COMPRESSED SENSING

SHUFE

High-dimensional but sparse signals arise in many applications

Image/media files are often sparse when expressed w.r.t. the right bases

High-dimensional but sparse signals arise in many applications

> Image/media files are often sparse when expressed w.r.t. the right bases

E.g. wavelet transform

- High-dimensional but sparse signals arise in many applications
 - Image/media files are often sparse when expressed w.r.t. the right bases
 - E.g. wavelet transform
 - **x** $\in \mathbb{R}^n$, with $\|\mathbf{x}\|_0 \le s$. We say **x** is *s*-sparse

- High-dimensional but sparse signals arise in many applications
 - > Image/media files are often sparse when expressed w.r.t. the right bases
 - E.g. wavelet transform
 - **x** $\in \mathbb{R}^n$, with $\|\mathbf{x}\|_0 \le s$. We say **x** is *s*-sparse
- We often have linear measurements of such signals

➢ High-dimensional but sparse signals arise in many applications
➢ Image/media files are often sparse when expressed w.r.t. the right bases
➢ E.g. wavelet transform
➢ x ∈ ℝⁿ, with ||x||₀ ≤ s. We say x is s-sparse
➢ We often have linear measurements of such signals
➢ y = Ax, where A is a matrix in ℝ^{m×n}, with m ≪ n

> High-dimensional but sparse signals arise in many applications > Image/media files are often sparse when expressed w.r.t. the right bases E.g. wavelet transform **x** $\in \mathbb{R}^n$, with $\|\mathbf{x}\|_0 \le s$. We say **x** is *s*-sparse > We often have linear measurements of such signals **y** = A**x**, where A is a matrix in $\mathbb{R}^{m \times n}$, with $m \ll n$ Given y, can we recover x? We can design both the measurements A and the recovery algorithm.

- Recall that with Count Sketch, we were able to recover sparse signals
- By taking the largest (in absolute value) s coordinates of the sketch, with high probability, we get an *s*-sparse $\tilde{\mathbf{x}}$ s.t. $\|\tilde{\mathbf{x}} - \mathbf{x}\|_2 \le (1 + \epsilon)E_2^s(\mathbf{x})$

- Recall that with Count Sketch, we were able to recover sparse signals
- Solution By taking the largest (in absolute value) *s* coordinates of the sketch, with high probability, we get an *s*-sparse $\tilde{\mathbf{x}}$ s.t. $\|\tilde{\mathbf{x}} \mathbf{x}\|_2 \le (1 + \epsilon)E_2^s(\mathbf{x})$
 - $F_2^s(\mathbf{x})$ is the ℓ_2 -norm of \mathbf{x} with its largest k coordinates zeroed out

- Recall that with Count Sketch, we were able to recover sparse signals
- Solution By taking the largest (in absolute value) *s* coordinates of the sketch, with high probability, we get an *s*-sparse $\tilde{\mathbf{x}}$ s.t. $\|\tilde{\mathbf{x}} \mathbf{x}\|_2 \le (1 + \epsilon)E_2^s(\mathbf{x})$
 - $F_2^s(\mathbf{x})$ is the ℓ_2 -norm of \mathbf{x} with its largest k coordinates zeroed out
 - If x is s-sparse, with high probability $\tilde{\mathbf{x}}$ is an exact recovery

- Recall that with Count Sketch, we were able to recover sparse signals
- Solution By taking the largest (in absolute value) *s* coordinates of the sketch, with high probability, we get an *s*-sparse $\tilde{\mathbf{x}}$ s.t. $\|\tilde{\mathbf{x}} \mathbf{x}\|_2 \le (1 + \epsilon)E_2^s(\mathbf{x})$
 - $F_2^s(\mathbf{x})$ is the ℓ_2 -norm of \mathbf{x} with its largest k coordinates zeroed out
 - If x is s-sparse, with high probability $\tilde{\mathbf{x}}$ is an exact recovery
 - Count Sketch consists of randomized linear measurements of $x.\ \tilde{x}$ is computed from them

Non-uniform schemes: $\forall \mathbf{x} \in \mathbb{R}^n$, $\Pr[\tilde{\mathbf{x}} \text{ recovers } \mathbf{x}] \geq 1 - \delta$

Count Sketch gives us such a guarantee

- Non-uniform schemes: $\forall \mathbf{x} \in \mathbb{R}^n$, $\Pr[\tilde{\mathbf{x}} \text{ recovers } \mathbf{x}] \geq 1 \delta$
 - Count Sketch gives us such a guarantee
- Uniform schemes: $\Pr[\forall \mathbf{x} \in \mathbb{R}^n, \tilde{\mathbf{x}} \text{ recovers } \mathbf{x}] \geq 1 \delta$

