Skip List

Learning Goals

@ Understand the design idea of skip lists

e Carry out more involved probabilistic runtime analysis using Chernoff
bound and union bound

@ Understand the idea of SkipNet in Peer-to-Peer systems

Skip List

@ Problem with storing ordered data with linked list: FIND takes O(n)
time.

Skip List

@ Problem with storing ordered data with linked list: FIND takes O(n)
time.

@ Imagine building faster links among the nodes:
o At the bottom level Ly, we have the original linked list, sorted;

Skip List

@ Problem with storing ordered data with linked list: FIND takes O(n)
time.
@ Imagine building faster links among the nodes:

o At the bottom level Ly, we have the original linked list, sorted;
e One level above, at L1, we have a linked list storing every other node,
also sorted, with | n/2] nodes;

Skip List

@ Problem with storing ordered data with linked list: FIND takes O(n)
time.
@ Imagine building faster links among the nodes:

o At the bottom level Ly, we have the original linked list, sorted;

e One level above, at L1, we have a linked list storing every other node,
also sorted, with | n/2] nodes;

o One level above, at L,, we have a linked list storing every four node from
Lo, or every other node from Ly, also sorted, with |n/4| nodes, etc..

@ Each copy of the node in L; stores pointers to its copies in Lj_q and Lj14
(if they exist), and also the nodes the precede and follow it in L;.

Skip List: Illustration

head
h=3 m None
h=2 |None = 12 None

S oy R
h=o [None|+| 2 f+ 5 b 8 [+ 12 |+ 15 |> none
¥ v v I v v

None None None None None None

Image credit: Mike Lam at James Madison University

FIND in Skip List

e Now FInD takes time O(log n).
o The highest level is Ly, where H = [log n].

FIND in Skip List

e Now FInD takes time O(log n).

o The highest level is Ly, where H = [log n].
e To find a key x, first walk in Ly as far as we can, finding the largest node
whose key is still less than x;

FIND in Skip List

e Now FInD takes time O(log n).
o The highest level is Ly, where H = [log n].
o To find a key x, first walk in Ly as far as we can, finding the largest node
whose key is still less than x;
e Then walk down one level from that copy,and continue walking till we
find again the node in level Ly_; with the largest key that is still smaller
than x;

FIND in Skip List

e Now FInD takes time O(log n).

o The highest level is Ly, where H = [log n].

o To find a key x, first walk in Ly as far as we can, finding the largest node
whose key is still less than x;

e Then walk down one level from that copy,and continue walking till we
find again the node in level Ly_; with the largest key that is still smaller
than x;

o Repeat, until we reach the node with x in level L.

@ In actual implementation, we may store only the keys in levels other
than Ly, and store the actual content only in nodes of L.

FIND in Skip List

e Now FInD takes time O(log n).

o The highest level is Ly, where H = [log n].

o To find a key x, first walk in Ly as far as we can, finding the largest node
whose key is still less than x;

e Then walk down one level from that copy,and continue walking till we
find again the node in level Ly_; with the largest key that is still smaller
than x;

o Repeat, until we reach the node with x in level L.

@ In actual implementation, we may store only the keys in levels other
than Ly, and store the actual content only in nodes of L.

@ The problem with this data structure is that INSERT and DELETE are
very combersome.

Skip List with Randomization

@ Idea: Use randomization to construct the upper levels.

Skip List with Randomization

@ Idea: Use randomization to construct the upper levels.

e When we insert a new node, after we find its position in Ly and inserting
it there, we toss a coin, and with probability % insert a copy in Ly,
otherwise stop;

Skip List with Randomization

@ Idea: Use randomization to construct the upper levels.

e When we insert a new node, after we find its position in Ly and inserting
it there, we toss a coin, and with probability % insert a copy in Ly,
otherwise stop;

o If we made a copy in Ly, then toss another coin, insert with probability %
a copy to level Ly, etc.

Skip List with Randomization

@ Idea: Use randomization to construct the upper levels.

e When we insert a new node, after we find its position in Ly and inserting
it there, we toss a coin, and with probability % insert a copy in Ly,
otherwise stop;

o If we made a copy in Ly, then toss another coin, insert with probability %
a copy to level Ly, etc.

