Johnson-Lindenstrauss Transform

Learning Goals

@ Concept of dimensenality reduction

o Correctly state the procedure and guarantee of Johnson-Lindenstrauss
transform

@ Proof idea of JL-transform
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Dimensionality Reduction

e Data points can often live in very high dimensions

e Images
e Vector representation of articles
e Vector representation of words

@ Many algorithms are very slow when run on high dimensional input
o Curse of dimensionality

e Dimensionality reduction: Transform data to lower dimensions while
preserving information useful for analysis/application

2/1



Johnson-Lindenstrauss Transform

Johnson-Lindenstrauss

o Distances between data points are often meaningful



Johnson-Lindenstrauss Transform

Johnson-Lindenstrauss

o Distances between data points are often meaningful

e For x € RY, the ¢, norm of x is

1/2

d
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Johnson-Lindenstrauss

o Distances between data points are often meaningful

e For x € RY, the ¢, norm of x is

1/2

d
Ixll = | D%
i=1

For x, y € RY, ||x — y|| is their £,-distance, or Euclidean distance.

@ The Johnson-Lindenstrauss transform is a randomized dimensionality
reduction algorithm that approximately preserves Euclidean distances.
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JL Statement

Theorem (Johnson-Lindenstrauss)

For arbitrary x1, .. ., x, € RY, and any € € (0, 1), there is t = O(log n/€?)
such that there are y1, . . ., y, € R! with
(1=l < llyll < (T +llxll,
(=9l = xpll < lly; =yl < O+l = xill, Vi J-

Moreover, y1, . .., yn can be computed in polynomial time.
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Proof of Theorem using Lemma.

Consider W = {x1,...,x,} U{x;i — x; : i # j}. Note |W| < n*. Take
§ = 1/n’. For each w € W, consider v = ﬁ Consider the event
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Main Lemma

Lemma

Distributional JL For any €, 6 € (0, 1], there is a t = O(log(1/8)/€*) and a
random linear map f : RY — R, such that, for any v € R with ||v|| = 1,

I
Vit

Proof of Theorem using Lemma.

Consider W = {x1,...,x,} U{x;i — x; : i # j}. Note |W| < n*. Take
§ = 1/n’. For each w € W, consider v = ﬁ Consider the event

o= {00 v} = {0 ¢ ).

Each such event has probability < 24. By union bound, the probability that
none of these happen is < |W/|- 2§ < 2. O

October 29, 2021 5/11

Pr[1—e§ §1+6]Z1—25.




Johnson-Lindenstrauss Transform

Gaussian Distribution

e For a random variable X, its cumulative distribution function (CDF) is
Fx(x) = Pr[X < x].



Johnson-Lindenstrauss Transform

Gaussian Distribution

e For a random variable X, its cumulative distribution function (CDF) is
Fx(x) = Pr[X < x].
o Example: For X uniformly distributed on [0, 1], F(x) = x, for x € [0, 1].



Johnson-Lindenstrauss Transform

Gaussian Distribution

e For a random variable X, its cumulative distribution function (CDF) is
Fx(x) = Pr[X < x].
o Example: For X uniformly distributed on [0, 1], F(x) = x, for x € [0, 1].
@ For a continuous random variable, the probability density function
(PDF) is fx(x) == & Fx(x).



Johnson-Lindenstrauss Transform

Gaussian Distribution

e For a random variable X, its cumulative distribution function (CDF) is
Fx(x) = Pr[X < x].
o Example: For X uniformly distributed on [0, 1], F(x) = x, for x € [0, 1].
@ For a continuous random variable, the probability density function
(PDF) is fx(x) == & Fx(x).
o For X uniformly distributed on [0, 1], f(x) = 1 for x € [0, 1].



Johnson-Lindenstrauss Transform

Gaussian Distribution

e For a random variable X, its cumulative distribution function (CDF) is
Fx(x) = Pr[X < x].
o Example: For X uniformly distributed on [0, 1], F(x) = x, for x € [0, 1].
@ For a continuous random variable, the probability density function
(PDF) is fx(x) == & Fx(x).
o For X uniformly distributed on [0, 1], f(x) = 1 for x € [0, 1].
@ A random variable is drawn from Gaussian distribution (or Normal
distribution) N'(u, o) if its PDF is

6/11



Johnson-Lindenstrauss Transform

Gaussian Distribution

e For a random variable X, its cumulative distribution function (CDF) is
Fx(x) = Pr[X < x].
o Example: For X uniformly distributed on [0, 1], F(x) = x, for x € [0, 1].
@ For a continuous random variable, the probability density function
(PDF) is fx(x) == & Fx(x).
o For X uniformly distributed on [0, 1], f(x) = 1 for x € [0, 1].
@ A random variable is drawn from Gaussian distribution (or Normal
distribution) N'(u, o) if its PDF is

x—\2
f(x) = ! e_% ( Uu)
o\ 2m
o In particular, the standard normal distribution has PDF p(x) = %



