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Treaps

Treap: Motivating Ideas

A binary search tree’s shape depends on the arrival order of the nodes.

If the nodes 1, 2, . . . , n arrive in this increasing order and are added with

the naïve BST Insert, the resulting tree will be a linked list.

This is worst case. Intuitively, for less adversarial arrival orders, the tree

should be somewhat balanced.

In fact, it can be shown that, if the nodes arrive in a uniformly random

order, the expected height of the resulting BST is O(log n).
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Treaps

Proof Sketch for Randomly Built BST

Rough idea: it is natural to formulate the problem as a recursion, and

let hn be the random variable for the height of the BST formed by n
nodes when arrive in a random order.

If the first node (the root) is the i-th largest, then the height of the

resulting tree is 1 +max{hi−1, hn−i}.
When we take the expectation of max {hi−1, hn−i}, E[·] cannot be

moved into max {·}.
In fact, E[max {X1,X2}] ≥ max {E[X1],E[X2]}, a consequence of Jensen’s
inequality: EX [f (X)] ≥ f (EX [X ]) for convex f .

A common trick to deal with this is to say

E[max {hi−1, hn−i}] ≤ E[hi−1 + hn−i] = E[hi] + E[hn−i].

But here such a bound would be too loose.

If we expect hi and hn−i di�er not much, then we’d lose a factor of 2

each time we apply this.
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Proof Sketch for Randomly Built BST (Cont.)

Another clever idea: we can amplify the quantity we are interested in,

so that the estimation error caused by

E[max {hi−1, hn−i}] ≤ E[hi−1] + E[hn−i] is more negligible.

Let Hn be 2
hn

.

Then Hn =
1

n

∑n
i=1

2 ·max {Hi−1,Hn−i}.

E [Hn] ≤
2

n

n∑
i=1

E [Hi−1] + E [Hn−i] =
4

n

n−1∑
i=1

E [Hi] .

This is a tractable recursion, and one can show that E[Hn] is

polynomial in n. Therefore E[hn] is O(log n).
The la�er is another consequence of Jensen’s inequality:

2
E[hn] ≤ E[2hn ] = E[Hn] = O(nc).
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Treaps

Back to Reality..

However, we cannot assume the nodes arrive in uniformly random

order.

Idea: we sample a uniformly random arrival order π for the nodes, then

when an node arrives, we insist on treating it as if its position in the

arrival order is the one in π and not the one actually observed.

For example, if in π, node i arrives first, then we will make i the root of

the tree even if it arrives late. (We’ll see how to do so shortly.)

This does not require knowing the set of nodes before they arrive. When

a node arrives, we can just sample its position in π by choosing

uniformly at randm its position with respect to the node that have

arrived.

If we write π(i) on node i to denote its position in our hypothetical

ordering π, then the node with the smallest π(·) should be the root.

The same is true for each of the subtrees.

The resulting tree has the property that, for any two nodes x and y , if x
is an ancestor of y , then π(x) < π(y).
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Treaps

Back to Reality..

However, we cannot assume the nodes arrive in uniformly random

order.

Idea: we sample a uniformly random arrival order π for the nodes, then

when an node arrives, we insist on treating it as if its position in the

arrival order is the one in π and not the one actually observed.

For example, if in π, node i arrives first, then we will make i the root of

the tree even if it arrives late. (We’ll see how to do so shortly.)

This does not require knowing the set of nodes before they arrive. When

a node arrives, we can just sample its position in π by choosing

uniformly at randm its position with respect to the node that have

arrived.

If we write π(i) on node i to denote its position in our hypothetical

ordering π, then the node with the smallest π(·) should be the root.

The same is true for each of the subtrees.

The resulting tree has the property that, for any two nodes x and y , if x
is an ancestor of y , then π(x) < π(y).

October 7, 2021 5 / 14



Treaps

Back to Reality..

However, we cannot assume the nodes arrive in uniformly random

order.

