Learning Goals

Definition of a Treap and its motivating ideas

Definition of a Heap

Implementation of Treap insertion

Analysis of the expected performance of a Treap



Treap: Motivating Ideas

@ A binary search tree’s shape depends on the arrival order of the nodes.



Treap: Motivating Ideas

@ A binary search tree’s shape depends on the arrival order of the nodes.

o If the nodes 1,2,..., narrive in this increasing order and are added with
the naive BST INSERT, the resulting tree will be a linked list.



Treap: Motivating Ideas

@ A binary search tree’s shape depends on the arrival order of the nodes.
o If the nodes 1,2,..., narrive in this increasing order and are added with
the naive BST INSERT, the resulting tree will be a linked list.
o Intuitively, for less adversarial arrival orders, the tree should be
somewhat balanced.
@ In fact, it can be shown that, if the nodes arrive in a uniformly random
order, the expected height of the resulting BST is O(log n).



Proof Sketch for Randomly Built BST

@ Rough idea: it is natural to formulate the problem as a recursion, and
let h, be the random variable for the height of the BST formed by n
nodes when they arrive in a random order.

3/1



Proof Sketch for Randomly Built BST

@ Rough idea: it is natural to formulate the problem as a recursion, and
let h, be the random variable for the height of the BST formed by n
nodes when they arrive in a random order.

o If the first node (the root) is the i-th largest, then the height of the
resulting tree is 1+ max{h;_1, h,—;}.

3/1



Proof Sketch for Randomly Built BST

@ Rough idea: it is natural to formulate the problem as a recursion, and
let h, be the random variable for the height of the BST formed by n
nodes when they arrive in a random order.

o If the first node (the root) is the i-th largest, then the height of the
resulting tree is 1+ max{h;_1, h,—;}.

@ When we take the expectation of max {h;_1, h,—;}, E[-] cannot be
moved into max {-}.

3/1



Proof Sketch for Randomly Built BST

@ Rough idea: it is natural to formulate the problem as a recursion, and
let h, be the random variable for the height of the BST formed by n
nodes when they arrive in a random order.

o If the first node (the root) is the i-th largest, then the height of the
resulting tree is 1+ max{h;_1, h,—;}.

@ When we take the expectation of max {h;_1, h,—;}, E[-] cannot be
moved into max {-}.

o Infact, E[max {Xi, X;}] > max {E[Xi], E[X;]}, a consequence of Jensen’s
inequality: Ex[f(X)] > f(Ex[X]) for convex f.

@ A common trick to deal with this is to say
E[max{hj_1, hy—i}] < E[hi—y + h,—i] = E[hi] + E[hp—j].



Proof Sketch for Randomly Built BST

@ Rough idea: it is natural to formulate the problem as a recursion, and
let h, be the random variable for the height of the BST formed by n
nodes when they arrive in a random order.

o If the first node (the root) is the i-th largest, then the height of the
resulting tree is 1+ max{h;_1, h,—;}.

@ When we take the expectation of max {h;_1, h,—;}, E[-] cannot be
moved into max {-}.

o Infact, E[max {Xi, X;}] > max {E[Xi], E[X;]}, a consequence of Jensen’s
inequality: Ex[f(X)] > f(Ex[X]) for convex f.

@ A common trick to deal with this is to say
E[max{hj_1, hy—i}] < E[hi—y + h,—i] = E[hi] + E[hp—j].
@ But here such a bound would be too loose.



Proof Sketch for Randomly Built BST

@ Rough idea: it is natural to formulate the problem as a recursion, and
let h, be the random variable for the height of the BST formed by n
nodes when they arrive in a random order.

o If the first node (the root) is the i-th largest, then the height of the
resulting tree is 1+ max{h;_1, h,—;}.

@ When we take the expectation of max {h;_1, h,—;}, E[-] cannot be
moved into max {-}.

o Infact, E[max {Xi, X;}] > max {E[Xi], E[X;]}, a consequence of Jensen’s
inequality: Ex[f(X)] > f(Ex[X]) for convex f.

