cOMPRESSED SENSING

SPARSE SIGNALS

SPARSE SIGNALS

High-dimensional but sparse signals arise in many applications

SPARSE SIGNALS

High-dimensional but sparse signals arise in many applications
>Image/media files are often sparse when expressed w.r.t. the right bases

SPARSE SIGNALS

High-dimensional but sparse signals arise in many applications
>Image/media files are often sparse when expressed w.r.t. the right bases
E.g. wavelet transform

SPARSE SIGNALS

High-dimensional but sparse signals arise in many applications
>Image/media files are often sparse when expressed w.r.t. the right bases
E.g. wavelet transform
$\mathbf{x} \in \mathbb{R}^{n}$, with $\|\mathbf{x}\|_{0} \leq s$. We say \mathbf{x} is s-sparse

SPARSE SIGNALS

High-dimensional but sparse signals arise in many applications
>Image/media files are often sparse when expressed w.r.t. the right bases
E.g. wavelet transform
$\mathbf{x} \in \mathbb{R}^{n}$, with $\|\mathbf{x}\|_{0} \leq s$. We say \mathbf{x} is s-sparse
We often have linear measurements of such signals

SPARSE SIGNALS

High-dimensional but sparse signals arise in many applications
>Image/media files are often sparse when expressed w.r.t. the right bases
E.g. wavelet transform
$\mathbf{x} \in \mathbb{R}^{n}$, with $\|\mathbf{x}\|_{0} \leq s$. We say \mathbf{x} is s-sparse
We often have linear measurements of such signals
$>\mathbf{y}=A \mathbf{x}$, where A is a matrix in $\mathbb{R}^{m \times n}$, with $m \ll n$

SPARSE SIGNALS

High-dimensional but sparse signals arise in many applications
> Image/media files are often sparse when expressed w.r.t. the right bases

- E.g. wavelet transform
$>\mathbf{x} \in \mathbb{R}^{n}$, with $\|\mathbf{x}\|_{0} \leq s$. We say \mathbf{x} is s-sparse
We often have linear measurements of such signals
$>\mathbf{y}=A \mathbf{x}$, where A is a matrix in $\mathbb{R}^{m \times n}$, with $m \ll n$
(Given \mathbf{y}, can we recover \mathbf{x} ? We can design both the measurements A and the recovery algorithm.

SPARSE RECOVERY WITH COUNT SKETCH

SPARSE RECOVERY WITH COUNT SKETCH

Recall that with Count Sketch, we were able to recover sparse signals

SPARSE RECOVERY WITH COUNT SKETCH

Recall that with Count Sketch, we were able to recover sparse signals

By taking the largest (in absolute value) s coordinates of the sketch, with high probability, we get an s-sparse $\tilde{\mathbf{x}}$ s.t. $\|\tilde{\mathbf{x}}-\mathbf{x}\|_{2} \leq(1+\epsilon) E_{2}^{s}(\mathbf{x})$

SPARSE RECOVERY WITH COUNT SKETCH

Recall that with Count Sketch, we were able to recover sparse signals

By taking the largest (in absolute value) s coordinates of the sketch, with high probability, we get an s-sparse $\tilde{\mathbf{x}}$ s.t. $\|\tilde{\mathbf{x}}-\mathbf{x}\|_{2} \leq(1+\epsilon) E_{2}^{s}(\mathbf{x})$
$\geqslant E_{2}^{S}(\mathbf{x})$ is the ℓ_{2}-norm of \mathbf{x} with its largest k coordinates zeroed out

SPARSE RECOVERY WITH COUNT SKETCH

Recall that with Count Sketch, we were able to recover sparse signals

By taking the largest (in absolute value) s coordinates of the sketch, with high probability, we get an s-sparse $\tilde{\mathbf{x}}$ s.t. $\|\tilde{\mathbf{x}}-\mathbf{x}\|_{2} \leq(1+\epsilon) E_{2}^{s}(\mathbf{x})$
$\geqslant E_{2}^{s}(\mathbf{x})$ is the ℓ_{2}-norm of \mathbf{x} with its largest k coordinates zeroed out
\geqslant If \mathbf{x} is s-sparse, with high probability $\tilde{\mathbf{x}}$ is an exact recovery

