main Lemma

Lemma

Distributional JL For any $\epsilon, \delta \in(0,1]$, there is a $t=O\left(\log (1 / \delta) / \epsilon^{2}\right)$ and a random linear map $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{t}$, such that, for any $v \in \mathbb{R}^{d}$ with $\|v\|=1$,

$$
\operatorname{Pr}\left[1-\epsilon \leq \frac{\|f(v)\|}{\sqrt{t}} \leq 1+\epsilon\right] \geq 1-2 \delta .
$$

Proof of Theorem using Lemma.

Consider $W=\left\{x_{1}, \ldots, x_{n}\right\} \cup\left\{x_{i}-x_{j}: i \neq j\right\}$. Note $|W| \leq n^{2}$. Take $\delta=1 / n^{3}$.

Main Lemma

Lemma

Distributional JL For any $\epsilon, \delta \in(0,1]$, there is a $t=O\left(\log (1 / \delta) / \epsilon^{2}\right)$ and a random linear map $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{t}$, such that, for any $v \in \mathbb{R}^{d}$ with $\|v\|=1$,

$$
\operatorname{Pr}\left[1-\epsilon \leq \frac{\|f(v)\|}{\sqrt{t}} \leq 1+\epsilon\right] \geq 1-2 \delta .
$$

Proof of Theorem using Lemma.

Consider $W=\left\{x_{1}, \ldots, x_{n}\right\} \cup\left\{x_{i}-x_{j}: i \neq j\right\}$. Note $|W| \leq n^{2}$. Take $\delta=1 / n^{3}$. For each $w \in W$, consider $v=\frac{w}{\|w\|}$.

Main Lemma

Lemma

Distributional JL For any $\epsilon, \delta \in(0,1]$, there is a $t=O\left(\log (1 / \delta) / \epsilon^{2}\right)$ and a random linear map $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{t}$, such that, for any $v \in \mathbb{R}^{d}$ with $\|v\|=1$,

$$
\operatorname{Pr}\left[1-\epsilon \leq \frac{\|f(v)\|}{\sqrt{t}} \leq 1+\epsilon\right] \geq 1-2 \delta .
$$

Proof of Theorem using Lemma.

Consider $W=\left\{x_{1}, \ldots, x_{n}\right\} \cup\left\{x_{i}-x_{j}: i \neq j\right\}$. Note $|W| \leq n^{2}$. Take $\delta=1 / n^{3}$. For each $w \in W$, consider $v=\frac{w}{\|w\|}$. Consider the event

$$
\mathcal{E}_{w}:=\left\{\frac{\|f(w)\|}{\sqrt{t}} \notin[1-\epsilon, 1+\epsilon] \cdot\|w\|\right\}=\left\{\frac{\|f(v)\|}{\sqrt{t}} \notin[1-\epsilon, 1+\epsilon]\right\} .
$$

Main Lemma

Lemma

Distributional JL For any $\epsilon, \delta \in(0,1]$, there is a $t=O\left(\log (1 / \delta) / \epsilon^{2}\right)$ and a random linear map $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{t}$, such that, for any $v \in \mathbb{R}^{d}$ with $\|v\|=1$,

$$
\operatorname{Pr}\left[1-\epsilon \leq \frac{\|f(v)\|}{\sqrt{t}} \leq 1+\epsilon\right] \geq 1-2 \delta .
$$

Proof of Theorem using Lemma.

Consider $W=\left\{x_{1}, \ldots, x_{n}\right\} \cup\left\{x_{i}-x_{j}: i \neq j\right\}$. Note $|W| \leq n^{2}$. Take $\delta=1 / n^{3}$. For each $w \in W$, consider $v=\frac{w}{\|w\|}$. Consider the event

$$
\mathcal{E}_{w}:=\left\{\frac{\|f(w)\|}{\sqrt{t}} \notin[1-\epsilon, 1+\epsilon] \cdot\|w\|\right\}=\left\{\frac{\|f(v)\|}{\sqrt{t}} \notin[1-\epsilon, 1+\epsilon]\right\} .
$$

Each such event has probability $\leq 2 \delta$. By union bound, the probability that none of these happen is $\leq|W| \cdot 2 \delta \leq \frac{2}{n}$.

Gaussian Distribution

- For a random variable X, its cumulative distribution function (CDF) is $F_{X}(x):=\operatorname{Pr}[X \leq x]$.

Gaussian Distribution

- For a random variable X, its cumulative distribution function (CDF) is $F_{X}(x):=\operatorname{Pr}[X \leq x]$.
- Example: For X uniformly distributed on $[0,1], F(x)=x$, for $x \in[0,1]$.