@ The expected number of copies we insert for each node is 2.

Skip List with Randomization

@ Idea: Use randomization to construct the upper levels.

e When we insert a new node, after we find its position in Ly and inserting
it there, we toss a coin, and with probability % insert a copy in Ly,
otherwise stop;

o If we made a copy in Ly, then toss another coin, insert with probability %
a copy to level Ly, etc.

@ The expected number of copies we insert for each node is 2.

@ We just need to show that this randomized construction yields similar
performance for FIND as the previous deterministic structure.

Skip List

Randomized Skip List: ILlustration

.

YYY Y

[=lrlelely]

[y 1]

4]

Image credit: Wikipedia

=

6]

=

October 22, 2021

6/10

Analysis of FIND on Skip List

@ There are two reasons that a FIND can take long: there can be too many
layers, and the find takes too many horizontal steps.

@ Let’s first bound the number of levels H.

Analysis of FIND on Skip List

@ There are two reasons that a FIND can take long: there can be too many
layers, and the find takes too many horizontal steps.

@ Let’s first bound the number of levels H.

@ The probability that a particular node has a copy at a level at least as
high as H is 271

Analysis of FIND on Skip List

@ There are two reasons that a FIND can take long: there can be too many
layers, and the find takes too many horizontal steps.

@ Let’s first bound the number of levels H.

@ The probability that a particular node has a copy at a level at least as
high as H is 271

@ By the union bound, when m—H< %, i.e., H> 3log n, with probability
no more than %, there are no more than H levels.

Analysis of FIND on Skip List

@ There are two reasons that a FIND can take long: there can be too many
layers, and the find takes too many horizontal steps.

@ Let’s first bound the number of levels H.

@ The probability that a particular node has a copy at a level at least as
high as H is 271

@ By the union bound, when m—H< %, i.e., H> 3log n, with probability
no more than %, there are no more than H levels.

Skip List

Bounding the number of horizontal steps

o For a fixed node x, we try to bound the number of steps it takes to
reach x via a search path from the top level.

8/10

Skip List

Bounding the number of horizontal steps

o For a fixed node x, we try to bound the number of steps it takes to
reach x via a search path from the top level.

@ It turns out easier to think about the problem when we think of the
path from x up to the top level.

Skip List

Bounding the number of horizontal steps

o For a fixed node x, we try to bound the number of steps it takes to
reach x via a search path from the top level.

@ It turns out easier to think about the problem when we think of the
path from x up to the top level.
o At every step, we go either left or up

Skip List

Bounding the number of horizontal steps

o For a fixed node x, we try to bound the number of steps it takes to
reach x via a search path from the top level.

@ It turns out easier to think about the problem when we think of the
path from x up to the top level.

o At every step, we go either left or up

o If the current node has a copy in the level above, we step up: this
happens with probability %;

Skip List

Bounding the number of horizontal steps

o For a fixed node x, we try to bound the number of steps it takes to
reach x via a search path from the top level.
@ It turns out easier to think about the problem when we think of the
path from x up to the top level.
o At every step, we go either left or up
o If the current node has a copy in the level above, we step up: this
happens with probability %;
o Otherwise, we step left.

Skip List

Bounding the number of horizontal steps

o For a fixed node x, we try to bound the number of steps it takes to
reach x via a search path from the top level.
@ It turns out easier to think about the problem when we think of the

path from x up to the top level.
o At every step, we go either left or up
o If the current node has a copy in the level above, we step up: this
happens with probability %;
o Otherwise, we step left.

@ Once we reach level H, we declare success.

Skip List

Bounding the number of horizontal steps

o For a fixed node x, we try to bound the number of steps it takes to
reach x via a search path from the top level.

@ It turns out easier to think about the problem when we think of the
path from x up to the top level.

o At every step, we go either left or up

o If the current node has a copy in the level above, we step up: this
happens with probability %;
o Otherwise, we step left.

@ Once we reach level H, we declare success.

@ The problem becomes: what’s the probability that, after taking at least
X steps, we haven’t made H upward steps?

Apply Chernoff Bound

Take X to be, say, 36logn, and let Y;, i = 1,--- | X, be the indicator variable
that the i-th step is upward. Let Y be), Vi.

