Learning Goals

- State the implementation of the Quicksort algorithm
- Define Las Vegas and Monte Carlo algorithms
- Analyze the expected running time of a Las Vegas algorithm using linearity of expectation

Setup and the algorithm

- Input: A set S of n integers a_{1}, \ldots, a_{n}.
- Output: Sorted array of the n integers in increasing order.

Setup and the algorithm

- Input: A set S of n integers a_{1}, \ldots, a_{n}.
- Output: Sorted array of the n integers in increasing order.
- Recall: Deterministic algorithms: Merge Sort (divide and conquor, running time $O(n \log n)$.

Setup and the algorithm

- Input: A set S of n integers a_{1}, \ldots, a_{n}.
- Output: Sorted array of the n integers in increasing order.
- Recall: Deterministic algorithms: Merge Sort (divide and conquor, running time $O(n \log n)$.
- Recall lower bound: no deterministic algorithm can make o($n \log n)$ comparisons in the worst case.

Setup and the algorithm

- Input: A set S of n integers a_{1}, \ldots, a_{n}.
- Output: Sorted array of the n integers in increasing order.
- Recall: Deterministic algorithms: Merge Sort (divide and conquor, running time $O(n \log n)$.
- Recall lower bound: no deterministic algorithm can make o($n \log n$) comparisons in the worst case.
- One of the best known sorting algorithm - Quicksort(S): If $|S| \leq 3$, return sorted S. Otherwise, pick an element a_{i} uniformly at random from S, form two sets: $S^{+}:=\left\{a_{j}: a_{j}>a_{i}\right\}$ and $S^{-}:=\left\{a_{j}: a_{j}<a_{i}\right\}$. Return Quicksort $\left(S^{-}\right), a_{j}$, Quicksort $\left(S^{+}\right)$.

Categorization of Randomized Algorithms

- A randomized algorithm is simply an algorithm with access to random coins.

Categorization of Randomized Algorithms

- A randomized algorithm is simply an algorithm with access to random coins.
- Two categories of randomized algorithms:

Categorization of Randomized Algorithms

- A randomized algorithm is simply an algorithm with access to random coins.
- Two categories of randomized algorithms:
- A Las Vegas algorithm always terminates with a correct solution; its running time is a random variable.

Categorization of Randomized Algorithms

- A randomized algorithm is simply an algorithm with access to random coins.
- Two categories of randomized algorithms:
- A Las Vegas algorithm always terminates with a correct solution; its running time is a random variable.
- A Monte Carlo algorithm returns a correct solution only probabilistically; its running time may or may not be a random variable.

Categorization of Randomized Algorithms

- A randomized algorithm is simply an algorithm with access to random coins.
- Two categories of randomized algorithms:
- A Las Vegas algorithm always terminates with a correct solution; its running time is a random variable.
- A Monte Carlo algorithm returns a correct solution only probabilistically; its running time may or may not be a random variable.
- Later in the semester we will also encounter algorithms that give approximations, and we reason about the quality of the approximations in a probabilistic manner.

Analysis of Quicksort

Theorem

The expected running time of Quicksort is $O(n \log n)$.

Analysis of Quicksort

Theorem

The expected running time of Quicksort is $O(n \log n)$.

- Observation: Forming S^{+}and S^{-}altogether takes $O(n)$ time.

Analysis of Quicksort

Theorem

The expected running time of Quicksort is $O(n \log n)$.

- Observation: Forming S^{+}and S^{-}altogether takes $O(n)$ time.
- Intuition: if a_{j} always roughly cuts S in the middle, then the running time is roughly $T(n) \approx 2 T(n / 2)+O(n) \Rightarrow T(n)=O(n \log n)$.

Analysis of Quicksort

Theorem

The expected running time of Quicksort is $O(n \log n)$.