- Non-uniform schemes: $\forall \mathbf{x} \in \mathbb{R}^n$, $\Pr[\tilde{\mathbf{x}} \text{ recovers } \mathbf{x}] \geq 1 \delta$
 - Count Sketch gives us such a guarantee
- Vniform schemes: $\Pr[\forall \mathbf{x} \in \mathbb{R}^n, \tilde{\mathbf{x}} \text{ recovers } \mathbf{x}] \geq 1 \delta$
 - Today: compressed sensing

- Non-uniform schemes: $\forall \mathbf{x} \in \mathbb{R}^n$, $\Pr[\tilde{\mathbf{x}} \text{ recovers } \mathbf{x}] \geq 1 \delta$
 - Count Sketch gives us such a guarantee
- Uniform schemes: $\Pr[\forall \mathbf{x} \in \mathbb{R}^n, \tilde{\mathbf{x}} \text{ recovers } \mathbf{x}] \geq 1 \delta$
 - Today: compressed sensing
 - Pioneered by Candes & Tao

This problem turns out NP-hard

This problem turns out NP-hard

This problem turns out NP-hard

> Compressed sensing solves the following linear program instead:

This problem turns out NP-hard

> Compressed sensing solves the following linear program instead:

This is solvable in polynomial time

This problem turns out NP-hard

Compressed sensing solves the following linear program instead:

> min $\|\hat{\mathbf{x}}\|_1$, s.t., $A\hat{\mathbf{x}} = \mathbf{y}$. (*)

This is solvable in polynomial time

Intuitively, why is the solution to this LP a good recovery of \mathbf{x} ?

RESTRICTED ISOMETRY PROPERTY

- In order for (*) to produce good recoveries, we need A to approximately preserve ℓ_2 norms for all sparse vectors.
 - **Def.** A matrix $A \in \mathbb{R}^{m \times n}$ is said to satisfy the restricted isometry property (RIP) with parameters α, β and s if the inequality
 - $\alpha \|\mathbf{v}\|_2 \le \|A\mathbf{v}\|_2 \le \beta \|\mathbf{v}\|_2$
 - holds for all vectors $\mathbf{v} \in \mathbb{R}^n$ such that $\|\mathbf{v}\|_0 \leq s$

RESTRICTED ISOMETRY PROPERTY

- > In order for (*) to produce good recoveries, we need A to approximately preserve ℓ_2 norms for all sparse vectors.
 - parameters α, β and s if the inequality
 - holds for all vectors $\mathbf{v} \in \mathbb{R}^n$ such that $\|\mathbf{v}\|_0 \leq s$

Def. A matrix $A \in \mathbb{R}^{m \times n}$ is said to satisfy the restricted isometry property (RIP) with

 $\alpha \|\mathbf{v}\|_2 \leq \|A\mathbf{v}\|_2 \leq \beta \|\mathbf{v}\|_2$

Compare this with the distributional JL lemma

parameters $\alpha = 0.9\sqrt{m}, \beta = 1.1\sqrt{m}$ and *s*.

Theorem. Consider an $m \times n$ matrix A whose entries are i.i.d. drawn from the standard Gaussian N(0,1). There are constants C and c > 0 such that, if $m \ge Cs \log(en/s)$, then with probability at least $1 - 2 \exp(-cm)$, the random matrix A satisfies the RIP with

parameters $\alpha = 0.9\sqrt{m}, \beta = 1.1\sqrt{m}$ and *s*.

Theorem. Consider an $m \times n$ matrix A whose entries are i.i.d. drawn from the standard Gaussian N(0,1). There are constants C and c > 0 such that, if $m \ge Cs \log(en/s)$, then with probability at least $1 - 2 \exp(-cm)$, the random matrix A satisfies the RIP with

parameters $\alpha = 0.9\sqrt{m}, \beta = 1.1\sqrt{m}$ and *s*.

The proof requires building up a bit of theory on random matrices.

Theorem. Consider an $m \times n$ matrix A whose entries are i.i.d. drawn from the standard Gaussian N(0,1). There are constants C and c > 0 such that, if $m \ge Cs \log(en/s)$, then with probability at least $1 - 2 \exp(-cm)$, the random matrix A satisfies the RIP with

Theorem. Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1 + \lambda)s$, where $\lambda \ge (\beta/\alpha)^2$. Then every *s*-sparse vector $\mathbf{x} \in \mathbb{R}^n$ is recovered exactly by solving the program (*), i...e, the solution satisfies $\hat{\mathbf{x}} = \mathbf{x}$.

by solving the program (*), i..e, the solution satisfies $\hat{\mathbf{x}} = \mathbf{x}$.