@ A common trick to deal with this is to say
E[max{hj_1, hy—i}] < E[hi—y + h,—i] = E[hi] + E[hp—j].

@ But here such a bound would be too loose.

o If we expect h; and h,_; differ not much, then we’d lose a factor of 2
each time we apply this.



Proof Sketch for Randomly Built BST (Cont.)

@ Another clever idea: we can amplify the quantity we are interested in,
so that the estimation error caused by
E[max {h;_1, ho—;}] < E[hj_1] + E[h,—i] is more negligible.



Proof Sketch for Randomly Built BST (Cont.)

@ Another clever idea: we can amplify the quantity we are interested in,
so that the estimation error caused by

E[max {h;_1, ho—;}] < E[hj_1] + E[h,—i] is more negligible.
o Let H, be 2.

November 4, 2022 4/11



Proof Sketch for Randomly Built BST (Cont.)

@ Another clever idea: we can amplify the quantity we are interested in,
so that the estimation error caused by

E[max {h;_1, ho—;}] < E[hj_1] + E[h,—i] is more negligible.
o Let H, be 2.

o Then H, =137 2-max{H,_1, H_;}.
n =1

November 4, 2022 4/11



Proof Sketch for Randomly Built BST (Cont.)

@ Another clever idea: we can amplify the quantity we are interested in,
so that the estimation error caused by

E[max {h;_1, ho—;}] < E[hj_1] + E[h,—i] is more negligible.
o Let H, be 2.

o Then H, =137 2-max{H,_1, H_;}.
n =1

E [H,] < % Z E [Hi1] + E [Hy_] = % Z—: E [H].

November 4, 2022 4/11



Proof Sketch for Randomly Built BST (Cont.)

@ Another clever idea: we can amplify the quantity we are interested in,
so that the estimation error caused by
E[max {h;_1, ho—;}] < E[hj_1] + E[h,—i] is more negligible.

o Let H, be 2.

o Then H, =137 2 max{H,_1, Ho—i}.

E [H,] < % Z E [Hi1] + E [Hy_] = % i E [H].

e This is a tractable recursion, and one can show that E[H,] is
polynomial in n. Therefore E[h,] is O(log n).



Proof Sketch for Randomly Built BST (Cont.)

@ Another clever idea: we can amplify the quantity we are interested in,
so that the estimation error caused by
E[max {h;_1, ho—;}] < E[hj_1] + E[h,—i] is more negligible.

o Let H, be 2.

o Then H, =137 2 max{H,_1, Ho—i}.

E [H,] < % Z E [Hi1] + E [Hy_] = % i E [H].

e This is a tractable recursion, and one can show that E[H,] is
polynomial in n. Therefore E[h,] is O(log n).

o The latter is another consequence of Jensen’s inequality:
2E[h] < E2M] = E[H,] = O(n°).



Back to Reality..

@ However, we cannot assume the nodes arrive in uniformly random
order.



Back to Reality..

@ However, we cannot assume the nodes arrive in uniformly random
order.

o ldea: we sample a uniformly random arrival order 7 for the nodes, then
when an node arrives, we insist on treating it as if its position in the
arrival order is the one in 7 and not the one actually observed.



Back to Reality..

@ However, we cannot assume the nodes arrive in uniformly random
order.

o ldea: we sample a uniformly random arrival order 7 for the nodes, then
when an node arrives, we insist on treating it as if its position in the
arrival order is the one in 7 and not the one actually observed.

o For example, if node i arrives first according to m, then we make i the
root of the tree upon its arrival, even if it arrives late.



Back to Reality..

@ However, we cannot assume the nodes arrive in uniformly random
order.

o ldea: we sample a uniformly random arrival order 7 for the nodes, then
when an node arrives, we insist on treating it as if its position in the
arrival order is the one in 7 and not the one actually observed.

o For example, if node i arrives first according to m, then we make i the
root of the tree upon its arrival, even if it arrives late.
e This does not require knowing the set of nodes before they arrive.



Back to Reality..

