
Quick Sort

Learning Goals

State the implementation of the Quicksort algorithm
Define Las Vegas and Monte Carlo algorithms
Analyze the expected running time of a Las Vegas algorithm using
linearity of expectation
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Quick Sort

Setup and the algorithm

Input: A set S of n integers a1, . . . , an.
Output: Sorted array of the n integers in increasing order.

Recall: Deterministic algorithms: Merge Sort (divide and conquor,
running time O(n log n).
Recall lower bound: no deterministic algorithm can make o(n log n)
comparisons in the worst case.
One of the best known sorting algorithm — Quicksort(S): If |S | ≤ 3,
return sorted S . Otherwise, pick an element ai uniformly at random
from S , form two sets: S+ := {aj : aj > ai} and S− := {aj : aj < ai}.
Return Quicksort(S−), aj , Quicksort(S+).
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Quick Sort

Categorization of Randomized Algorithms

A randomized algorithm is simply an algorithm with access to random
coins.

Two categories of randomized algorithms:
A Las Vegas algorithm always terminates with a correct solution; its
running time is a random variable.
A Monte Carlo algorithm returns a correct solution only
probabilistically; its running time may or may not be a random variable.

Later in the semester we will also encounter algorithms that give
approximations, and we reason about the quality of the
approximations in a probabilistic manner.
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Quick Sort

Analysis of Quicksort

Theorem
The expected running time of Quicksort is O(n log n).

Observation: Forming S+ and S− altogether takes O(n) time.
Intuition: if aj always roughly cuts S in the middle, then the running
time is roughly T (n) ≈ 2T (n/2) + O(n)⇒ T (n) = O(n log n).

To simplify the presentation, we analyze a variant of Quicksort:
ModifiedQuicksort(S):

If |S | ≤ 3, return sorted S .
Pick an element ai uniformly at random from S , form two sets:
S+ := {aj : aj > ai} and S− := {aj : aj < ai}. If |S−| < n

4 or
|S+| < n

4 , repeat (i.e., pick another aj independently at random).
Output ModifiedQuicksort(S−), aj , ModifiedQuicksort(S+).
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Quick Sort

Analysis

First thing: how many aj ’s do we have to try, in expectation, to have
n
4 ≤ |S

−| ≤ 3n
4 ?

Let X be the number of attempts till we succeed.
Each attempt succeds with probability 1

2 .
So E[X ] = 2.
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Quick Sort

Analysis

Second: How do we put together the recursion?

What doesn’t work: Since both |S−| and |S+| are ≤ 3n
4 ,

T (n) ≤ 2T (
3n
4
) + 2n ≤ 2

(
n + 2 · 3n

4
+ 4 · 3

2n

42 + · · ·
)
.

This analysis is wasteful and the bound too loose. We should be more
careful.

A subproblem is said to be type j if the size of the set it considers is in
(n(3

4)
j+1, n(3

4)
j ].

The original problem is of type 0.
Key observation: after each recursion, the subproblems newly
generated are disjoint, and their types are strictly higher.
All subproblems of the same type must be disjoint. So the number of
type j subproblems created throughout the algorithm is ≤ (4

3)
j+1.
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Quick Sort

Final steps

Total time spent on type j subproblems: O(n).

More concretely, there are k subproblems of type j , where k ≤ ( 4
3 )

j+1.
Let Xi denote the number of attempts in the i-th subproblem of type j ,
then E[Xi ] = 2.
Total running time for type j subproblems is at most:

k∑
i=1

(
3
4

)j

n E [Xi ] ≤
(
4
3

)j+1

·
(
3
4

)j

n · 2 = O(n),

where we used linearity of expectation.

Number of types: ≤ log 4
3
n.

Total running time O(n log n).
See reading material for a direct analysis of Quicksort.
Later in the semester we’ll show that Quicksort in fact runs in time
O(n log n) also with high probability.
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Quick Sort

An Alternative Analysis

In class we discussed an alternative analysis.

Instead of categorizing the subproblems by the lengths of their inputs,
we may categorize by their distances from the original problem.
Level 1 is the original problem; level 1 include the two subproblems
recursed from it; level 2 include the 4 subproblems generated by level
1 problems, etc..
The key observation is that the total expected work we do on each
level is O(n), because all these problems are disjoint.
The number of levels is O(log n). So the total work we do in
expectation is O(n log n).
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