Gaussian Distribution

- For a random variable X, its cumulative distribution function (CDF) is $F_{X}(x):=\operatorname{Pr}[X \leq x]$.
- Example: For X uniformly distributed on $[0,1], F(x)=x$, for $x \in[0,1]$.
- For a continuous random variable, the probability density function (PDF) is $f_{X}(x):=\frac{\mathrm{d}}{\mathrm{d} X} F_{X}(x)$.

Gaussian Distribution

- For a random variable X, its cumulative distribution function (CDF) is $F_{X}(x):=\operatorname{Pr}[X \leq x]$.
- Example: For X uniformly distributed on $[0,1], F(x)=x$, for $x \in[0,1]$.
- For a continuous random variable, the probability density function (PDF) is $f_{X}(x):=\frac{\mathrm{d}}{\mathrm{d} X} F_{X}(x)$.
- For X uniformly distributed on $[0,1], f(x)=1$ for $x \in[0,1]$.

Gaussian Distribution

- For a random variable X, its cumulative distribution function (CDF) is $F_{X}(x):=\operatorname{Pr}[X \leq x]$.
- Example: For X uniformly distributed on $[0,1], F(x)=x$, for $x \in[0,1]$.
- For a continuous random variable, the probability density function (PDF) is $f_{X}(x):=\frac{\mathrm{d}}{\mathrm{d} X} F_{X}(x)$.
- For X uniformly distributed on $[0,1], f(x)=1$ for $x \in[0,1]$.
- A random variable is drawn from Gaussian distribution (or Normal distribution) $\mathcal{N}\left(\mu, \sigma^{2}\right)$ if its PDF is

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2} \cdot\left(\frac{x-\mu}{\sigma}\right)^{2}} .
$$

Gaussian Distribution

- For a random variable X, its cumulative distribution function (CDF) is $F_{X}(x):=\operatorname{Pr}[X \leq x]$.
- Example: For X uniformly distributed on $[0,1], F(x)=x$, for $x \in[0,1]$.
- For a continuous random variable, the probability density function (PDF) is $f_{X}(x):=\frac{\mathrm{d}}{\mathrm{d} X} F_{X}(x)$.
- For X uniformly distributed on $[0,1], f(x)=1$ for $x \in[0,1]$.
- A random variable is drawn from Gaussian distribution (or Normal distribution) $\mathcal{N}\left(\mu, \sigma^{2}\right)$ if its PDF is

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2} \cdot\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

- In particular, the standard normal distribution has PDF $\varphi(x)=\frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}}$.

Gaussian Distribution

- For a random variable X, its cumulative distribution function (CDF) is $F_{X}(x):=\operatorname{Pr}[X \leq x]$.
- Example: For X uniformly distributed on $[0,1], F(x)=x$, for $x \in[0,1]$.
- For a continuous random variable, the probability density function (PDF) is $f_{X}(x):=\frac{\mathrm{d}}{\mathrm{d} X} F_{X}(x)$.
- For X uniformly distributed on $[0,1], f(x)=1$ for $x \in[0,1]$.
- A random variable is drawn from Gaussian distribution (or Normal distribution) $\mathcal{N}\left(\mu, \sigma^{2}\right)$ if its PDF is

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2} \cdot\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

- In particular, the standard normal distribution has PDF $\varphi(x)=\frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}}$.
- If $X \sim \mathcal{N}(0,1)$, then $\sigma X+\mu \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

Properties of Gaussian Distribution

Theorem

Linear combinations of independent Gaussian variables are still Gaussian.

Properties of Gaussian Distribution

Theorem

Linear combinations of independent Gaussian variables are still Gaussian.
Fact: The moment generating functions $\mathbf{E}\left[e^{\lambda X}\right]$ of a random variable X uniquely determines its CDF.

Properties of Gaussian Distribution

Theorem

Linear combinations of independent Gaussian variables are still Gaussian.
Fact: The moment generating functions $\mathbf{E}\left[e^{\lambda X}\right]$ of a random variable X uniquely determines its CDF.

Proof of Theorem.

We show only the zero mean case. For $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$,

$$
\begin{aligned}
\mathbf{E}\left[e^{\lambda X}\right] & =\int_{-\infty}^{\infty} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}+\lambda x\right) \mathrm{d} x \\
& =\frac{e^{\sigma^{2} \lambda^{2} / 2}}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}\left(\frac{x}{\sigma}-\sigma \lambda\right)^{2}} \mathrm{~d} x=e^{\frac{\sigma^{2} \lambda^{2}}{2}}
\end{aligned}
$$

So for independent $X \sim \mathcal{N}\left(0, \sigma_{1}^{2}\right), Y \sim \mathcal{N}\left(0, \sigma_{2}^{2}\right)$,
$\mathbf{E}\left[e^{\lambda(X+Y)}\right]=\mathbf{E}\left[e^{\lambda X}\right] \cdot \mathbf{E}\left[e^{\lambda Y}\right]=e^{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) \lambda^{2} / 2}$.

