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High-dimensional but sparse signals arise in many applications

Image/media files are often sparse when expressed w.r.t. the right bases

E.g. wavelet transform

, with .  We say  is -sparsex ∈ ℝn ∥x∥0 ≤ s x s

We often have linear measurements of such signals

, where  is a matrix in ,  with  y = Ax A ℝm×n m ≪ n

Given , can we recover ?  We can design both the measurements  and the recovery algorithm.y x A

SPARSE SIGNALS



SPARSE RECOVERY WITH COUNT SKETCH



Recall that with Count Sketch, we were able to recover sparse signals

SPARSE RECOVERY WITH COUNT SKETCH



Recall that with Count Sketch, we were able to recover sparse signals

By taking the largest (in absolute value)  coordinates  of the sketch, with high 
probability, we get an -sparse  s.t. 

s
s x̃ ∥x̃ − x∥2 ≤ (1 + ϵ)Es

2(x)

SPARSE RECOVERY WITH COUNT SKETCH



Recall that with Count Sketch, we were able to recover sparse signals

By taking the largest (in absolute value)  coordinates  of the sketch, with high 
probability, we get an -sparse  s.t. 

s
s x̃ ∥x̃ − x∥2 ≤ (1 + ϵ)Es

2(x)

 is the -norm of  with its largest  coordinates zeroed outEs
2(x) ℓ2 x k

SPARSE RECOVERY WITH COUNT SKETCH



Recall that with Count Sketch, we were able to recover sparse signals

By taking the largest (in absolute value)  coordinates  of the sketch, with high 
probability, we get an -sparse  s.t. 

s
s x̃ ∥x̃ − x∥2 ≤ (1 + ϵ)Es

2(x)

 is the -norm of  with its largest  coordinates zeroed outEs
2(x) ℓ2 x k

If  is -sparse, with high probability  is an exact recoveryx s x̃

SPARSE RECOVERY WITH COUNT SKETCH



Recall that with Count Sketch, we were able to recover sparse signals

By taking the largest (in absolute value)  coordinates  of the sketch, with high 
probability, we get an -sparse  s.t. 

s
s x̃ ∥x̃ − x∥2 ≤ (1 + ϵ)Es

2(x)

 is the -norm of  with its largest  coordinates zeroed outEs
2(x) ℓ2 x k

If  is -sparse, with high probability  is an exact recoveryx s x̃

Count Sketch consists of randomized linear measurements of .   is computed from 
them

x x̃
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Non-uniform schemes: ,  Pr[  recovers ]  ∀x ∈ ℝn x̃ x ≥ 1 − δ

Count Sketch gives us such a guarantee

Uniform schemes: Pr[ ,  recovers ] ∀x ∈ ℝn x̃ x ≥ 1 − δ

Today: compressed sensing

Pioneered by Candes & Tao
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A natural optimization problem: given , find , with  minimized,  satisfying y = Ax x̃ ∥x̃∥0
Ax̃ = y

This problem turns out NP-hard

Compressed sensing solves the following linear program instead:

, s.t., .   (*)min ∥x̂∥1 Ax̂ = y

This is solvable in polynomial time

Intuitively, why is the solution to this LP a good recovery of ?x
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α, β s

α∥v∥2 ≤ ∥Av∥2 ≤ β∥v∥2

v ∈ ℝn ∥v∥0 ≤ s

RESTRICTED ISOMETRY PROPERTY

Compare this with the 
distributional JL lemma
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Theorem.  Consider an  matrix  whose entries are i.i.d. drawn from the standard 
Gaussian .  There are constants  and  such that, if , then 
with probability at least , the random matrix  satisfies the RIP with 
parameters  and .

m × n A
N(0,1) C c > 0 m ≥ Cs log(en/s)

1 − 2 exp(−cm) A
α = 0.9 m, β = 1.1 m s

The proof requires building up a bit of theory on random matrices.
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Sort coordinates of  in  in absolute values.  Let  be the set of next largest  coordinates,  

the next  coordinates, and so on.  Let  be 

h I0 I1 λs I2
λs I0,1 I0 ∪ I1
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So we have .  But since , this implies , which by 

definition means .

β

λ
∥hI0,1

∥2 ≥ α∥hI0,1
∥2 λ ≥ (β/α)2 hI0,1

= 0

h = 0