@ However, we cannot assume the nodes arrive in uniformly random
order.

o ldea: we sample a uniformly random arrival order 7 for the nodes, then
when an node arrives, we insist on treating it as if its position in the
arrival order is the one in 7 and not the one actually observed.

o For example, if node i arrives first according to m, then we make i the
root of the tree upon its arrival, even if it arrives late.
e This does not require knowing the set of nodes before they arrive.

@ When a node arrives, we just sample its position in 7 by choosing
uniformly at randm its position w.r.t. the node that have arrived.



Back to Reality..

@ However, we cannot assume the nodes arrive in uniformly random
order.

o ldea: we sample a uniformly random arrival order 7 for the nodes, then
when an node arrives, we insist on treating it as if its position in the
arrival order is the one in 7 and not the one actually observed.

o For example, if node i arrives first according to m, then we make i the

root of the tree upon its arrival, even if it arrives late.
e This does not require knowing the set of nodes before they arrive.

@ When a node arrives, we just sample its position in 7 by choosing
uniformly at randm its position w.r.t. the node that have arrived.

o If we write 7(/) on node i to denote its position in our hypothetical
ordering 7, then the node with the smallest 7(-) should be the root.



Back to Reality..

@ However, we cannot assume the nodes arrive in uniformly random
order.

o ldea: we sample a uniformly random arrival order 7 for the nodes, then
when an node arrives, we insist on treating it as if its position in the
arrival order is the one in 7 and not the one actually observed.

o For example, if node i arrives first according to m, then we make i the

root of the tree upon its arrival, even if it arrives late.
e This does not require knowing the set of nodes before they arrive.

@ When a node arrives, we just sample its position in 7 by choosing
uniformly at randm its position w.r.t. the node that have arrived.

o If we write 7(/) on node i to denote its position in our hypothetical
ordering 7, then the node with the smallest 7(-) should be the root.
o The same is true for each of the subtrees.



Back to Reality..

@ However, we cannot assume the nodes arrive in uniformly random
order.

o ldea: we sample a uniformly random arrival order 7 for the nodes, then
when an node arrives, we insist on treating it as if its position in the
arrival order is the one in 7 and not the one actually observed.

o For example, if node i arrives first according to m, then we make i the

root of the tree upon its arrival, even if it arrives late.
e This does not require knowing the set of nodes before they arrive.

@ When a node arrives, we just sample its position in 7 by choosing
uniformly at randm its position w.r.t. the node that have arrived.
o If we write 7(/) on node i to denote its position in our hypothetical
ordering 7, then the node with the smallest 7(-) should be the root.

o The same is true for each of the subtrees.
o The resulting tree has the property that, for any two nodes x and y, if x
is an ancestor of y, then 7(x) < 7(y).



Heaps

@ A heap is a tree that satisfies the heap property: for any two nodes x
and y, if y is a child of x, then key(x) < key(y).



Heaps

@ A heap is a tree that satisfies the heap property: for any two nodes x
and y, if y is a child of x, then key(x) < key(y).

@ It supports the operation of EXTRACT-MAX.

November 4, 2022

6/11



Heaps

@ A heap is a tree that satisfies the heap property: for any two nodes x
and y, if y is a child of x, then key(x) < key(y).

@ It supports the operation of EXTRACT-MAX.
o The algorithm HeapSort uses this for sorting.

November 4, 2022

6/11



Heaps

@ A heap is a tree that satisfies the heap property: for any two nodes x
and y, if y is a child of x, then key(x) < key(y).
@ It supports the operation of EXTRACT-MAX.

o The algorithm HeapSort uses this for sorting.
e Some graph algorithms use this, e.g. Dijkstra’s algorithm for shortest
path in graphs with nonnegative weights.



Heaps

@ A heap is a tree that satisfies the heap property: for any two nodes x
and y, if y is a child of x, then key(x) < key(y).
@ It supports the operation of EXTRACT-MAX.
o The algorithm HeapSort uses this for sorting.
e Some graph algorithms use this, e.g. Dijkstra’s algorithm for shortest
path in graphs with nonnegative weights.
@ INSERT(x): insert the new node as a leaf; this may violate the heap
property — let it “swim” up the tree by swapping it with the parent as
long as the heap property is still violated.