SPARSE RECOVERY WITH COUNT SKETCH

Recall that with Count Sketch, we were able to recover sparse signals

By taking the largest (in absolute value) s coordinates of the sketch, with high probability, we get an s-sparse $\tilde{\mathbf{x}}$ s.t. $\|\tilde{\mathbf{x}}-\mathbf{x}\|_{2} \leq(1+\epsilon) E_{2}^{s}(\mathbf{x})$
$\geqslant E_{2}^{s}(\mathbf{x})$ is the ℓ_{2}-norm of \mathbf{x} with its largest k coordinates zeroed out
\geqslant If \mathbf{x} is s-sparse, with high probability $\tilde{\mathbf{x}}$ is an exact recovery
\geqslant Count Sketch consists of randomized linear measurements of $\mathbf{x} . \tilde{\mathbf{x}}$ is computed from them

NON-UNIFORM VS. UNIFORM RECOVERY

NON-UNIFORM VS. UNIFORM RECOVERY

\geqslant Non-uniform schemes: $\forall \mathbf{x} \in \mathbb{R}^{n}, \operatorname{Pr}[\tilde{\mathbf{x}}$ recovers $\mathbf{x}] \geq 1-\delta$

NON-UNIFORM VS. UNIFORM RECOVERY

Non-uniform schemes: $\forall \mathbf{x} \in \mathbb{R}^{n}, \operatorname{Pr}[\tilde{\mathbf{x}}$ recovers $\mathbf{x}] \geq 1-\delta$
$>$ Count Sketch gives us such a guarantee

NON-UNIFORM VS. UNIFORM RECOVERY

Non-uniform schemes: $\forall \mathbf{x} \in \mathbb{R}^{n}, \operatorname{Pr}[\tilde{\mathbf{x}}$ recovers $\mathbf{x}] \geq 1-\delta$
$>$ Count Sketch gives us such a guarantee
Uniform schemes: $\operatorname{Pr}\left[\forall \mathbf{x} \in \mathbb{R}^{n}, \tilde{\mathbf{x}}\right.$ recovers $\left.\mathbf{x}\right] \geq 1-\delta$

NON-UNIFORM VS. UNIFORM RECOVERY

Non-uniform schemes: $\forall \mathbf{x} \in \mathbb{R}^{n}, \operatorname{Pr}[\tilde{\mathbf{x}}$ recovers $\mathbf{x}] \geq 1-\delta$
$>$ Count Sketch gives us such a guarantee
\geqslant Uniform schemes: $\operatorname{Pr}\left[\forall \mathbf{x} \in \mathbb{R}^{n}, \tilde{\mathbf{x}}\right.$ recovers $\left.\mathbf{x}\right] \geq 1-\delta$
> Today: compressed sensing

NON-UNIFORM VS. UNIFORM RECOVERY

Non-uniform schemes: $\forall \mathbf{x} \in \mathbb{R}^{n}, \operatorname{Pr}[\tilde{\mathbf{x}}$ recovers $\mathbf{x}] \geq 1-\delta$
$>$ Count Sketch gives us such a guarantee
\geqslant Uniform schemes: $\operatorname{Pr}\left[\forall \mathbf{x} \in \mathbb{R}^{n}, \tilde{\mathbf{x}}\right.$ recovers $\left.\mathbf{x}\right] \geq 1-\delta$
> Today: compressed sensing
> Pioneered by Candes \& Tao

THE HALLMARK OF CS

THE HALLMARK OF CS

> A natural optimization problem: given $\mathbf{y}=A \mathbf{x}$, find $\tilde{\mathbf{x}}$, with $\|\tilde{\mathbf{x}}\|_{0}$ minimized, satisfying $A \tilde{\mathbf{x}}=\mathbf{y}$

THE HALLMARK OF CS

A natural optimization problem: given $\mathbf{y}=A \mathbf{x}$, find $\tilde{\mathbf{x}}$, with $\|\tilde{\mathbf{x}}\|_{0}$ minimized, satisfying $A \tilde{\mathbf{x}}=\mathbf{y}$

This problem turns out NP-hard

THE HALLMARK OF CS

A natural optimization problem: given $\mathbf{y}=A \mathbf{x}$, find $\tilde{\mathbf{x}}$, with $\|\tilde{\mathbf{x}}\|_{0}$ minimized, satisfying $A \tilde{\mathbf{x}}=\mathbf{y}$
> This problem turns out NP-hard
Compressed sensing solves the following linear program instead:

THE HALLMARK OF CS

A natural optimization problem: given $\mathbf{y}=A \mathbf{x}$, find $\tilde{\mathbf{x}}$, with $\|\tilde{\mathbf{x}}\|_{0}$ minimized, satisfying $A \tilde{\mathbf{x}}=\mathbf{y}$
> This problem turns out NP-hard
Compressed sensing solves the following linear program instead:
$>\min \|\hat{\mathbf{x}}\|_{1}$, s.t.,$A \hat{\mathbf{x}}=\mathbf{y} . \quad\left({ }^{*}\right)$

THE HALLMARK OF CS

A natural optimization problem: given $\mathbf{y}=A \mathbf{x}$, find $\tilde{\mathbf{x}}$, with $\|\tilde{\mathbf{x}}\|_{0}$ minimized, satisfying $A \tilde{\mathbf{x}}=\mathbf{y}$
> This problem turns out NP-hard
Compressed sensing solves the following linear program instead:
$>\min \|\hat{\mathbf{x}}\|_{1}$, s.t.,$A \hat{\mathbf{x}}=\mathbf{y} . \quad\left({ }^{*}\right)$
This is solvable in polynomial time

THE HALLMARK OF CS

A natural optimization problem: given $\mathbf{y}=A \mathbf{x}$, find $\tilde{\mathbf{x}}$, with $\|\tilde{\mathbf{x}}\|_{0}$ minimized, satisfying $A \tilde{\mathbf{x}}=\mathbf{y}$
> This problem turns out NP-hard
Compressed sensing solves the following linear program instead:
$>\min \|\hat{\mathbf{x}}\|_{1}$, s.t., $A \hat{\mathbf{x}}=\mathrm{y} . \quad\left({ }^{*}\right)$
$>$ This is solvable in polynomial time
>Intuitively, why is the solution to this LP a good recovery of \mathbf{x} ?

RESTRICTED ISOMETRY PROPERTY

In order for (*) to produce good recoveries, we need A to approximately preserve ℓ_{2} norms for all sparse vectors.

Def. A matrix $A \in \mathbb{R}^{m \times n}$ is said to satisfy the restricted isometry property (RIP) with parameters α, β and s if the inequality

$$
\alpha\|\mathbf{v}\|_{2} \leq\|A \mathbf{v}\|_{2} \leq \beta\|\mathbf{v}\|_{2}
$$

holds for all vectors $\mathbf{v} \in \mathbb{R}^{n}$ such that $\|\mathbf{v}\|_{0} \leq s$

RESTRICTED ISOMETRY PROPERTY

In order for (*) to produce good recoveries, we need A to approximately preserve ℓ_{2} norms for all sparse vectors.

Def. A matrix $A \in \mathbb{R}^{m \times n}$ is said to satisfy the restricted isometry property (RIP) with parameters α, β and s if the inequality

$$
\alpha\|\mathbf{v}\|_{2} \leq\|A \mathbf{v}\|_{2} \leq \beta\|\mathbf{v}\|_{2}
$$

holds for all vectors $\mathbf{v} \in \mathbb{R}^{n}$ such that $\|\mathbf{v}\|_{0} \leq s$

RANDOM MATRICES SATISFY RIP

RANDOM MATRICES SATISFY RIP

Theorem. Consider an $m \times n$ matrix A whose entries are i.i.d. drawn from the standard Gaussian $N(0,1)$. There are constants C and $c>0$ such that, if $m \geq C s \log (e n / s)$, then with probability at least $1-2 \exp (-c m)$, the random matrix A satisfies the RIP with parameters $\alpha=0.9 \sqrt{m}, \beta=1.1 \sqrt{m}$ and s.

RANDOM MATRICES SATISFY RIP

Theorem. Consider an $m \times n$ matrix A whose entries are i.i.d. drawn from the standard Gaussian $N(0,1)$. There are constants C and $c>0$ such that, if $m \geq C s \log (e n / s)$, then with probability at least $1-2 \exp (-c m)$, the random matrix A satisfies the RIP with parameters $\alpha=0.9 \sqrt{m}, \beta=1.1 \sqrt{m}$ and s.