<u>Notations</u>: Let $\mathbf{h} = \mathbf{x} - \hat{\mathbf{x}}$. We need to show $\mathbf{h} = \mathbf{0}$.

- **Theorem.** Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1 + \lambda)s$, where $\lambda \ge (\beta/\alpha)^2$. Then every *s*-sparse vector $\mathbf{x} \in \mathbb{R}^n$ is recovered exactly

by solving the program (*), i..e, the solution satisfies $\hat{\mathbf{x}} = \mathbf{x}$.

<u>Notations</u>: Let $\mathbf{h} = \mathbf{x} - \hat{\mathbf{x}}$. We need to show $\mathbf{h} = \mathbf{0}$.

zeroed out

- **Theorem.** Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1 + \lambda)s$, where $\lambda \ge (\beta/\alpha)^2$. Then every *s*-sparse vector $\mathbf{x} \in \mathbb{R}^n$ is recovered exactly
- For any $T \subseteq [n]$, let \mathbf{h}_T denote the vector \mathbf{h} restricted to T, i.e., coordinates not in T are

by solving the program (*), i..e, the solution satisfies $\hat{\mathbf{x}} = \mathbf{x}$.

<u>Notations</u>: Let $\mathbf{h} = \mathbf{x} - \hat{\mathbf{x}}$. We need to show $\mathbf{h} = \mathbf{0}$.

zeroed out

Let I_0 be the support of **x** (the set of non-zero coordinates), so $|I_0| \leq s$.

- **Theorem.** Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1 + \lambda)s$, where $\lambda \ge (\beta/\alpha)^2$. Then every *s*-sparse vector $\mathbf{x} \in \mathbb{R}^n$ is recovered exactly
- For any $T \subseteq [n]$, let \mathbf{h}_T denote the vector \mathbf{h} restricted to T, i.e., coordinates not in T are

Lemma. $\|\mathbf{h}_{\overline{I_0}}\|_1 \leq \|\mathbf{h}_{I_0}\|_1$

Lemma. $\|\mathbf{h}_{\overline{I_0}}\|_1 \le \|\mathbf{h}_{I_0}\|_1$ **Proof.** $\|\mathbf{x}\|_1 = \|\hat{\mathbf{x}}\|_1 = \|\mathbf{x} + \mathbf{h}\|_1 = \|\mathbf{x}_{I_0} + \mathbf{h}_{I_0}\|_1 + \|\mathbf{h}_{\overline{I_0}}\|_1 \ge \|\mathbf{x}\|_1 - \|\mathbf{h}_{I_0}\|_1 + \|\mathbf{h}_{\overline{I_0}}\|_1$

Theorem. Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1 + \lambda)s$, where $\lambda \ge (\beta/\alpha)^2$. Then every *s*-sparse vector $\mathbf{x} \in \mathbb{R}^n$ is recovered exactly by solving the program (*), i...e, the solution satisfies $\hat{\mathbf{x}} = \mathbf{x}$.

program (*), i..e, the solution satisfies $\hat{\mathbf{x}} = \mathbf{x}$.

<u>Notations</u>: Let $\mathbf{h} = \mathbf{x} - \hat{\mathbf{x}}$. We need to show $\mathbf{h} = \mathbf{0}$.

Theorem. Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1 + \lambda)s$, where $\lambda \ge (\beta/\alpha)^2$. Then every s-sparse vector $\mathbf{x} \in \mathbb{R}^n$ is recovered exactly by solving the

program (*), i...e, the solution satisfies $\hat{\mathbf{x}} = \mathbf{x}$.

<u>Notations</u>: Let $\mathbf{h} = \mathbf{x} - \hat{\mathbf{x}}$. We need to show $\mathbf{h} = \mathbf{0}$.

out

<u>Theorem.</u> Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1 + \lambda)s$, where $\lambda \ge (\beta/\alpha)^2$. Then every s-sparse vector $\mathbf{x} \in \mathbb{R}^n$ is recovered exactly by solving the

For any $T \subseteq [n]$, let \mathbf{h}_T denote the vector \mathbf{h} restricted to T, i.e., coordinates not in T are zeroed

program (*), i...e, the solution satisfies $\hat{\mathbf{x}} = \mathbf{x}$.