- Observation: Forming S^{+}and S^{-}altogether takes $O(n)$ time.
- Intuition: if a_{j} always roughly cuts S in the middle, then the running time is roughly $T(n) \approx 2 T(n / 2)+O(n) \Rightarrow T(n)=O(n \log n)$.
To simplify the presentation, we analyze a variant of Quicksort:
- ModifiedQuicksort(S):
- If $|S| \leq 3$, return sorted S.
- Pick an element a_{i} uniformly at random from S, form two sets:

$$
S^{+}:=\left\{a_{j}: a_{j}>a_{i}\right\} \text { and } S^{-}:=\left\{a_{j}: a_{j}<a_{i}\right\} . \text { If }\left|S^{-}\right|<\frac{n}{4} \text { or }
$$ $\left|S^{+}\right|<\frac{n}{4}$, repeat (i.e., pick another a_{j} independently at random).

- Output ModifiedQuicksort($\left.S^{-}\right), a_{j}$, ModifiedQuicksort $\left(S^{+}\right)$.

Analysis

First thing: how many a_{j} 's do we have to try, in expectation, to have $\frac{n}{4} \leq\left|S^{-}\right| \leq \frac{3 n}{4} ?$

Analysis

First thing: how many a_{j} 's do we have to try, in expectation, to have $\frac{n}{4} \leq\left|S^{-}\right| \leq \frac{3 n}{4} ?$

- Let X be the number of attempts till we succeed.

Analysis

First thing: how many a_{j} 's do we have to try, in expectation, to have $\frac{n}{4} \leq\left|S^{-}\right| \leq \frac{3 n}{4} ?$

- Let X be the number of attempts till we succeed.
- Each attempt succeds with probability $\frac{1}{2}$.

Analysis

First thing: how many a_{j} 's do we have to try, in expectation, to have $\frac{n}{4} \leq\left|S^{-}\right| \leq \frac{3 n}{4} ?$

- Let X be the number of attempts till we succeed.
- Each attempt succeds with probability $\frac{1}{2}$.
- So $\mathrm{E}[X]=2$.

Analysis

Second: How do we put together the recursion?

Analysis

Second: How do we put together the recursion? What doesn't work: Since both $\left|S^{-}\right|$and $\left|S^{+}\right|$are $\leq \frac{3 n}{4}$,

$$
T(n) \leq 2 T\left(\frac{3 n}{4}\right)+2 n \leq 2\left(n+2 \cdot \frac{3 n}{4}+4 \cdot \frac{3^{2} n}{4^{2}}+\cdots\right)
$$

Analysis

Second: How do we put together the recursion? What doesn't work: Since both $\left|S^{-}\right|$and $\left|S^{+}\right|$are $\leq \frac{3 n}{4}$,

$$
T(n) \leq 2 T\left(\frac{3 n}{4}\right)+2 n \leq 2\left(n+2 \cdot \frac{3 n}{4}+4 \cdot \frac{3^{2} n}{4^{2}}+\cdots\right)
$$

This analysis is wasteful and the bound too loose. We should be more careful.

Analysis

Second: How do we put together the recursion? What doesn't work: Since both $\left|S^{-}\right|$and $\left|S^{+}\right|$are $\leq \frac{3 n}{4}$,

$$
T(n) \leq 2 T\left(\frac{3 n}{4}\right)+2 n \leq 2\left(n+2 \cdot \frac{3 n}{4}+4 \cdot \frac{3^{2} n}{4^{2}}+\cdots\right)
$$

This analysis is wasteful and the bound too loose. We should be more careful.

- A subproblem is said to be type j if the size of the set it considers is in $\left(n\left(\frac{3}{4}\right)^{j+1}, n\left(\frac{3}{4}\right)^{j}\right]$.

Analysis

Second: How do we put together the recursion?
What doesn't work: Since both $\left|S^{-}\right|$and $\left|S^{+}\right|$are $\leq \frac{3 n}{4}$,

$$
T(n) \leq 2 T\left(\frac{3 n}{4}\right)+2 n \leq 2\left(n+2 \cdot \frac{3 n}{4}+4 \cdot \frac{3^{2} n}{4^{2}}+\cdots\right)
$$

This analysis is wasteful and the bound too loose. We should be more careful.

