Learning Goals

@ State the implementation of the Quicksort algorithm
@ Define Las Vegas and Monte Carlo algorithms

@ Analyze the expected running time of a Las Vegas algorithm using
linearity of expectation

. T

Setup and the algorithm

@ Input: A set S of n integers ay, ..., ap.

@ Output: Sorted array of the n integers in increasing order.

. T

Setup and the algorithm

@ Input: A set S of n integers ay, ..., ap.
@ Output: Sorted array of the n integers in increasing order.

@ Recall: Deterministic algorithms: Merge Sort (divide and conquor,
running time O(nlog n).

. e

2/8

Setup and the algorithm

@ Input: A set S of n integers ay, ..., ap.
@ Output: Sorted array of the n integers in increasing order.
@ Recall: Deterministic algorithms: Merge Sort (divide and conquor,

running time O(nlog n).
@ Recall lower bound: no deterministic algorithm can make o(nlog n)
comparisons in the worst case.

. T

Setup and the algorithm

@ Input: A set S of n integers ay, ..., ap.

@ Output: Sorted array of the n integers in increasing order.

@ Recall: Deterministic algorithms: Merge Sort (divide and conquor,
running time O(nlog n).

@ Recall lower bound: no deterministic algorithm can make o(nlog n)
comparisons in the worst case.

@ One of the best known sorting algorithm — Quicksort(S): If |S| < 3,
return sorted S. Otherwise, pick an element a; uniformly at random
from S, form two sets: St :={a;:a; > a;} and S~ = {a; : 3; < a;}.
Return Quicksort(S™), aj, Quicksort(S™).

. T

Categorization of Randomized Algorithms

@ A randomized algorithm is simply an algorithm with access to random
coins.

. T

Categorization of Randomized Algorithms

@ A randomized algorithm is simply an algorithm with access to random
coins.

@ Two categories of randomized algorithms:

. T

Categorization of Randomized Algorithms

@ A randomized algorithm is simply an algorithm with access to random
coins.

@ Two categories of randomized algorithms:

o A Las Vegas algorithm always terminates with a correct solution; its
running time is a random variable.

. T

Categorization of Randomized Algorithms

@ A randomized algorithm is simply an algorithm with access to random
coins.

@ Two categories of randomized algorithms:
o A Las Vegas algorithm always terminates with a correct solution; its
running time is a random variable.
e A Monte Carlo algorithm returns a correct solution only
probabilistically; its running time may or may not be a random variable.

. T

Categorization of Randomized Algorithms

@ A randomized algorithm is simply an algorithm with access to random
coins.

@ Two categories of randomized algorithms:
o A Las Vegas algorithm always terminates with a correct solution; its
running time is a random variable.
o A Monte Carlo algorithm returns a correct solution only
probabilistically; its running time may or may not be a random variable.
@ Later in the semester we will also encounter algorithms that give
approximations, and we reason about the quality of the
approximations in a probabilistic manner.

. oo 0B EE | Sy

Analysis of Quicksort

The expected running time of Quicksort is O(nlog n).

. T

Analysis of Quicksort

The expected running time of Quicksort is O(nlog n).

@ Observation: Forming ST and S~ altogether takes O(n) time.

. T

Analysis of Quicksort

The expected running time of Quicksort is O(nlog n).

@ Observation: Forming ST and S~ altogether takes O(n) time.

@ Intuition: if a; always roughly cuts S in the middle, then the running
time is roughly T(n) = 2T(n/2) + O(n) = T(n) = O(nlog n).

. T

Analysis of Quicksort

The expected running time of Quicksort is O(nlog n).

@ Observation: Forming ST and S~ altogether takes O(n) time.