Idea of JL

- For $x \in \mathbb{R}^{d}$ with $\|x\|=1$, let G_{1}, \cdots, G_{d} be i.i.d. from $\mathcal{N}(0,1)$, then $\sum_{i} G_{i} x_{i} \sim \mathcal{N}\left(0,\|x\|^{2}\right)=\mathcal{G}(0,1)$.

Idea of JL

- For $x \in \mathbb{R}^{d}$ with $\|x\|=1$, let G_{1}, \cdots, G_{d} be i.i.d. from $\mathcal{N}(0,1)$, then $\sum_{i} G_{i} x_{i} \sim \mathcal{N}\left(0,\|x\|^{2}\right)=\mathcal{G}(0,1)$.
- I.e., $\mathbf{E}\left[\left(\sum_{i} G_{i} x_{i}\right)^{2}\right]=\mathbf{E}\left[\sum_{i} x_{i}^{2}\right]=\|x\|^{2}=1$.

Idea of JL

- For $x \in \mathbb{R}^{d}$ with $\|x\|=1$, let G_{1}, \cdots, G_{d} be i.i.d. from $\mathcal{N}(0,1)$, then $\sum_{i} G_{i} x_{i} \sim \mathcal{N}\left(0,\|x\|^{2}\right)=\mathcal{G}(0,1)$.
- I.e., $\mathbf{E}\left[\left(\sum_{i} G_{i} x_{i}\right)^{2}\right]=\mathbf{E}\left[\sum_{i} x_{i}^{2}\right]=\|x\|^{2}=1$.
- By sampling $\left(\sum_{i} G_{i} x_{i}\right)^{2}$ multiple times, with good probability the average should be around the mean.

Idea of JL

- For $x \in \mathbb{R}^{d}$ with $\|x\|=1$, let G_{1}, \cdots, G_{d} be i.i.d. from $\mathcal{N}(0,1)$, then $\sum_{i} G_{i} x_{i} \sim \mathcal{N}\left(0,\|x\|^{2}\right)=\mathcal{G}(0,1)$.
- I.e., $\mathbf{E}\left[\left(\sum_{i} G_{i} x_{i}\right)^{2}\right]=\mathbf{E}\left[\sum_{i} x_{i}^{2}\right]=\|x\|^{2}=1$.
- By sampling $\left(\sum_{i} G_{i} x_{i}\right)^{2}$ multiple times, with good probability the average should be around the mean.
- If we multiply x by a $t \times d$ matrix A, whose entries are i.i.d. standard Gaussian variables

Idea of JL

- For $x \in \mathbb{R}^{d}$ with $\|x\|=1$, let G_{1}, \cdots, G_{d} be i.i.d. from $\mathcal{N}(0,1)$, then $\sum_{i} G_{i} x_{i} \sim \mathcal{N}\left(0,\|x\|^{2}\right)=\mathcal{G}(0,1)$.
- I.e., $\mathbf{E}\left[\left(\sum_{i} G_{i} x_{i}\right)^{2}\right]=\mathbf{E}\left[\sum_{i} x_{i}^{2}\right]=\|x\|^{2}=1$.
- By sampling $\left(\sum_{i} G_{i} x_{i}\right)^{2}$ multiple times, with good probability the average should be around the mean.
- If we multiply x by a $t \times d$ matrix A, whose entries are i.i.d. standard Gaussian variables
- The resulting random vector $A x \in \mathbb{R}^{t}$ has each coordinate drawn from $\mathcal{N}(0,1)$.

Idea of JL

- For $x \in \mathbb{R}^{d}$ with $\|x\|=1$, let G_{1}, \cdots, G_{d} be i.i.d. from $\mathcal{N}(0,1)$, then $\sum_{i} G_{i} x_{i} \sim \mathcal{N}\left(0,\|x\|^{2}\right)=\mathcal{G}(0,1)$.
- I.e., $\mathbf{E}\left[\left(\sum_{i} G_{i} x_{i}\right)^{2}\right]=\mathbf{E}\left[\sum_{i} x_{i}^{2}\right]=\|x\|^{2}=1$.
- By sampling $\left(\sum_{i} G_{i} x_{i}\right)^{2}$ multiple times, with good probability the average should be around the mean.
- If we multiply x by a $t \times d$ matrix A, whose entries are i.i.d. standard Gaussian variables
- The resulting random vector $A x \in \mathbb{R}^{t}$ has each coordinate drawn from $\mathcal{N}(0,1)$.
- The expectation of $\|A x\|^{2}$ is t.