Idea: we sample a uniformly random arrival order π for the nodes, then

when an node arrives, we insist on treating it as if its position in the

arrival order is the one in π and not the one actually observed.

For example, if in π, node i arrives first, then we will make i the root of

the tree even if it arrives late. (We’ll see how to do so shortly.)

This does not require knowing the set of nodes before they arrive. When

a node arrives, we can just sample its position in π by choosing

uniformly at randm its position with respect to the node that have

arrived.

If we write π(i) on node i to denote its position in our hypothetical

ordering π, then the node with the smallest π(·) should be the root.

The same is true for each of the subtrees.

The resulting tree has the property that, for any two nodes x and y , if x
is an ancestor of y , then π(x) < π(y).

October 7, 2021 5 / 14



Treaps

Back to Reality..

However, we cannot assume the nodes arrive in uniformly random

order.

Idea: we sample a uniformly random arrival order π for the nodes, then

when an node arrives, we insist on treating it as if its position in the

arrival order is the one in π and not the one actually observed.

For example, if in π, node i arrives first, then we will make i the root of

the tree even if it arrives late. (We’ll see how to do so shortly.)

This does not require knowing the set of nodes before they arrive. When

a node arrives, we can just sample its position in π by choosing

uniformly at randm its position with respect to the node that have

arrived.

If we write π(i) on node i to denote its position in our hypothetical

ordering π, then the node with the smallest π(·) should be the root.

The same is true for each of the subtrees.

The resulting tree has the property that, for any two nodes x and y , if x
is an ancestor of y , then π(x) < π(y).

October 7, 2021 5 / 14



Treaps

Back to Reality..

However, we cannot assume the nodes arrive in uniformly random

order.

Idea: we sample a uniformly random arrival order π for the nodes, then

when an node arrives, we insist on treating it as if its position in the

arrival order is the one in π and not the one actually observed.

For example, if in π, node i arrives first, then we will make i the root of

the tree even if it arrives late. (We’ll see how to do so shortly.)

This does not require knowing the set of nodes before they arrive. When

a node arrives, we can just sample its position in π by choosing

uniformly at randm its position with respect to the node that have

arrived.

If we write π(i) on node i to denote its position in our hypothetical

ordering π, then the node with the smallest π(·) should be the root.

The same is true for each of the subtrees.

The resulting tree has the property that, for any two nodes x and y , if x
is an ancestor of y , then π(x) < π(y).

October 7, 2021 5 / 14



Treaps

Back to Reality..

However, we cannot assume the nodes arrive in uniformly random

order.

Idea: we sample a uniformly random arrival order π for the nodes, then

when an node arrives, we insist on treating it as if its position in the

arrival order is the one in π and not the one actually observed.

For example, if in π, node i arrives first, then we will make i the root of

the tree even if it arrives late. (We’ll see how to do so shortly.)

This does not require knowing the set of nodes before they arrive. When

a node arrives, we can just sample its position in π by choosing

uniformly at randm its position with respect to the node that have

arrived.

If we write π(i) on node i to denote its position in our hypothetical

ordering π, then the node with the smallest π(·) should be the root.

The same is true for each of the subtrees.

The resulting tree has the property that, for any two nodes x and y , if x
is an ancestor of y , then π(x) < π(y).

October 7, 2021 5 / 14



Treaps

Back to Reality..

However, we cannot assume the nodes arrive in uniformly random

order.

Idea: we sample a uniformly random arrival order π for the nodes, then

when an node arrives, we insist on treating it as if its position in the

arrival order is the one in π and not the one actually observed.

For example, if in π, node i arrives first, then we will make i the root of

the tree even if it arrives late. (We’ll see how to do so shortly.)

This does not require knowing the set of nodes before they arrive. When

a node arrives, we can just sample its position in π by choosing

uniformly at randm its position with respect to the node that have

arrived.

If we write π(i) on node i to denote its position in our hypothetical

ordering π, then the node with the smallest π(·) should be the root.

The same is true for each of the subtrees.

The resulting tree has the property that, for any two nodes x and y , if x
is an ancestor of y , then π(x) < π(y).

