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Johnson-Lindenstrauss Transform

Johnson-Lindenstrauss

Distances between data points are o�en meaningful

For x ∈ Rd , the `2 norm of x is

||x|| =

(
d∑

i=1

x2
i

)1/2

.

For x, y ∈ Rd , ||x − y|| is their `2-distance, or Euclidean distance.

The Johnson-Lindenstrauss transform is a randomized dimensionality
reduction algorithm that approximately preserves Euclidean distances.
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Johnson-Lindenstrauss Transform

JL Statement

Theorem (Johnson-Lindenstrauss)

For arbitrary x1, . . . , xn ∈ Rd , and any ε ∈ (0, 1), there is t = O(log n/ε2)
such that there are y1, . . . , yn ∈ Rt with

(1− ε)||xj|| ≤ ||yj|| ≤ (1 + ε)||xj||, ∀j
(1− ε)||xj − xj′ || ≤ ||yj − yj′ || ≤ (1 + ε)||xj − xj′ ||, ∀j, j′.

Moreover, y1, . . . , yn can be computed in polynomial time.
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Johnson-Lindenstrauss Transform

Main Lemma

Lemma

Distributional JL For any ε, δ ∈ (0, 1], there is a t = O(log(1/δ)/ε2) and a
random linear map f : Rd → Rt , such that, for any v ∈ Rd with ||v|| = 1,

Pr
[

1− ε ≤ ||f (v)||√
t
≤ 1 + ε

]
≥ 1− 2δ.

Proof of Theorem using Lemma.

Consider W = {x1, . . . , xn} ∪ {xi − xj : i 6= j}. Note |W | ≤ n2. Take
δ = 1/n3. For each w ∈ W , consider v = w

||w|| . Consider the event

Ew :=

{
||f (w)||√

t
/∈ [1− ε, 1 + ε] · ||w||

}
=

{
||f (v)||√

t
/∈ [1− ε, 1 + ε]

}
.

Each such event has probability ≤ 2δ. By union bound, the probability that
none of these happen is ≤ |W | · 2δ ≤ 2

n .
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Johnson-Lindenstrauss Transform

Gaussian Distribution

For a random variable X , its cumulative distribution function (CDF) is
FX (x) := Pr[X ≤ x].

Example: For X uniformly distributed on [0, 1], F (x) = x , for x ∈ [0, 1].

For a continuous random variable, the probability density function
(PDF) is fX (x) := d

dx FX (x).
For X uniformly distributed on [0, 1], f (x) = 1 for x ∈ [0, 1].

A random variable is drawn from Gaussian distribution (or Normal
distribution) N (µ, σ2) if its PDF is

f (x) =
1

σ
√

2π
e−

1
2 ·(

x−µ
σ )

2

.

In particular, the standard normal distribution has PDF ϕ(x) = e−x2/2
√

2π
.

If X ∼ N (0, 1), then σX + µ ∼ N (µ, σ2).
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Johnson-Lindenstrauss Transform

Properties of Gaussian Distribution

Theorem
Linear combinations of independent Gaussian variables are still Gaussian.

Fact: The moment generating functions E[eλX ] of a random variable X
uniquely determines its CDF.

Proof of Theorem.

We show only the zero mean case. For X ∼ N (0, σ2),

E
[
eλX
]
=

∫ ∞
−∞

1

σ
√

2π
exp

(
− x2

2σ2 + λx
)

dx

=
eσ

2λ2/2

σ
√

2π

∫ ∞
−∞

e−
1
2 (

x
σ
−σλ)2

dx = e
σ2λ2

2 .

So for independent X ∼ N (0, σ2
1), Y ∼ N (0, σ2

2),
E[eλ(X+Y)] = E[eλX ] · E[eλY ] = e(σ

2
1+σ

2
2)λ

2/2.
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Johnson-Lindenstrauss Transform

Idea of JL

For x ∈ Rd with ||x|| = 1, let G1, · · · ,Gd be i.i.d. from N (0, 1), then∑
i Gixi ∼ N (0, ||x||2) = G(0, 1).

I.e., E[(
∑

i Gixi)2] = E[
∑

i x
2
i ] = ||x||2 = 1.

By sampling (
∑

i Gixi)2 multiple times, with good probability the
average should be around the mean.

If we multiply x by a t × d matrix A, whose entries are i.i.d. standard
Gaussian variables

The resulting random vector Ax ∈ Rt has each coordinate drawn from
N (0, 1).
The expectation of ||Ax||2 is t .
Let A′ = 1√

t
A, then E[||A′x||2] = 1.

We just need to show that the empirical average converges to the
expectation fast enough with t .

October 29, 2021 8 / 11
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Johnson-Lindenstrauss Transform

Proof of Lemma

As we analyzed above, for each i = 1, . . . , t , the i-th coordinate of
Ax/
√
t , Yi is Gaussian from N (0, 1).

Let Y be
∑

i Y
2
i , then E[Y ] = t .

Pr
[
||Ax||√

t
≥ (1 + ε)

]
= Pr

[
Y ≥ (1 + ε)2t

]
= Pr

[
Y ≥ (1 + ε)2 E [Y ]

]
.

Let bound Pr[Y > α] for any α. For any λ > 0, we have

Pr [Y ≥ α] = Pr
[
eλY ≥ eλα

]
≤ E[eλY ]

eλα
=

∏
i E[e

λY 2
i ]

eλα
.
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Johnson-Lindenstrauss Transform

Moment Generating Function of χ2-distributions

If X1, ·,Xk are independent standard normal random variables, then
Q =

∑
i Xi is said to be distributed according to the χ2-distribution with k

degrees of freedom.

Lemma

If X ∼ N (0, 1), then E[eλX 2
] = 1/

√
1− 2λ, for −∞ < λ < 1

2 .

Proof.

E
[
eλX

2
]
=

1√
2π

∫ ∞
−∞

eλx
2− x2

2 dx

=
1√
2π

1√
1− 2λ

∫
e−y

2/2 dy =
1√

1− 2λ
.

where we substituted y =
√

1− 2λx .
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Johnson-Lindenstrauss Transform

Finishing Proof of Lemma

Plugging in the moment generating function of Y 2
i , we have

Pr [Y ≥ α] ≤
∏

i E[e
λY 2

i ]

eλα
= (1− 2λ)−t/2e−λα.

Now minimize the RHS by se�ing λ = 1
2(1−

t
α), we obtain

Pr[Y ≥ α] ≤ e(t−α)/2(t/α)−t/2.
Now let α be (1 + ε)2t , we get

Pr
[
Y ≥ (1 + ε)2t

]
≤ exp

(
−t(ε+ ε2

2
− ln(1 + ε))

)
.

Using basic calculus, we can show ln(1 + ε) ≤ ε− ε2

4 for ε ∈ [0, 1], so we
have

Pr
[
Y ≥ (1 + ε)2t

]
≤ e−

3
4 ε

2t .
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