RANDOM MATRICES SATISFY RIP

Theorem. Consider an $m \times n$ matrix A whose entries are i.i.d. drawn from the standard Gaussian $N(0,1)$. There are constants C and $c>0$ such that, if $m \geq C s \log (e n / s)$, then with probability at least $1-2 \exp (-c m)$, the random matrix A satisfies the RIP with parameters $\alpha=0.9 \sqrt{m}, \beta=1.1 \sqrt{m}$ and s.

The proof requires building up a bit of theory on random matrices.

RIP IMPLIES EXACT RECOVERY

RIP IMPLIES EXACT RECOVERY

Theorem. Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1+\lambda) s$, where $\lambda \geq(\beta / \alpha)^{2}$. Then every s-sparse vector $\mathbf{x} \in \mathbb{R}^{n}$ is recovered exactly by solving the program (*), i..e, the solution satisfies $\hat{\mathbf{x}}=\mathbf{x}$.

RIP IMPLIES EXACT RECOVERY

Theorem. Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1+\lambda) s$, where $\lambda \geq(\beta / \alpha)^{2}$. Then every s-sparse vector $\mathbf{x} \in \mathbb{R}^{n}$ is recovered exactly by solving the program (*), i..e, the solution satisfies $\hat{\mathbf{x}}=\mathbf{x}$.

Notations: Let $\mathbf{h}=\mathbf{x}-\hat{\mathbf{x}}$. We need to show $\mathbf{h}=\mathbf{0}$.

RIP IMPLIES EXACT RECOVERY

Theorem. Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1+\lambda) s$, where $\lambda \geq(\beta / \alpha)^{2}$. Then every s-sparse vector $\mathbf{x} \in \mathbb{R}^{n}$ is recovered exactly by solving the program (*), i..e, the solution satisfies $\hat{\mathbf{x}}=\mathbf{x}$.

Notations: Let $\mathbf{h}=\mathbf{x}-\hat{\mathbf{x}}$. We need to show $\mathbf{h}=\mathbf{0}$.

For any $T \subseteq[n]$, let \mathbf{h}_{T} denote the vector \mathbf{h} restricted to T, i.e., coordinates not in T are zeroed out

RIP IMPLIES EXACT RECOVERY

Theorem. Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1+\lambda) s$, where $\lambda \geq(\beta / \alpha)^{2}$. Then every s-sparse vector $\mathbf{x} \in \mathbb{R}^{n}$ is recovered exactly by solving the program (*), i..e, the solution satisfies $\hat{\mathbf{x}}=\mathbf{x}$.

Notations: Let $\mathbf{h}=\mathbf{x}-\hat{\mathbf{x}}$. We need to show $\mathbf{h}=\mathbf{0}$.

For any $T \subseteq[n]$, let \mathbf{h}_{T} denote the vector \mathbf{h} restricted to T, i.e., coordinates not in T are zeroed out

Let I_{0} be the support of \mathbf{x} (the set of non-zero coordinates), so $\left|I_{0}\right| \leq s$.

Lemma. $\left\|\mathbf{h}_{\bar{I}_{0}}\right\|_{1} \leq\left\|\mathbf{h}_{I_{0}}\right\|_{1}$

Lemma. $\left\|\mathbf{h}_{\bar{I}_{0}}\right\|_{1} \leq\left\|\mathbf{h}_{I_{0}}\right\|_{1}$
Proof. $\|\mathbf{x}\|_{1}=\|\hat{\mathbf{x}}\|_{1}=\|\mathbf{x}+\mathbf{h}\|_{1}=\left\|\mathbf{x}_{I_{0}}+\mathbf{h}_{I_{0}}\right\|_{1}+\left\|\mathbf{h}_{\bar{I}_{0}}\right\|_{1} \geq\|\mathbf{x}\|_{1}-\left\|\mathbf{h}_{I_{0}}\right\|_{1}+\left\|\mathbf{h}_{\bar{I}_{0}}\right\|_{1}$

RIP IMPLIES EXACT RECOVERY

RIP IMPLIES EXACT RECOVERY

Theorem. Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1+\lambda) s$, where $\lambda \geq(\beta / \alpha)^{2}$. Then every s-sparse vector $\mathbf{x} \in \mathbb{R}^{n}$ is recovered exactly by solving the program (*), i..e, the solution satisfies $\hat{\mathbf{x}}=\mathbf{x}$.