Johnson-Lindenstrauss Transform

Gaussian Distribution

e For a random variable X, its cumulative distribution function (CDF) is
Fx(x) = Pr[X < x].
o Example: For X uniformly distributed on [0, 1], F(x) = x, for x € [0, 1].
@ For a continuous random variable, the probability density function
(PDF) is fx(x) == & Fx(x).
o For X uniformly distributed on [0, 1], f(x) = 1 for x € [0, 1].
@ A random variable is drawn from Gaussian distribution (or Normal
distribution) N'(u, o) if its PDF is

_0 2T

o In particular, the standard normal distribution has PDF ¢(x) =
o If X ~N(0,1), then o X + p ~ N(u, 0?).
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Properties of Gaussian Distribution

Linear combinations of independent Gaussian variables are still Gaussian.

AX]

Fact: The moment generating functions E[e*"] of a random variable X

uniquely determines its CDF.

Proof of Theorem.

We show only the zero mean case. For X ~ A(0, 0?),

o0 -I X2
E [e)‘x} :/ exp ( —=—= + Ax | dx
0o OV 2T 202

2y2
ea)\/z 0

1 2 22
e 20N dx = %7 .

oVv2T J_so

So for independent X ~ N(0,0%), Y ~ N(0,03),
E[c*X+Y)] = E[eMX] - E[e}Y] = eloi1oD)X/2, O
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Idea of JL

For x € R with ||x|| = 1, let G;,--- , G4 be i.i.d. from N(0, 1), then
325 Gixi ~ N0, [[x]]) = G(0,1).

Le., E[(32; Gixi)?] = E[32; 7] = |Ix||* = 1.

By sampling (}_; Gix;)? multiple times, with good probability the
average should be around the mean.

If we multiply x by a t X d matrix A, whose entries are i.i.d. standard
Gaussian variables

o The resulting random vector Ax € R’ has each coordinate drawn from
N(0,1).
o The expectation of ||Ax||? is t.

o Let A = i\/A,then E[||A'x]]] = 1.
t
We just need to show that the empirical average converges to the

expectation fast enough with t.
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Proof of Lemma
@ As we analyzed above, for each i = 1,.. . t, the i-th coordinate of

Ax/+\/t, Y; is Gaussian from N/(0, 1).
o Let Y be > . Y? then E[Y] =t.

x

Pr [HA > (1 +e)} =Pr[Y>(1+¢)]

S

PrY>(1+¢€’E[Y]].
Let bound Pr[Y > a] for any a. For any A > 0, we have
Pr[Y > a]=Pr {e’\y > e)‘o‘}

E[e\] _ TLE[*]
<: g .
— e)\a e)\a
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Moment Generating Function of x2-distributions

If X1, -, Xk are independent standard normal random variables, then
Q= Z,-Xi is said to be distributed according to the Xz-distribution with k
degrees of freedom.

Lemma

IFX ~ N(0,1), then E[e*’] = 1/y/T = 2, for —00 < A < 3

Proof.

E [ sz] T [ e ? d
e = — e 7 dx
V2T J o

1 1 / o 1
=—— |[e dy = —.
V2T /1 —2A V1—2A
where we substituted y = /1 — 2\x. Ol
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Plugging in the moment generating function of Y?, we have

[LE[M]

Pry >a] < — = (1- 20) "2,
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Finishing Proof of Lemma

Plugging in the moment generating function of Y?, we have

AY?
Pr[Y >a] < % = (1—2)\)"2e 2,
e

Now minimize the RHS by setting A = 3(1 — %), we obtain
Pr[Y > o] < elt=)/2(t/a)~1/2,
Now let a be (1+ €)*t, we get

PrY > (1+¢€)’t] <exp <—t(e+ 622 —In(1+ e))) .
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Finishing Proof of Lemma

Plugging in the moment generating function of Y?, we have

AY?
Pr[Y >a] < % = (1—2)\)"2e 2,
e

Now minimize the RHS by setting A = 3(1 — %), we obtain
Pr[Y > o] < elt=)/2(t/a)~1/2,
Now let a be (1+ €)*t, we get

PrY > (1+¢€)’t] <exp <—t(e+ 622 —In(1+ e))) .

Using basic calculus, we can show In(1+¢€) < e — % for e € [0, 1], so we
have

PrY > (14€)] <e it
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