- A subproblem is said to be type j if the size of the set it considers is in $\left(n\left(\frac{3}{4}\right)^{j+1}, n\left(\frac{3}{4}\right)^{j}\right]$.
- The original problem is of type 0 .

Analysis

Second: How do we put together the recursion?
What doesn't work: Since both $\left|S^{-}\right|$and $\left|S^{+}\right|$are $\leq \frac{3 n}{4}$,

$$
T(n) \leq 2 T\left(\frac{3 n}{4}\right)+2 n \leq 2\left(n+2 \cdot \frac{3 n}{4}+4 \cdot \frac{3^{2} n}{4^{2}}+\cdots\right)
$$

This analysis is wasteful and the bound too loose. We should be more careful.

- A subproblem is said to be type j if the size of the set it considers is in $\left(n\left(\frac{3}{4}\right)^{j+1}, n\left(\frac{3}{4}\right)^{j}\right]$.
- The original problem is of type 0 .
- Key observation: after each recursion, the subproblems newly generated are disjoint, and their types are strictly higher.

Analysis

Second: How do we put together the recursion?
What doesn't work: Since both $\left|S^{-}\right|$and $\left|S^{+}\right|$are $\leq \frac{3 n}{4}$,

$$
T(n) \leq 2 T\left(\frac{3 n}{4}\right)+2 n \leq 2\left(n+2 \cdot \frac{3 n}{4}+4 \cdot \frac{3^{2} n}{4^{2}}+\cdots\right) .
$$

This analysis is wasteful and the bound too loose. We should be more careful.

- A subproblem is said to be type j if the size of the set it considers is in $\left(n\left(\frac{3}{4}\right)^{j+1}, n\left(\frac{3}{4}\right)^{j}\right]$.
- The original problem is of type 0 .
- Key observation: after each recursion, the subproblems newly generated are disjoint, and their types are strictly higher.
- All subproblems of the same type must be disjoint. So the number of type j subproblems created throughout the algorithm is $\leq\left(\frac{4}{3}\right)^{j+1}$.

Final steps

- Total time spent on type j subproblems: $O(n)$.

Final steps

- Total time spent on type j subproblems: $O(n)$.
- More concretely, there are k subproblems of type j, where $k \leq\left(\frac{4}{3}\right)^{j+1}$.

Final steps

- Total time spent on type j subproblems: $O(n)$.
- More concretely, there are k subproblems of type j, where $k \leq\left(\frac{4}{3}\right)^{j+1}$.
- Let X_{i} denote the number of attempts in the i-th subproblem of type j, then $\mathrm{E}\left[X_{i}\right]=2$.

Final steps

- Total time spent on type j subproblems: $O(n)$.
- More concretely, there are k subproblems of type j, where $k \leq\left(\frac{4}{3}\right)^{j+1}$.
- Let X_{i} denote the number of attempts in the i-th subproblem of type j, then $\mathrm{E}\left[X_{i}\right]=2$.
- Total running time for type j subproblems is at most:

$$
\sum_{i=1}^{k}\left(\frac{3}{4}\right)^{j} n \mathrm{E}\left[X_{i}\right] \leq\left(\frac{4}{3}\right)^{j+1} \cdot\left(\frac{3}{4}\right)^{j} n \cdot 2=O(n)
$$

where we used linearity of expectation.

Final steps

- Total time spent on type j subproblems: $O(n)$.
- More concretely, there are k subproblems of type j, where $k \leq\left(\frac{4}{3}\right)^{j+1}$.
- Let X_{i} denote the number of attempts in the i-th subproblem of type j, then $\mathrm{E}\left[X_{i}\right]=2$.
- Total running time for type j subproblems is at most:

$$
\sum_{i=1}^{k}\left(\frac{3}{4}\right)^{j} n \mathrm{E}\left[X_{i}\right] \leq\left(\frac{4}{3}\right)^{j+1} \cdot\left(\frac{3}{4}\right)^{j} n \cdot 2=O(n)
$$

where we used linearity of expectation.

- Number of types: $\leq \log _{\frac{4}{3}} n$.