Heaps

A heap is a tree that satisfies the heap property: for any two nodes x
and y, if y is a child of x, then key(x) < key(y).

It supports the operation of EXTRACT-MAX.
o The algorithm HeapSort uses this for sorting.
e Some graph algorithms use this, e.g. Dijkstra’s algorithm for shortest
path in graphs with nonnegative weights.
INSERT(x): insert the new node as a leaf; this may violate the heap
property — let it “swim” up the tree by swapping it with the parent as
long as the heap property is still violated.

Side remark: It is often useful to implement a heap in an array. One
need not keep pointers for parents or children.



Treaps

Heap: An Illustration




Treap

o |dea to simulate random arrival order in building a BST: in addition to
the key values, give each node x a random priority value

7(x) € [n] = {1,...,n}.



Treap

o |dea to simulate random arrival order in building a BST: in addition to
the key values, give each node x a random priority value

7(x) € [n] = {1,...,n}.
@ Maintain the BST property on the key values, and maintain the heap
property on the priority values.



Treap

o |dea to simulate random arrival order in building a BST: in addition to
the key values, give each node x a random priority value

7(x) € [n] = {1,...,n}.
@ Maintain the BST property on the key values, and maintain the heap
property on the priority values.

@ The resulting data structure is a Treap.



Treap

o |dea to simulate random arrival order in building a BST: in addition to
the key values, give each node x a random priority value
7(x) € [n] = {1,...,n}.

@ Maintain the BST property on the key values, and maintain the heap
property on the priority values.

@ The resulting data structure is a Treap.

@ Operation FIND(x) is the same as in BST.



Treap

o |dea to simulate random arrival order in building a BST: in addition to
the key values, give each node x a random priority value
7(x) € [n] = {1,...,n}.

@ Maintain the BST property on the key values, and maintain the heap
property on the priority values.

@ The resulting data structure is a Treap.
@ Operation FIND(x) is the same as in BST.

@ Operation INSERT(x, r) first does the BST insertion using key values,
and then assigns a uniformly random priority value to the new node
and lets it swim (using tree rotations!) to restore the heap property on
the priority values.



Treaps
Treap: An lllustration

key key(r) priority m(r)

November 4, 2022 9/11



Analysis

@ The proof that a BST for n randomly arriving nodes has expected
height O(log n) in fact already implies FIND and INSERT both take
O(log n) time in expectation.



Analysis

@ The proof that a BST for n randomly arriving nodes has expected
height O(log n) in fact already implies FIND and INSERT both take
O(log n) time in expectation.

o For INSERT, the number of “swim” steps is bounded by the height of the
tree, which is again O(log n) in expectation.



Analysis

@ The proof that a BST for n randomly arriving nodes has expected
height O(log n) in fact already implies FIND and INSERT both take
O(log n) time in expectation.

o For INSERT, the number of “swim” steps is bounded by the height of the
tree, which is again O(log n) in expectation.

@ An alternative analysis of INSERT(x): it suffices to show that the
ordinary tree insertion puts x at a leaf of depth O(log n).



Analysis

@ The proof that a BST for n randomly arriving nodes has expected
height O(log n) in fact already implies FIND and INSERT both take
O(log n) time in expectation.

o For INSERT, the number of “swim” steps is bounded by the height of the
tree, which is again O(log n) in expectation.

@ An alternative analysis of INSERT(x): it suffices to show that the
ordinary tree insertion puts x at a leaf of depth O(log n).

e Walking down the path from the root to the leaf that is x:
Vi =r,Va,...,Vyp = X, let’s look at the size of the shrinking subtree
rooted at each v;.



Analysis

@ The proof that a BST for n randomly arriving nodes has expected
height O(log n) in fact already implies FIND and INSERT both take
O(log n) time in expectation.

o For INSERT, the number of “swim” steps is bounded by the height of the
tree, which is again O(log n) in expectation.

