Applications of Johnson-Lindenstrauss Transform

Learning Goals

Nearest Neighbor Search
e Data structures with Pre-processing

@ Reductions

Streaming model

¢, estimate in streaming model
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(Approximate) Nearest Neighbor Search

@ We are given n points xi,...,Xx, € R

o Task: Given a new point y € R, output x* = argmin; ||x; — y/|.

e Assume min;; ||x; — xj|| > 1, and max; ||x; — xj|| < R for some R > 0.
e Naive solution: go over all data points, in time O(nd).

e In an e-approximate Nearest Neighbor problem, given y € RY, we must
return x* € {x1,...,x,} such that ||y — x*|| < (14 €) min; ||y — xi||.
e Goal: running time O(d, log n, 1/¢).



Applications of Johnson-Lindenstrauss Transform

Point Location in Equal Balls

We reduce e-approximate nearest neighbor problem to the following
problem:

Definition (Point Location in Equal Balls, e-PLEB(r))

We are given n points x1, ..., x, € R and radius r. Let
B(x,r) = {z € RY: ||z — x|| < r} denote the Euclidean ball of radius r
around x. Given a query point y € RY:

o If there exists x; such that y € B(x;, r), we must return Yes and an x;
such that y € B(x;, (1+ €)r);

o If there exists no x; such that y € B(x;, (14 €)r), we must return No.

@ Otherwise, we can say either YEs or No. If we return YEs, we must also
return an x; such that y € B(x;, (1+ €)r).
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Reduction from e-NN to PLEB

Given an algorithm A that solves e-PLEB(r), we can solve e-NN with
O(log(log R/€)) calls to A.

Proof.

We can do a binary search with an e-PLEB(r) oracle and find an r* such
that E-PLEB(%) returns No and e-PLEB(r*) returns Yes with an x*. This
takes log(log,, . R) = O(Iog(k’%k)) calls.

We then know min; ||y — xj|| > {1, and |[y — x*[| < r*(1 + €). So

lly = x*I| < (14 €)* min; |y — x| < (1+ 2€) min; ||y — x| fore <1. [
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Plan of attack:
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dimensional space
Step 1: Brute-force algorithm for PLEB
@ Pre-processing:
o Divide R into small cuboids with side length %.

@ The idea is that the longest distance between any two points in a cube is er.
o Create a hash table. For each x;, and for each cuboid C that intersects
with B(x;, r), hash the pair (C, x;).
o Cis the key, x; is the satellite
@ Query:
e To query y, calculate the cuboid C to which y belongs; query key
value C.
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Step 1: Brute-force algorithm for PLEB
@ Pre-processing:
o Divide R into small cuboids with side length %.

@ The idea is that the longest distance between any two points in a cube is er.
o Create a hash table. For each x;, and for each cuboid C that intersects
with B(x;, r), hash the pair (C, x;).
o Cis the key, x; is the satellite
@ Query:
e To query y, calculate the cuboid C to which y belongs; query key
value C.
o If (C, x;) exists in the hash table, return Yes and x;; otherwise return No.
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Analysis of Pre-processing

@ Correctness:

o When we return Yes and x;, we know for some point y' € C,
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Analysis of Pre-processing

@ Correctness:
o When we return Yes and x;, we know for some point y' € C,
Ix =yl <rsollx=yll <|x=yI+|ly =yl <(1+e)r.
o When we return No, we know for all x;, ||y — x;|| > r (otherwise (C, x;)
should have been hashed).
@ Running time:
o Preprocessing: the volume of B(x;, r) is 20(9)r?/d9/2; the volume of each
cuboid is (%)d' so for each x; hash O(1)? cuboids.

o For even d, the volume of a radius r Euclidean ball is =~ r?

( )'
o Query: Computing C takes time O(d). Querying the hash table takes
time O(1).
e Query time is satisfactory, but pre-processing time is exponential in d!
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Step 2: Dimension Reduction

@ Using JL-transform, we can first map xq,...,x,to z;,...,z, € R!
where t = O(log n/€?).

e When querying y € RY, first map it to y’ € R! with the same random
matrix. With high probability,
(1 =ally = zll <lly = xill < (1 +€)lly’ — zl| for every i.

o Pre-processing now takes time O(1/¢)! = nlog(1/e)/€,

e Each query for PLEB takes time O(td) = O(%).

The whole picture for solving e-NN:

@ Preprocessing time:

L0og(1/9/€) . ¢ <'°g R) ,

e Query time: O(td) + O(log(lo%R)) - 0(¢).
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