Final steps

- Total time spent on type j subproblems: $O(n)$.
- More concretely, there are k subproblems of type j, where $k \leq\left(\frac{4}{3}\right)^{j+1}$.
- Let X_{i} denote the number of attempts in the i-th subproblem of type j, then $\mathrm{E}\left[X_{i}\right]=2$.
- Total running time for type j subproblems is at most:

$$
\sum_{i=1}^{k}\left(\frac{3}{4}\right)^{j} n \mathrm{E}\left[X_{i}\right] \leq\left(\frac{4}{3}\right)^{j+1} \cdot\left(\frac{3}{4}\right)^{j} n \cdot 2=O(n)
$$

where we used linearity of expectation.

- Number of types: $\leq \log _{\frac{4}{3}} n$.
- Total running time $O(n \log n)$.

Final steps

- Total time spent on type j subproblems: $O(n)$.
- More concretely, there are k subproblems of type j, where $k \leq\left(\frac{4}{3}\right)^{j+1}$.
- Let X_{i} denote the number of attempts in the i-th subproblem of type j, then $\mathrm{E}\left[X_{i}\right]=2$.
- Total running time for type j subproblems is at most:

$$
\sum_{i=1}^{k}\left(\frac{3}{4}\right)^{j} n \mathrm{E}\left[X_{i}\right] \leq\left(\frac{4}{3}\right)^{j+1} \cdot\left(\frac{3}{4}\right)^{j} n \cdot 2=O(n)
$$

where we used linearity of expectation.

- Number of types: $\leq \log _{\frac{4}{3}} n$.
- Total running time $O(n \log n)$.
- See reading material for a direct analysis of Quicksort.

Final steps

- Total time spent on type j subproblems: $O(n)$.
- More concretely, there are k subproblems of type j, where $k \leq\left(\frac{4}{3}\right)^{j+1}$.
- Let X_{i} denote the number of attempts in the i-th subproblem of type j, then $\mathrm{E}\left[X_{i}\right]=2$.
- Total running time for type j subproblems is at most:

$$
\sum_{i=1}^{k}\left(\frac{3}{4}\right)^{j} n \mathrm{E}\left[X_{i}\right] \leq\left(\frac{4}{3}\right)^{j+1} \cdot\left(\frac{3}{4}\right)^{j} n \cdot 2=O(n)
$$

where we used linearity of expectation.

- Number of types: $\leq \log _{\frac{4}{3}} n$.
- Total running time $O(n \log n)$.
- See reading material for a direct analysis of Quicksort.
- Later in the semester we'll show that Quicksort in fact runs in time $O(n \log n)$ also with high probability.

An Alternative Analysis

- In class we discussed an alternative analysis.

An Alternative Analysis

- In class we discussed an alternative analysis.
- Instead of categorizing the subproblems by the lengths of their inputs, we may categorize by their distances from the original problem.

An Alternative Analysis

- In class we discussed an alternative analysis.
- Instead of categorizing the subproblems by the lengths of their inputs, we may categorize by their distances from the original problem.
- Level 1 is the original problem; level 1 include the two subproblems recursed from it; level 2 include the 4 subproblems generated by level 1 problems, etc..

An Alternative Analysis

- In class we discussed an alternative analysis.
- Instead of categorizing the subproblems by the lengths of their inputs, we may categorize by their distances from the original problem.
- Level 1 is the original problem; level 1 include the two subproblems recursed from it; level 2 include the 4 subproblems generated by level 1 problems, etc..
- The key observation is that the total expected work we do on each level is $O(n)$, because all these problems are disjoint.

An Alternative Analysis

- In class we discussed an alternative analysis.
- Instead of categorizing the subproblems by the lengths of their inputs, we may categorize by their distances from the original problem.
- Level 1 is the original problem; level 1 include the two subproblems recursed from it; level 2 include the 4 subproblems generated by level 1 problems, etc..
- The key observation is that the total expected work we do on each level is $O(n)$, because all these problems are disjoint.
- The number of levels is $O(\log n)$. So the total work we do in expectation is $O(n \log n)$.

