
Random contention resolution

Learning Goals

Basic definitions of finite probabilities: sample space, probability,
events
State and apply union bound.
Define independence, and apply its properties in probability
calculations
Contention resolution with random access, and analysis of its efficiency
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Random contention resolution

Borges’s Garden of Forking Paths

Leaves are realizations of the
world.
“Sample space” is the set of
those realizations.
A probability space is defined
by weights on those
realizations.
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Random contention resolution

Discrete/Finite Probability Space

Finite sample space: Ω (intuitively, the set of all realizable outcomes)

Each point (outcome) i ∈ Ω has a probability mass p(i) ≥ 0. We
require

∑
i p(i) = 1.

An event E is a subset of Ω.
Pr[E ] =

∑
i∈E p(i).

Example

Let Ω be the set of outcomes of two rolls of a die. Then |Ω| = 36.
If everything is fair, then each outcome has probability mass 1/36.
Let E be the event that the sum of the two numbers is 11, then
E = {(6, 5), (5, 6)}, so Pr[E ] = 1/18.
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Random contention resolution

Set operations on events

Let A and B be two events of a probability space.

A, the complement of A, is the event that event A does not happen,
and Pr[A] = 1− Pr[A].
A ∪ B is the event that at least one of A and B happens.

Proposition (Union Bound)

Pr[A ∪ B] ≤ Pr[A] + Pr[B].

A ∩ B is the event that both A and B happen.

Definition
A and B are said to be independent if Pr[A ∩ B] = Pr[A] · Pr[B].

Exercise: If A and B are independent, then so are A and B , and so are A
and B .

September 10, 2021 4 / 12



Random contention resolution

Set operations on events

Let A and B be two events of a probability space.
A, the complement of A, is the event that event A does not happen,
and Pr[A] = 1− Pr[A].

A ∪ B is the event that at least one of A and B happens.

Proposition (Union Bound)

Pr[A ∪ B] ≤ Pr[A] + Pr[B].

A ∩ B is the event that both A and B happen.

Definition
A and B are said to be independent if Pr[A ∩ B] = Pr[A] · Pr[B].

Exercise: If A and B are independent, then so are A and B , and so are A
and B .

September 10, 2021 4 / 12



Random contention resolution

Set operations on events

Let A and B be two events of a probability space.
A, the complement of A, is the event that event A does not happen,
and Pr[A] = 1− Pr[A].
A ∪ B is the event that at least one of A and B happens.

Proposition (Union Bound)

Pr[A ∪ B] ≤ Pr[A] + Pr[B].

A ∩ B is the event that both A and B happen.

Definition
A and B are said to be independent if Pr[A ∩ B] = Pr[A] · Pr[B].

Exercise: If A and B are independent, then so are A and B , and so are A
and B .

September 10, 2021 4 / 12



Random contention resolution

Set operations on events

Let A and B be two events of a probability space.
A, the complement of A, is the event that event A does not happen,
and Pr[A] = 1− Pr[A].
A ∪ B is the event that at least one of A and B happens.

Proposition (Union Bound)

Pr[A ∪ B] ≤ Pr[A] + Pr[B].

A ∩ B is the event that both A and B happen.

Definition
A and B are said to be independent if Pr[A ∩ B] = Pr[A] · Pr[B].

Exercise: If A and B are independent, then so are A and B , and so are A
and B .

September 10, 2021 4 / 12



Random contention resolution

Set operations on events

Let A and B be two events of a probability space.
A, the complement of A, is the event that event A does not happen,
and Pr[A] = 1− Pr[A].
A ∪ B is the event that at least one of A and B happens.

Proposition (Union Bound)

Pr[A ∪ B] ≤ Pr[A] + Pr[B].

A ∩ B is the event that both A and B happen.

Definition
A and B are said to be independent if Pr[A ∩ B] = Pr[A] · Pr[B].

Exercise: If A and B are independent, then so are A and B , and so are A
and B .

September 10, 2021 4 / 12



Random contention resolution

A Word on Infinite Sample Space

Sometimes we are interested in infinite sample spaces, e.g.

A potentially infinite sequence of coin flips
A number from [0, 1] uniformly at random

The probability of a “leaf” in such a space is often 0.
One can define probability of events in fairly intuitive ways, satisfying
the following axioms of probability:

1 ∀ “measurable” event A, Pr[A] ≥ 0.
2 Pr[Ω] = 1.
3 for countably many disjoint events A1,A2, · · · ,Pr[diAi ] =

∑
i Pr[(]Ai ).