<u>Notations</u>: Let $\mathbf{h} = \mathbf{x} - \hat{\mathbf{x}}$. We need to show $\mathbf{h} = \mathbf{0}$.

out

Let I_0 be the support of **x** (the set of non-zero coordinates), so $|I_0| \leq s$.

Theorem. Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1 + \lambda)s$, where $\lambda \ge (\beta/\alpha)^2$. Then every s-sparse vector $\mathbf{x} \in \mathbb{R}^n$ is recovered exactly by solving the

- For any $T \subseteq [n]$, let \mathbf{h}_T denote the vector \mathbf{h} restricted to T, i.e., coordinates not in T are zeroed

program (*), i...e, the solution satisfies $\hat{\mathbf{x}} = \mathbf{x}$.

<u>Notations</u>: Let $\mathbf{h} = \mathbf{x} - \hat{\mathbf{x}}$. We need to show $\mathbf{h} = \mathbf{0}$.

out

Let I_0 be the support of **x** (the set of non-zero coordinates), so $|I_0| \leq s$.

the next λs coordinates, and so on. Let $I_{0,1}$ be $I_0 \cup I_1$

Theorem. Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1 + \lambda)s$, where $\lambda \ge (\beta/\alpha)^2$. Then every s-sparse vector $\mathbf{x} \in \mathbb{R}^n$ is recovered exactly by solving the

- For any $T \subseteq [n]$, let \mathbf{h}_T denote the vector \mathbf{h} restricted to T, i.e., coordinates not in T are zeroed
- Sort coordinates of **h** in $\overline{I_0}$ in absolute values. Let I_1 be the set of next largest λs coordinates, I_2

i..e, the solution satisfies $\hat{\mathbf{x}} = \mathbf{x}$.

Theorem. Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1 + \lambda)s$, where $\lambda \ge (\beta/\alpha)^2$. Then every s-sparse vector $\mathbf{x} \in \mathbb{R}^n$ is recovered exactly by solving the program (*),

i...e, the solution satisfies $\hat{\mathbf{x}} = \mathbf{x}$.

Proof. We have $A\mathbf{h} = \mathbf{0}$, we have $0 = ||A\mathbf{h}||_2 \ge ||A\mathbf{h}_{I_{0,1}}||_2 - ||A\mathbf{h}_{\overline{I_{0,1}}}||_2$

Theorem. Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1 + \lambda)s$, where $\lambda \ge (\beta/\alpha)^2$. Then every s-sparse vector $\mathbf{x} \in \mathbb{R}^n$ is recovered exactly by solving the program (*),

Proof. We have $A\mathbf{h} = \mathbf{0}$, we have $0 = ||A\mathbf{h}||_2 \ge ||A\mathbf{h}||_2$

Since $|I_{0,1}| \leq s + \lambda s$, RIP yields $||A\mathbf{h}_{I_{0,1}}||_2 \geq \alpha ||\mathbf{h}_{I_0}||_2$

$$A\mathbf{h}_{I_{0,1}}\|_{2} - \|A\mathbf{h}_{\overline{I_{0,1}}}\|_{2}$$

Proof. We have $A\mathbf{h} = \mathbf{0}$, we have $0 = ||A\mathbf{h}||_2 \ge ||A\mathbf{h}_{I_{0,1}}||_2$ Since $|I_{0,1}| \le s + \lambda s$, RIP yields $||A\mathbf{h}_{I_{0,1}}||_2 \ge \alpha ||\mathbf{h}_{I_{0,1}}||_2$ On the other side, $||A\mathbf{h}_{\overline{I_{0,1}}}||_2 \le \sum_{i\ge 2} ||A\mathbf{h}_{I_i}||_2 \le \beta \sum_{i\ge 2} ||\mathbf{h}_{I_i}||_2$

$$A\mathbf{h}_{I_{0,1}}\|_{2} - \|A\mathbf{h}_{\overline{I_{0,1}}}\|_{2}$$

Proof. We have $A\mathbf{h} = \mathbf{0}$, we have $0 = ||A\mathbf{h}||_2 \ge ||A|$ Since $|I_{0,1}| \le s + \lambda s$, RIP yields $||A\mathbf{h}_{I_{0,1}}||_2 \ge \alpha ||\mathbf{h}_{I_{0,1}}||_2$ On the other side, $||A\mathbf{h}_{\overline{I_{0,1}}}||_2 \le \sum_{i\ge 2} ||A\mathbf{h}_{I_i}||_2 \le \beta \sum_{i\ge 2}$ Crucial step: for $i \ge 2$, $\forall j \in I_i$, we have $|h_j| \le \frac{1}{\lambda s}$

$$A\mathbf{h}_{I_{0,1}}\|_{2} - \|A\mathbf{h}_{\overline{I_{0,1}}}\|_{2}$$

$$\|\mathbf{h}_{I_{i}}\|_{2}$$

$$\frac{1}{\delta} \|\mathbf{h}_{I_{i-1}}\|_{1}, \text{ and so } \|\mathbf{h}_{I_{i}}\|_{2} \leq \frac{1}{\sqrt{\lambda s}} \|\mathbf{h}_{I_{i-1}}\|_{1}$$