Skip List

Apply Chernoff Bound

Take X to be, say, 36logn, and let Y;, i = 1,--- | X, be the indicator variable
that the i-th step is upward. Let Y be), Vi.

By Chernoff bound,

Pr[Y <3logn] =Pr[Y <E[Y] — 15log n]

151 2 1

2-36logn n?’

October 22, 2021 9/10

Skip List

Apply Chernoff Bound

Take X to be, say, 36logn, and let Y;, i = 1,--- | X, be the indicator variable
that the i-th step is upward. Let Y be), Vi.

By Chernoff bound,

Pr[Y <3logn] =Pr[Y <E[Y] — 15log n]

151 2 1

2-36logn n?’

This analysis was performed for a specific node x. By the union bound, with

probability at least 1 — %, no node takes more than 36 log n steps to reach
level H.

October 22, 2021 9/10

Apply Chernoff Bound

Take X to be, say, 36logn, and let Y;, i = 1,--- | X, be the indicator variable
that the i-th step is upward. Let Y be), Vi.
By Chernoff bound,

Pr[Y <3logn] =Pr[Y <E[Y] — 15log n]
151 2 1

2-36logn n?

This analysis was performed for a specific node x. By the union bound, with
probability at least 1 — %, no node takes more than 36 log n steps to reach
level H.

Now by a final union bound, with probability at least 1 — %, there are no
nodes beyond level L3 o5 , and every node reaches that level within 36 log n
steps. So FIND takes time O(log n) for every node with high probability.

Application in Distributed Systems: Peer-to-Peer Systems

@ A peer-to-peer (P2P) system has n nodes, each maintaining a host of
connections to its neighbors, and none having global knowledge.

Application in Distributed Systems: Peer-to-Peer Systems
@ A peer-to-peer (P2P) system has n nodes, each maintaining a host of

connections to its neighbors, and none having global knowledge.
o Keeping everything fully connected is way too expensive.

Bops B

A simulation of a peer-to-peer network

Image credit: mysterium.network

] October 22,2021 10/10

Application in Distributed Systems: Peer-to-Peer Systems

@ A peer-to-peer (P2P) system has n nodes, each maintaining a host of
connections to its neighbors, and none having global knowledge.
o Keeping everything fully connected is way too expensive.

Bops B

A simulation of a peer-to-peer network

Image credit: mysterium.network

@ A request of a node to communicate with another can take O(n) time
to traverse the network if we are not careful.

] October 22,2021 10/10

Idea of SkipNet

@ We can use the idea of skip list to organize nodes in a P2P network.

Idea of SkipNet

@ We can use the idea of skip list to organize nodes in a P2P network.

e Give each node an identifier, similar to the key value of a node in the
database.

Idea of SkipNet

@ We can use the idea of skip list to organize nodes in a P2P network.

e Give each node an identifier, similar to the key value of a node in the
database.

e Given each node a bitstring of length O(log n).

Idea of SkipNet

@ We can use the idea of skip list to organize nodes in a P2P network.

e Give each node an identifier, similar to the key value of a node in the
database.

e Given each node a bitstring of length O(log n).

@ There are multiple levels. Nodes sharing the same prefixes of length k
are connected by an (ordered) linked list on level k.

Idea of SkipNet

@ We can use the idea of skip list to organize nodes in a P2P network.

e Give each node an identifier, similar to the key value of a node in the
database.

e Given each node a bitstring of length O(log n).

@ There are multiple levels. Nodes sharing the same prefixes of length k
are connected by an (ordered) linked list on level k.

@ The resulting structure is similar to a skip list, except that on each level
there are multiple lists.

Idea of SkipNet

@ We can use the idea of skip list to organize nodes in a P2P network.

e Give each node an identifier, similar to the key value of a node in the
database.

e Given each node a bitstring of length O(log n).

@ There are multiple levels. Nodes sharing the same prefixes of length k
are connected by an (ordered) linked list on level k.

@ The resulting structure is similar to a skip list, except that on each level
there are multiple lists.

@ To access a node, we go as far as possible on a high level, then descend
and continue.

	Skip List