@ Intuition: if a; always roughly cuts S in the middle, then the running
time is roughly T(n) = 2T(n/2) + O(n) = T(n) = O(nlog n).
To simplify the presentation, we analyze a variant of Quicksort:

o ModifiedQuicksort(S):

o If |S| <3, return sorted S.

o Pick an element a; uniformly at random from S, form two sets:
St:={aj:aj>a}and S~ ={a;:a; < a;}. If |S7| <] or
|ST| < 4. repeat (i.e., pick another a; independently at random).

o Output ModifiedQuicksort(S™), a;, ModifiedQuicksort(S™).

. T

Analysis

First thing: how many a;'s do we have to try, in expectation, to have
pIsTI<

. YT

Analysis

First thing: how many a;'s do we have to try, in expectation, to have
pIsTI<

@ Let X be the number of attempts till we succeed.

. YT

Analysis

First thing: how many a;'s do we have to try, in expectation, to have
pIsTI<

@ Let X be the number of attempts till we succeed.

@ Each attempt succeds with probability %

. e

5/8

Analysis

First thing: how many a;'s do we have to try, in expectation, to have
~1 <3
ST
@ Let X be the number of attempts till we succeed.

@ Each attempt succeds with probability %
e So E[X]=2.

. e

5/8

Analysis

Second: How do we put together the recursion?

. oo 0 EE | G

Analysis

Second: How do we put together the recursion?
What doesn't work: Since both |S~| and |ST| are < 37,

4 4 42

2
T(n)§2T(3n)+2n§2<n+2-3"+4-3”

+)

September 18, 2021

6/8

Analysis

Second: How do we put together the recursion?
What doesn't work: Since both |S~| and |ST| are < 37,

3n 3n 32n
T(")§2T(4)+2n§2<n+2-4+4-42+---).

This analysis is wasteful and the bound too loose. We should be more
careful.

. e

6/8

Analysis

Second: How do we put together the recursion?
What doesn't work: Since both |S~| and |ST| are < 37,

3n 3n 32n
T(")§2T(4)+2n§2<n+2-4+4-42+---).

This analysis is wasteful and the bound too loose. We should be more
careful.

@ A subproblem is said to be type j if the size of the set it considers is in

(n(3Y*, (31

. oo 0 EE | G

Analysis

Second: How do we put together the recursion?
What doesn't work: Since both |S~| and |ST| are < 37,

3n 3n 32n
T(")§2T(4)+2n§2<n+2-4+4-42+---).

This analysis is wasteful and the bound too loose. We should be more
careful.

@ A subproblem is said to be type j if the size of the set it considers is in
(n(3Y*,n(3Y].

@ The original problem is of type 0.

. oo 0 EE | G

Analysis

Second: How do we put together the recursion?
What doesn’t work: Since both [S~| and |S*| are < 32,

3n 3n 32n
T(")§2T(4)+2n§2<n+2-4+4-42+---).

This analysis is wasteful and the bound too loose. We should be more
careful.

@ A subproblem is said to be type j if the size of the set it considers is in
(n(3Y*,n(3Y].
@ The original problem is of type 0.

o Key observation: after each recursion, the subproblems newly
generated are disjoint, and their types are strictly higher.

. oo 0 EE | G

Analysis

Second: How do we put together the recursion?
What doesn’t work: Since both [S~| and |S*| are < 32,

3n 3n 32n
T(")§2T(4)+2n§2<n+2-4+4-42+---).

This analysis is wasteful and the bound too loose. We should be more
careful.
@ A subproblem is said to be type j if the size of the set it considers is in
(n(Y " n(3Y].
@ The original problem is of type 0.
o Key observation: after each recursion, the subproblems newly
generated are disjoint, and their types are strictly higher.

@ All subproblems of the same type must be disjoint. So the number of
type j subproblems created throughout the algorithm is < (%)”1.

. e T

Final steps

e Total time spent on type j subproblems: O(n).

. T

Final steps

e Total time spent on type j subproblems: O(n).
e More concretely, there are k subproblems of type j, where k < (3}

. T

Final steps

e Total time spent on type j subproblems: O(n).

e More concretely, there are k subproblems of type j, where k < (3}
o Let X; denote the number of attempts in the i-th subproblem of type j,
then E[X;] = 2.