Proof. We have $A\mathbf{h} = \mathbf{0}$, we have $0 = ||A\mathbf{h}||_2 \ge 1$ Since $|I_{0,1}| \leq s + \lambda s$, RIP yields $||A\mathbf{h}_{I_{0,1}}||_2 \geq \alpha ||\mathbf{h}|_2$ On the other side, $||A\mathbf{h}_{\overline{I_{0,1}}}||_2 \le \sum_{i\ge 2} ||A\mathbf{h}_{I_i}||_2 \le \beta \sum_{i\ge 2} ||A\mathbf{$ Crucial step: for $i \ge 2$, $\forall j \in I_i$, we have $|h_j| \le \frac{1}{2}$ Therefore $\sum_{i\geq 2} \|\mathbf{h}_{I_i}\|_2 \leq \frac{1}{\sqrt{\lambda s}} \sum_{i\geq 1} \|\mathbf{h}_{I_i}\|_1 = \frac{1}{\sqrt{\lambda s}} \|\mathbf{h}_{\overline{I}}\|_1$ *i*≥2

$$|A\mathbf{h}_{I_{0,1}}||_{2} - ||A\mathbf{h}_{\overline{I_{0,1}}}||_{2}$$

$$I_{0,1}||_{2}$$

$$||\mathbf{h}_{I_{i}}||_{2}$$

$$\frac{1}{s} ||\mathbf{h}_{I_{i-1}}||_{1}, \text{ and so } ||\mathbf{h}_{I_{i}}||_{2} \leq$$

$$\|\mathbf{H}_{I_{i-1}}\|_{1}^{2} \leq \frac{1}{\sqrt{\lambda s}} \|\mathbf{h}_{I_{0}}\|_{1}^{2} \leq \frac{1}{\sqrt{\lambda}} \|\mathbf{h}_{I_{0}}\|_{2}^{2} \leq \frac{1}{\sqrt{\lambda}} \|\mathbf{h}_{I_{0,1}}\|_{2}^{2}$$

Proof. We have $A\mathbf{h} = \mathbf{0}$, we have $0 = ||A\mathbf{h}||$

Since $|I_{0,1}| \le s + \lambda s$, RIP yields $||A\mathbf{h}_{I_{0,1}}||_2 \ge \alpha ||\mathbf{h}_{I_{0,1}}||_2$ On the other side, $||A\mathbf{h}_{\overline{I_{0,1}}}||_2 \leq \sum ||A\mathbf{h}_{I_i}||_2 \leq \sum ||A\mathbf{h}_{I_i}||_2$

$$|_{2} \ge ||A\mathbf{h}_{I_{0,1}}||_{2} - ||A\mathbf{h}_{\overline{I_{0,1}}}||_{2}$$

$$\leq \beta \sum_{i \geq 2} \|\mathbf{h}_{I_i}\|_2$$

Proof. We have $A\mathbf{h} = \mathbf{0}$, we have $0 = ||A\mathbf{h}||$

Since $|I_{0,1}| \le s + \lambda s$, RIP yields $||A\mathbf{h}_{I_{0,1}}||_2 \ge \alpha ||\mathbf{h}_{I_{0,1}}||_2$

On the other side, $||A\mathbf{h}_{\overline{I_{0,1}}}||_2 \le \sum_{i\ge 2} ||A\mathbf{h}_{I_i}||_2 \le C$

So we have $\frac{\beta}{\sqrt{\lambda}} \|\mathbf{h}_{I_{0,1}}\|_2 \ge \alpha \|\mathbf{h}_{I_{0,1}}\|_2$. But since $\lambda \ge (\beta/\alpha)^2$, this implies $\mathbf{h}_{I_{0,1}} = \mathbf{0}$, which by definition means $\mathbf{h} = \mathbf{0}$.

$$|_{2} \ge ||A\mathbf{h}_{I_{0,1}}||_{2} - ||A\mathbf{h}_{\overline{I_{0,1}}}||_{2}$$

$$\leq \beta \sum_{i \geq 2} \|\mathbf{h}_{I_i}\|_2$$