It takes measure theory to make things rigorous. We will make use of
such probability spaces in very few occasions in this course.
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Random contention resolution

Contention Resolution

Set up: one server, n tasks

Tasks all want to use the server for a time step (we have discrete time
steps)
At each time step, each task may request the server:

If exactly one task requests the server, the task gets served successfully;
If more than one tasks request the server, clash and no task gets served
in that step (but later steps are not affected).

We would like that all tasks to get served fast.
Trivial if the tasks can agree on some ordering and requests the service
one by one.
Problem: The tasks cannot talk with each other and there is no
central authority.
Randomized strategy: In each time step, each task requests with
some small probability p, independently.
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Random contention resolution

Initial analysis

Let A[i , t] denote the event that task i sends a request at time t.
Then Pr[A[i , t]] = p.

Then A[i , t] is the event that task i does not request service at time t,
and Pr[A[i , t]] = 1− p.
Let S [i , t] denote the event that task i sends a request at time t and
gets served, then

Pr [S [i , t]] = Pr

A[i , t] ∩
⋂
j 6=i

A[j , t]

 = p(1− p)n−1.

The last equality comes from independence.
To maximize Pr[S [i , t]], set p = 1/n.
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Random contention resolution

Rate of success at each time step

We set p to maximize Pr[S [i , t]] to 1
n (1− 1

n )n−1. How good is this?

Proposition
1 The function (1− 1

n )n converges monotonically from 1
4 up to 1

e as n
increases from 2.

2 The function (1− 1
n )n−1 converges monotonically from 1

2 down to 1
e

as n increases from 2.

So 1/(en) ≤ Pr[S [i , t]] ≤ 1/(2n). Therefore Pr[S [i , t]] is asymtotically
Θ(1/n).
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Random contention resolution

Waiting time for a particular task to succeed

In each round, task i succeeds with probability Pr[S [i , t]]. Roughly
what is the waiting time for task i to succeed (for the first time)?

Answers to “roughly what is X ” where X is a random quantity:
Give the expectation of X (think of it as the average): later today
Give a range [a, b], and show that X is in [a, b] with “high probability”:
today
Remark: often, the two give answers that are close. Usually, the
random quantity concentrates around its expectation. Tail bounds
a.k.a. Concentration inequalities are used to show how fast this
happens.

Probability with which task i does not succeed in the first t steps:

Pr
[
∩tr=1S [i , r ]

]
=

t∏
r=1

[1− Pr [S [i , r ]]] =

[
1− 1

n

(
1− 1

n

)n−1
]t

.
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Random contention resolution

Waiting time for a particular task to succeed

Probability that a task fails in the first t steps: [1− 1
n (1− 1

n )n−1]t .

We’d like to upper bound this probability:

Pr
[
∩tr=1S [i , r ]

]
≤
[
1− 1

en

]t
=

[
1− 1

en

]en· t
en

≤ e−t/en.

Setting t to be enc ln n for some c > 0, the probability of failure for
the first t steps is at most n−c , which vanishes as n grows.
Big picture (useful rough estimations): if we have a biased coin that
gives Heads with probability 1/k :

In about k independent tosses, one “expects” to see a Heads;
However, with constant probability, a Heads doesn’t show in k tosses;
But if one tosses the coin Θ(k log k) times, the probability that no
Heads shows up quickly tends to 0.
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the first t steps is at most n−c , which vanishes as n grows.

Big picture (useful rough estimations): if we have a biased coin that
gives Heads with probability 1/k :

In about k independent tosses, one “expects” to see a Heads;
However, with constant probability, a Heads doesn’t show in k tosses;
But if one tosses the coin Θ(k log k) times, the probability that no
Heads shows up quickly tends to 0.
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Random contention resolution

Waiting time for all tasks to succeed

Let F [i , t] denote the event that task i fails in the first t steps, we
have shown Pr[F [i , t]] ≤ e−t/en ≤ n−c for t = den · c ln ne.

The event that some task keeps failing in the first t steps is then
∪ni=1F [i , t].

By the union bound, we have

Pr [∪ni=1F [i , t]] ≤
n∑

i=1

e−t/en = ne−
t
en .

So for t = d2en ln ne, this is at most 1
n .
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Random contention resolution

Birthday Paradox

We currently have 35 students in this class. Let’s assume their
birthdays are independently distributed uniformly throughout the year,
say, from 1 to 365.
If you were to bet, would you bet that some pair of students have the
same birthday or not?
The probability that no two among n students have the same birthday
is
∏n−1

i=1 (1− i
365).

A useful upper bound: for x ∈ (0, 1), 1− x < e−x . So the above
probability is at most

∏n−1
i=1 e−i/365 = e−n(n−1)/730.

As long as e−n(n−1)/730 < 1
2 , i.e., n ≥ 23, you should bet that some

pair of students have the same birthday.
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