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) High-dimensional but sparse signals arise in many applications
) Image/media files are often sparse when expressed w.r.t. the right bases

) E.g. wavelet transform

> x € R, with ||x||y < 5. We say X is

) We often have linear measurements of such signals
> y = AX, where A is a matrix in R™", withm < n

) Given 'y, can we recover X? We can design both the measurements A and the recovery algorithm.
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SPARSE RECOVERY WITH COUNT SKETCH

) Recall that with Count Sketch, we were able to recover sparse signals

) By taking the largest (in absolute value) s coordinates of the sketch, with high
probability, we get an s-sparse X s.t. ||X — x||, < (1 + €)E5(X)

> E5(x) is the £5-norm of X with its largest k coordinates zeroed out

) If X is s-sparse, with high probability X is an recovery

) Count Sketch consists of randomized linear measurements of X. X is computed from
them
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) Non-uniform schemes: Vx € R”, Pr[Xrecoversx] >1—90

) Count Sketch gives us such a guarantee

~/

) Uniform schemes: Pr[Vx € R”, Xrecoversx] > 1 -0

) Today: compressed sensing

) Pioneered by Candes & Tao
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THE HALLMARK OF CS

2 Anatural optimization problem: given y = AX, find X, with ||X||, minimized, satisfying

AX =Yy
) This problem turns out NP-hard

) Compressed sensing solves the following linear program instead:

>

) This is solvable in polynomial time

) Intuitively, why is the solution to this LP a good recovery of X?
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RESTRICTED ISOMETRY PROPERTY

) In order for (*) to produce good recoveries, we need A to approximately preserve ¢,
norms for all sparse vectors.

Def. A matrix A € R™" is said to satisfy the with
parameters a, f and s if the inequality

05”"”2 < HAVH2 < ﬁHVuz

Compare this with the
distributional JL lemma

holds for all vectors v € R" such that ||v|[ < s
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RANDOM MATRICES SATISFY RIP

Theorem. Consider an m X n matrix A whose entries are i.i.d. drawn from the standard
Gaussian N(0,1). There are constants C and ¢ > O such that, if m > Cslog(en/s), then

with probability at least 1 — 2 exp(—cm), the random matrix A satisfies the RIP with
parameters a = ().9\/%,,5 = 1.14/m and s.

| ———

"he proof requires building up a bit of theory on random matrices.
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Theorem. Suppose that an m X n matrix A satisfies the RIP with some parameters a, [

and (1 + A)s, where 1 > (B/a)?. Then every s-sparse vector X € R" is recovered exactly
by solving the program (*), i..e, the solution satisfies X = x.

Notations: Let . We need to show h = 0.

For any T C [n], let h.- denote the vector h restricted to 7, i.e., coordinates not in T are
zeroed out

Let [, be the support of X (the set of non-zero coordinates), so | ;| < s.
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Proof. ||x||; = [[X]|[; = [Ix + h]|; = HXI T h[ ) + ”hl 1 = x|l = ”hIOHI + ||hg Hl
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Theorem. Suppose that an m X n matrix A satisfies the RIP with some parameters a, f# and

(1 + A)s, where 4 > (ﬁ/a)z. Then every s-sparse vector X € R” is recovered exactly by solving the
program (*), i..e, the solution satisfies X = x.

Notations: Let . We need to show h = 0.

Forany T C [n], let h- denote the vector h restricted to 7, i.e., coordinates not in 7 are zeroed
out

Let [, be the support of X (the set of non-zero coordinates), so |I,| < s.

Sort coordinates of h in I, in absolute values. Let I; be the set of next largest As coordinates, I,

the next As coordinates, and so on. Let [, be I, U [,
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where A > (ﬁ/a)z. Then every s-sparse vector X € R" is recovered exactly by solving the program (%),

i..e, the solution satisfies X = X.

Proof. We have Ah =0, we have 0 = ||Ah||, > ||Ah; ||, — [[Ahz—]|,
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1
- and so [[h;|[, < Iyl
\/ AS

|
Crucial step: fori > 2, Vj € [, we have |hj| < /I_th' 1
S .

1 1 1
Therefore Z 1h, ||, < Z [yl = [hz il < Ihy [l < —=llhyll, <—lhy I,

2 /IS i>1 \F \% ) \/Z ) \/Z
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by solving the program (*), i..e, the solution satisfies X = x.

Proof. We have Ah = (), we have 0 = [|Ah||, > [[Ah; ||, — [|Ahz—||;

Since [ ;| < s+ s, RIPyields ||Ah; [, > allh; ||

Ahi—|l, < ) llAb,[l, <8 Iyl

1>2 1>2

On the other side, |

p

So we have 7”11101”2 > allh; |[,. Butsince 4 2> (B/a)?, this implies h, =0, which by
2 , , ,

definition means h = 0.