Idea of JL

- For $x \in \mathbb{R}^{d}$ with $\|x\|=1$, let G_{1}, \cdots, G_{d} be i.i.d. from $\mathcal{N}(0,1)$, then $\sum_{i} G_{i} x_{i} \sim \mathcal{N}\left(0,\|x\|^{2}\right)=\mathcal{G}(0,1)$.
- I.e., $\mathbf{E}\left[\left(\sum_{i} G_{i} x_{i}\right)^{2}\right]=\mathbf{E}\left[\sum_{i} x_{i}^{2}\right]=\|x\|^{2}=1$.
- By sampling $\left(\sum_{i} G_{i} x_{i}\right)^{2}$ multiple times, with good probability the average should be around the mean.
- If we multiply x by a $t \times d$ matrix A, whose entries are i.i.d. standard Gaussian variables
- The resulting random vector $A x \in \mathbb{R}^{t}$ has each coordinate drawn from $\mathcal{N}(0,1)$.
- The expectation of $\|A x\|^{2}$ is t.
- Let $A^{\prime}=\frac{1}{\sqrt{t}} A$, then $\mathbf{E}\left[\left\|A^{\prime} x\right\|^{2}\right]=1$.

Idea of JL

- For $x \in \mathbb{R}^{d}$ with $\|x\|=1$, let G_{1}, \cdots, G_{d} be i.i.d. from $\mathcal{N}(0,1)$, then $\sum_{i} G_{i} x_{i} \sim \mathcal{N}\left(0,\|x\|^{2}\right)=\mathcal{G}(0,1)$.
- I.e., $\mathbf{E}\left[\left(\sum_{i} G_{i} x_{i}\right)^{2}\right]=\mathbf{E}\left[\sum_{i} x_{i}^{2}\right]=\|x\|^{2}=1$.
- By sampling $\left(\sum_{i} G_{i} x_{i}\right)^{2}$ multiple times, with good probability the average should be around the mean.
- If we multiply x by a $t \times d$ matrix A, whose entries are i.i.d. standard Gaussian variables
- The resulting random vector $A x \in \mathbb{R}^{t}$ has each coordinate drawn from $\mathcal{N}(0,1)$.
- The expectation of $\|A x\|^{2}$ is t.
- Let $A^{\prime}=\frac{1}{\sqrt{t}} A$, then $\mathbf{E}\left[\left\|A^{\prime} x\right\|^{2}\right]=1$.
- We just need to show that the empirical average converges to the expectation fast enough with t.

Proof of Lemma

- As we analyzed above, for each $i=1, \ldots, t$, the i-th coordinate of $A x / \sqrt{t}, Y_{i}$ is Gaussian from $\mathcal{N}(0,1)$.

Proof of Lemma

- As we analyzed above, for each $i=1, \ldots, t$, the i-th coordinate of $A x / \sqrt{t}, Y_{i}$ is Gaussian from $\mathcal{N}(0,1)$.
- Let Y be $\sum_{i} Y_{i}^{2}$, then $\mathbf{E}[Y]=t$.

Proof of Lemma

- As we analyzed above, for each $i=1, \ldots, t$, the i-th coordinate of $A x / \sqrt{t}, Y_{i}$ is Gaussian from $\mathcal{N}(0,1)$.
- Let Y be $\sum_{i} Y_{i}^{2}$, then $\mathbf{E}[Y]=t$.

$$
\begin{aligned}
\operatorname{Pr}\left[\frac{\|A x\|}{\sqrt{t}} \geq(1+\epsilon)\right] & =\operatorname{Pr}\left[Y \geq(1+\epsilon)^{2} t\right] \\
& =\operatorname{Pr}\left[Y \geq(1+\epsilon)^{2} \mathbf{E}[Y]\right] .
\end{aligned}
$$

Let bound $\operatorname{Pr}[Y>\alpha]$ for any α. For any $\lambda>0$, we have

$$
\begin{aligned}
\operatorname{Pr}[Y \geq \alpha] & =\operatorname{Pr}\left[e^{\lambda Y} \geq e^{\lambda \alpha}\right] \\
& \leq \frac{\mathbf{E}\left[e^{\lambda Y}\right]}{e^{\lambda \alpha}}=\frac{\prod_{i} \mathbf{E}\left[e^{\lambda Y_{i}^{2}}\right]}{e^{\lambda \alpha}} .
\end{aligned}
$$

Moment Generating Function of χ^{2}-distributions

If X_{1}, \cdot, X_{k} are independent standard normal random variables, then
$Q=\sum_{i} X_{i}$ is said to be distributed according to the χ^{2}-distribution with k degrees of freedom.

