
Markov Inequality

Learning Goals

State the condition Markov inequality

Understand distributions for which Markov inequality is tight

Define perfect hashing

Implementation and proof of perfect hashing

Understand the method of amplification by independent trials
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Markov Inequality

Concentration Inqualities

O�en it is not enough to estimate the expectation of a random

variable, but to say that with good probability its value is not far from

the expectation.

Such a phenomenon is called concentration.

Tools that upper bound the probability with which a random variable

deviates far from its expectation are known as concentration
inequalities or tail bounds.
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Markov Inequality

Markov Inequality

Theorem (Markov Inequality)

If X is a random variable that takes nonnegative value with probability 1, then
for any α > 1,

Pr [X ≥ αE [X ]] ≤ 1

α
.

Proof.

Let Y be the indicator variable for X ≥ αE[X ]. Then

Pr [X ≥ E [X ]] = Pr [Y = 1] = E [Y ] ≤ E
[

X
αE[X ]

]
=

1

α
.
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Markov Inequality

Remarks

Markov inequality can be understood as: a nonnegative random

variable deviates from its expectation by a constant factor with at most

constant probability.

Equivalently, the theorem can be stated as Pr[X ≥ a] ≤ E[X ]
a for any

a > 0.

Stated this way, the inequality has bite only for a > E[X ].

Note the condition that X must be a nonnegative random variable.
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Markov Inequality

Essence of Markov Inequality

Essence of the proof: among distributions having the same Pr[X > a],
which one minimizes E[X ]?

Answer: when X < a, X should be 0; when X ≥ a, X should be a.

The distribution for which Markov inequality tight is a two-point

distribution.

With this intuition, it is not di�icult to prove the following corollary:

Corollary (Reverse Markov Inequality)

If X is a random variable that is never larger than a, then for any b < a,

Pr [X ≤ b] ≤ a− E[X ]

a− b
.
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Markov Inequality

Application: Perfect Hashing

Definition

A hash function h : U → {0, . . . ,m− 1} is perfect on S ⊆ U if Find(x) for

every x ∈ S takes O(1) time.

Recall: to store a dataset of n entries, it su�ices to have a hash table of

size m = Θ(n) so that each element has O(1) collisions in expectation

if we sample a hash function from a universal hash family.

It does not follow immediately that there exists an h ∈ H under which

every element has only O(1) collisions.

In fact, we will see next week that, under the mapping that sends every

element in U uniformly at random to {0, . . . ,m− 1}, for m = n, with

high probability the worst bucket has Θ(log n/ log log n) collisions.
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Perfect Hashing in O(n2) Space

If we allow m to be Ω(n2), then it is easy to have perfect hashing.

Claim

Let H be a universal hash family from U to {0, . . . ,m}, then for any S ⊆ U
with |S| = n ≤

√
m, when we use a uniformly random h from H, with

probability at least
1

2
, there is no collision under h.

Proof.

By definition of universal hashing, for every x 6= y in S,

Prh∼H[h(x) = h(y)] ≤ 1

m .

By the union bound, the probability that any collision happens is at most∑
x 6=y∈S

1

m < n2

2
· 1

m ≤
1

2
.
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Markov Inequality

Perfect Hashing in O(n) Space

Is it possible to have perfect hashing with m = O(n)?

This is not an easy question, and remained open for some time. We

present the first solution, given by Fredman, Komlós and Szemerédi

(1982).

Main idea: use two levels of hashing.

Let A[·] be the array for the first level hash, and h be a hash function

from U to {0, . . . , n− 1}.
For each i = 0, . . . , n− 1, let ni be the number of collisions in that

bucket. Set up a hash table Bi of size n2

i , and a perfect hash function

mapping U to {0, . . . , n2

i − 1}.
When looking up x , we first find its position in the first level. Let j be

h(x). Then we look up Bj[hj(x)].
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Illustration: Perfect Hashing

Keys

www.baidu.com

www.fuhuthu.com

www.taobao.com

www.bilibili.com

First Level Hash h

0

1

2

3

4
www.wechat.com

Second Level Hash hi
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Space Calculation

The resulting hash function is obviously perfect. The remaining

question is whether we satisfy the space constraint.

We need h to satisfy

∑
i n

2

i = O(n).

Lemma

Let h be sampled uniformly at random from a universal hash function family
mapping U to {0, . . . , n− 1}. Let ni be |h−1(i)|, the number of elements
mapped to i by h. Then Pr[

∑
i n

2

i ≤ 4n] ≥ 1

2
.

Proof.

Game plan: we first show that E[
∑

i n
2

i ] is no more than 2n. Then the

conclusion follows from Markov inequality.

For x 6= y in S, let Cxy be the indicator variable for the event that x clashes

with y under h, then E[Cxy ] ≤ 1

n by universality.
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Proof of Lemma (Cont.)

Proof.

Key observation:

∑
i n

2

i = n +
∑

x∈S
∑

y∈S\{x} Cxy .

(Let Si be h−1(i), then

∑
x∈Si

∑
y∈S\{x} Cxy contributes ni(ni − 1).)

Now we can bound

E

∑
x∈S

∑
y∈S\{x}

Cxy ≤ n(n− 1) · 1

n
≤ n.

Therefore E[
∑

i n
2

i ] ≤ 2n.
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Markov Inequality

Amplification by Repeated Trial

How do we make use of the lemma?

Each time we sample an h, we satisfy the space requirement with

probability at least
1

2
.

We can check if we succeed in polynomial time. If not, we simply try

again.

A�er k trials, we succeed with probability 1− 1

2
k .
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