October 7, 2021 5 / 14



Treaps

Heaps

A heap is a tree that satisfies the heap property: for any two nodes x
and y , if y is a child of x , then key(x) ≤ key(y).

It supports the operation of Extract-Max.

The algorithm HeapSort uses this for sorting.

Some graph algorithms use this, e.g. Dijkstra’s algorithm for shortest

path in graphs with nonnegative weights.

Insert(x): insert the new node as a leaf; this may violate the heap

property — let it “swim” up the tree by swapping it with the parent as

long as the heap property is still violated.

Side remark: It is o�en useful to implement a heap in an array. One

need not keep pointers for parents or children.
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Treaps

Heap: An Illustration
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Treaps

Treap

Idea to simulate random arrival order in building a BST: in addition to

the key values, give each node x a random priority value

π(x) ∈ [n] := {1, . . . , n}.

Maintain the BST property on the key values, and maintain the heap

property on the priority values.

The resulting data structure is a Treap.

Operation Find(x) is the same as in BST.

Operation Insert(x, r) first does the BST insertion using key values,

and then assigns a uniformly random priority value to the new node

and let it swim (using tree rotations!) to restore the heap property on

the priority values.
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Treaps

Treap: An Illustration
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Treaps

Analysis

The proof that a BST for n randomly arriving nodes has expected

height O(log n) in fact already implies Find and Insert both take

O(log n) time in expectation.

For Insert, the number of “swim” steps is bounded by the height of the

tree, which is again O(log n) in expectation.

An alternative, faster analysis of Insert(x): it su�ices to show that the

ordinary tree insertion puts x at a leaf of depth O(log n).
Walking down the path from the root to the leaf that is x :

v1 = r, v2, . . . , vh = x , let’s look at the size of the shrinking subtree

rooted at each vi .
Start with the root, the size of the (sub)tree is n.

One step down to node v2. Wlog let’s say v2 is the le� child of v1.

With probability
3

4
, the size of the subtree shrinks by a factor of

3

4
when

we go from v0 = r to v1.

The same reasoning applies at every step down the path.
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Treaps

Analysis of Insert Cont.

Let’s say a step down the path is successful if the size of the subtree

shrinks by a factor of
3

4
.

We can have at most log 4

3

n successful steps before the subtree

becomes a singleton.

For each step, the probability of it being successful is
3

4
, so in

expectation, we take
4

3
steps to have one successful step.

By linearity of expectation, we take at most
4

3
log 4

3

n steps to have

log 4

3
n successful ones.

So in expectation, the length of the path is no more than O(log n),
which also gives a bound on the running time of Insert.
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Treaps

Discussion

�estion

How do the two proofs compare?

In fact, one is stronger than the other.

The first shows that the expected maximum depth is O(log n).
The second shows that any path from the root down has length O(log n).
The first implies the second, but not the other way.

Example

Say there are a billion people, and we choose one of them uniformly at

random and give her a billion yuan. For any fixed person, the expected

amount she receives is 1. The expected maximum amount received is a

billion.

The di�erence can be important in algorithm analysis.
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Treaps

Discussion (Cont.)

Can we apply the same proof strategy to analyze �icksort?

Recall that we analyzed a variant of �icksort, which makes sure that

we proceed only if we have a “successful” step.

If we instead analyze the original �icksort, the way we analyze it will

require us to bound the height of the tree.

Recall that on each level the total work is bounded by O(n). The

algorithm terminates only if all the subproblems are of size O(1).

Here it is not enough to bound just the number of steps before the

partitioning reaches a particular element.
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Treaps

Concentration Inequality in View

It would be nice if we can have that, for each leaf, not only is the

expectation O(log n), but also with very high probability it is

concentrated around the expectation.

Then we can hopefully use union bound, and say with high probability

none of the leaves have more than O(log n) depths.

Concentration inequalities will allow us to have the “very high

probability” part. Concentration inequality followed by the union

bound is going to be a useful recipe.
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