@ An alternative analysis of INSERT(x): it suffices to show that the
ordinary tree insertion puts x at a leaf of depth O(log n).

e Walking down the path from the root to the leaf that is x:

Vi =r,Va,...,Vyp = X, let’s look at the size of the shrinking subtree
rooted at each v;.

e Start with the root, the size of the (sub)tree is n.

November 4, 2022 10/ 11



Analysis

@ The proof that a BST for n randomly arriving nodes has expected
height O(log n) in fact already implies FIND and INSERT both take
O(log n) time in expectation.

o For INSERT, the number of “swim” steps is bounded by the height of the
tree, which is again O(log n) in expectation.

@ An alternative analysis of INSERT(x): it suffices to show that the
ordinary tree insertion puts x at a leaf of depth O(log n).

e Walking down the path from the root to the leaf that is x:
Vi =r,Va,...,Vyp = X, let’s look at the size of the shrinking subtree
rooted at each v;.

e Start with the root, the size of the (sub)tree is n.

o One step down to node v,. Wlog let’s say v, is the left child of v;.



Analysis

@ The proof that a BST for n randomly arriving nodes has expected
height O(log n) in fact already implies FIND and INSERT both take
O(log n) time in expectation.

o For INSERT, the number of “swim” steps is bounded by the height of the
tree, which is again O(log n) in expectation.

@ An alternative analysis of INSERT(x): it suffices to show that the
ordinary tree insertion puts x at a leaf of depth O(log n).

e Walking down the path from the root to the leaf that is x:
Vi =r,Va,...,Vyp = X, let’s look at the size of the shrinking subtree
rooted at each v;.

e Start with the root, the size of the (sub)tree is n.

o One step down to node v,. Wlog let’s say v, is the left child of v;.

o With probability 2, the size of the subtree shrinks by a factor of 2 when
we go from vy = rto vy.



Analysis

@ The proof that a BST for n randomly arriving nodes has expected
height O(log n) in fact already implies FIND and INSERT both take
O(log n) time in expectation.

o For INSERT, the number of “swim” steps is bounded by the height of the
tree, which is again O(log n) in expectation.

@ An alternative analysis of INSERT(x): it suffices to show that the
ordinary tree insertion puts x at a leaf of depth O(log n).

e Walking down the path from the root to the leaf that is x:
Vi =r,Va,...,Vyp = X, let’s look at the size of the shrinking subtree
rooted at each v;.

e Start with the root, the size of the (sub)tree is n.

o One step down to node v,. Wlog let’s say v, is the left child of v;.

o With probability 2, the size of the subtree shrinks by a factor of 2 when
we go from vy = rto vy.

e The same reasoning applies at every step down the path.



Analysis of INSERT Cont.

@ Let’s say a step down the path is successful if the size of the subtree
shrinks by a factor of %.



Analysis of INSERT Cont.

@ Let’s say a step down the path is successful if the size of the subtree
shrinks by a factor of %.
@ We can have at most logs n successful steps before the subtree
3

becomes a singleton.



Analysis of INSERT Cont.

@ Let’s say a step down the path is successful if the size of the subtree
shrinks by a factor of %.

@ We can have at most Iogg n successful steps before the subtree
becomes a singleton.

@ This is very similar to the analysis of Quicksort.

11/1



Analysis of INSERT Cont.

Let’s say a step down the path is successful if the size of the subtree
shrinks by a factor of %.

@ We can have at most logs n successful steps before the subtree
3
becomes a singleton.

This is very similar to the analysis of Quicksort.

An application of Chernoff bound shows that w.h.p. INSERT takes
O(log n) time.



Analysis of INSERT Cont.

@ Let’s say a step down the path is successful if the size of the subtree
shrinks by a factor of %.

@ We can have at most Iogg n successful steps before the subtree
becomes a singleton.

@ This is very similar to the analysis of Quicksort.

e An application of Chernoff bound shows that w.h.p. INSERT takes
O(log n) time.

@ In fact, another use of union bound shows that, w.h.p. the height of the
Treap is O(log n).



	Treaps