Moment Generating Function of χ^{2}-distributions

If X_{1}, \cdot, X_{k} are independent standard normal random variables, then $Q=\sum_{i} X_{i}$ is said to be distributed according to the χ^{2}-distribution with k degrees of freedom.

```
Lemma
If }X~\mathcal{N}(0,1),\mathrm{ then }\mathbf{E}[\mp@subsup{e}{}{\lambda\mp@subsup{X}{}{2}}]=1/\sqrt{}{1-2\lambda}\mathrm{ , for }-\infty<\lambda<\frac{1}{2}\mathrm{ .
```


Moment Generating Function of χ^{2}-distributions

If X_{1}, \cdot, X_{k} are independent standard normal random variables, then $Q=\sum_{i} X_{i}$ is said to be distributed according to the χ^{2}-distribution with k degrees of freedom.

Lemma

If $X \sim \mathcal{N}(0,1)$, then $\mathbf{E}\left[e^{\lambda X^{2}}\right]=1 / \sqrt{1-2 \lambda}$, for $-\infty<\lambda<\frac{1}{2}$.

Proof.

$$
\begin{aligned}
\mathbf{E}\left[e^{\lambda x^{2}}\right] & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{\lambda x^{2}-\frac{x^{2}}{2}} \mathrm{~d} x \\
& =\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{1-2 \lambda}} \int e^{-y^{2} / 2} \mathrm{~d} y=\frac{1}{\sqrt{1-2 \lambda}}
\end{aligned}
$$

where we substituted $y=\sqrt{1-2 \lambda} x$.

Finishing Proof of Lemma

Plugging in the moment generating function of Y_{i}^{2}, we have

$$
\operatorname{Pr}[Y \geq \alpha] \leq \frac{\prod_{i} \mathbf{E}\left[e^{\lambda Y_{i}^{2}}\right]}{e^{\lambda \alpha}}=(1-2 \lambda)^{-t / 2} e^{-\lambda \alpha}
$$

Finishing Proof of Lemma

Plugging in the moment generating function of Y_{i}^{2}, we have

$$
\operatorname{Pr}[Y \geq \alpha] \leq \frac{\prod_{i} \mathbf{E}\left[e^{\lambda Y_{i}^{2}}\right]}{e^{\lambda \alpha}}=(1-2 \lambda)^{-t / 2} e^{-\lambda \alpha}
$$

Now minimize the RHS by setting $\lambda=\frac{1}{2}\left(1-\frac{t}{\alpha}\right)$, we obtain $\operatorname{Pr}[Y \geq \alpha] \leq e^{(t-\alpha) / 2}(t / \alpha)^{-t / 2}$. Now let α be $(1+\epsilon)^{2} t$, we get

$$
\operatorname{Pr}\left[Y \geq(1+\epsilon)^{2} t\right] \leq \exp \left(-t\left(\epsilon+\frac{\epsilon^{2}}{2}-\ln (1+\epsilon)\right)\right)
$$

Finishing Proof of Lemma

Plugging in the moment generating function of Y_{i}^{2}, we have

$$
\operatorname{Pr}[Y \geq \alpha] \leq \frac{\prod_{i} \mathbf{E}\left[e^{\lambda Y_{i}^{2}}\right]}{e^{\lambda \alpha}}=(1-2 \lambda)^{-t / 2} e^{-\lambda \alpha}
$$

Now minimize the RHS by setting $\lambda=\frac{1}{2}\left(1-\frac{t}{\alpha}\right)$, we obtain $\operatorname{Pr}[Y \geq \alpha] \leq e^{(t-\alpha) / 2}(t / \alpha)^{-t / 2}$. Now let α be $(1+\epsilon)^{2} t$, we get

$$
\operatorname{Pr}\left[Y \geq(1+\epsilon)^{2} t\right] \leq \exp \left(-t\left(\epsilon+\frac{\epsilon^{2}}{2}-\ln (1+\epsilon)\right)\right)
$$

Using basic calculus, we can show $\ln (1+\epsilon) \leq \epsilon-\frac{\epsilon^{2}}{4}$ for $\epsilon \in[0,1]$, so we have

$$
\operatorname{Pr}\left[Y \geq(1+\epsilon)^{2} t\right] \leq e^{-\frac{3}{4} \epsilon^{2} t}
$$