. T

Final steps

e Total time spent on type j subproblems: O(n).
e More concretely, there are k subproblems of type j, where k < (3}
o Let X; denote the number of attempts in the i-th subproblem of type j,
then E[X;] = 2.
o Total running time for type j subproblems is at most:

é (j)J nE[X)] < (;‘)m . (i)J n2= 0(n).

where we used linearity of expectation.

. T

Final steps

e Total time spent on type j subproblems: O(n).
e More concretely, there are k subproblems of type j, where k < (3}
o Let X; denote the number of attempts in the i-th subproblem of type j,
then E[X;] = 2.
o Total running time for type j subproblems is at most:

é (j)J nE[X)] < (;‘)m . (i)J n2= 0(n).

where we used linearity of expectation.

@ Number of types: < loga n.
3

. T

Final steps

e Total time spent on type j subproblems: O(n).
e More concretely, there are k subproblems of type j, where k < (3}
o Let X; denote the number of attempts in the i-th subproblem of type j,
then E[X;] = 2.
o Total running time for type j subproblems is at most:

é (j)J nE[X)] < (;‘)m . (i)J n2= 0(n).

where we used linearity of expectation.

@ Number of types: < loga n.
3

e Total running time O(nlog n).

. T

Final steps

e Total time spent on type j subproblems: O(n).
e More concretely, there are k subproblems of type j, where k < (3}
o Let X; denote the number of attempts in the i-th subproblem of type j,
then E[X;] = 2.
o Total running time for type j subproblems is at most:

é (j)J nE[X)] < (;‘)m . (i)J n2= 0(n).

where we used linearity of expectation.

@ Number of types: < loga n.
3

e Total running time O(nlog n).

@ See reading material for a direct analysis of Quicksort.

. T

Final steps

e Total time spent on type j subproblems: O(n).

e More concretely, there are k subproblems of type j, where k < (3}

o Let X; denote the number of attempts in the i-th subproblem of type j,
then E[X;] = 2.

o Total running time for type j subproblems is at most:

é (j)J nE[X)] < (;‘)m . (i)J n2= 0(n).

where we used linearity of expectation.

Number of types: < loga n.
3

Total running time O(nlog n).

(]

See reading material for a direct analysis of Quicksort.
Later in the semester we'll show that Quicksort in fact runs in time
O(nlog n) also with high probability.

. e T

An Alternative Analysis

@ In class we discussed an alternative analysis.

. T

An Alternative Analysis

@ In class we discussed an alternative analysis.

o Instead of categorizing the subproblems by the lengths of their inputs,
we may categorize by their distances from the original problem.

. T

An Alternative Analysis

@ In class we discussed an alternative analysis.

o Instead of categorizing the subproblems by the lengths of their inputs,
we may categorize by their distances from the original problem.

@ Level 1 is the original problem; level 1 include the two subproblems
recursed from it; level 2 include the 4 subproblems generated by level
1 problems, etc..

. T

An Alternative Analysis

@ In class we discussed an alternative analysis.

o Instead of categorizing the subproblems by the lengths of their inputs,
we may categorize by their distances from the original problem.

@ Level 1 is the original problem; level 1 include the two subproblems
recursed from it; level 2 include the 4 subproblems generated by level
1 problems, etc..

@ The key observation is that the total expected work we do on each
level is O(n), because all these problems are disjoint.

. T

An Alternative Analysis

@ In class we discussed an alternative analysis.

o Instead of categorizing the subproblems by the lengths of their inputs,
we may categorize by their distances from the original problem.

@ Level 1 is the original problem; level 1 include the two subproblems
recursed from it; level 2 include the 4 subproblems generated by level
1 problems, etc..

@ The key observation is that the total expected work we do on each
level is O(n), because all these problems are disjoint.

@ The number of levels is O(log n). So the total work we do in
expectation is O(nlog n).

. T

	Quick Sort