RIP IMPLIES EXACT RECOVERY

Theorem. Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1+\lambda) s$, where $\lambda \geq(\beta / \alpha)^{2}$. Then every s-sparse vector $\mathbf{x} \in \mathbb{R}^{n}$ is recovered exactly by solving the program (*), i..e, the solution satisfies $\hat{\mathbf{x}}=\mathbf{x}$.

Notations: Let $\mathrm{h}=\mathrm{x}-\hat{\mathbf{x}}$. We need to show $\mathbf{h}=\mathbf{0}$.

RIP IMPLIES EXACT RECOVERY

Theorem. Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1+\lambda) s$, where $\lambda \geq(\beta / \alpha)^{2}$. Then every s-sparse vector $\mathbf{x} \in \mathbb{R}^{n}$ is recovered exactly by solving the program (*), i..e, the solution satisfies $\hat{\mathbf{x}}=\mathbf{x}$.

Notations: Let $\mathrm{h}=\mathrm{x}-\hat{\mathbf{x}}$. We need to show $\mathbf{h}=\mathbf{0}$.

For any $T \subseteq[n]$, let \mathbf{h}_{T} denote the vector \mathbf{h} restricted to T, i.e., coordinates not in T are zeroed out

RIP IMPLIES EXACT RECOVERY

Theorem. Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1+\lambda) s$, where $\lambda \geq(\beta / \alpha)^{2}$. Then every s-sparse vector $\mathbf{x} \in \mathbb{R}^{n}$ is recovered exactly by solving the program (*), i..e, the solution satisfies $\hat{\mathbf{x}}=\mathbf{x}$.

Notations: Let $\mathrm{h}=\mathrm{x}-\hat{\mathbf{x}}$. We need to show $\mathbf{h}=\mathbf{0}$.

For any $T \subseteq[n]$, let \mathbf{h}_{T} denote the vector \mathbf{h} restricted to T, i.e., coordinates not in T are zeroed out

Let I_{0} be the support of \mathbf{x} (the set of non-zero coordinates), so $\left|I_{0}\right| \leq s$.

RIP IMPLIES EXACT RECOVERY

Theorem. Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1+\lambda) s$, where $\lambda \geq(\beta / \alpha)^{2}$. Then every s-sparse vector $\mathbf{x} \in \mathbb{R}^{n}$ is recovered exactly by solving the program (*), i..e, the solution satisfies $\hat{\mathbf{x}}=\mathbf{x}$.

Notations: Let $\mathrm{h}=\mathrm{x}-\hat{\mathbf{x}}$. We need to show $\mathbf{h}=\mathbf{0}$.

For any $T \subseteq[n]$, let \mathbf{h}_{T} denote the vector \mathbf{h} restricted to T, i.e., coordinates not in T are zeroed out

Let I_{0} be the support of \mathbf{x} (the set of non-zero coordinates), so $\left|I_{0}\right| \leq s$.
Sort coordinates of \mathbf{h} in \bar{I}_{0} in absolute values. Let I_{1} be the set of next largest λs coordinates, I_{2} the next λs coordinates, and so on. Let $I_{0,1}$ be $I_{0} \cup I_{1}$

Theorem. Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1+\lambda) s$, where $\lambda \geq(\beta / \alpha)^{2}$. Then every s-sparse vector $\mathbf{x} \in \mathbb{R}^{n}$ is recovered exactly by solving the program (*), i..e, the solution satisfies $\hat{\mathbf{x}}=\mathbf{x}$.

Theorem. Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1+\lambda) s$, where $\lambda \geq(\beta / \alpha)^{2}$. Then every s-sparse vector $\mathbf{x} \in \mathbb{R}^{n}$ is recovered exactly by solving the program (*), i..e, the solution satisfies $\hat{\mathbf{x}}=\mathbf{x}$.

Proof. We have $A \mathbf{h}=\mathbf{0}$, we have $0=\|A \mathbf{h}\|_{2} \geq\left\|A \mathbf{h}_{I_{0,1}}\right\|_{2}-\left\|A \mathbf{h}_{\overline{I_{0,1}}}\right\|_{2}$

Theorem. Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1+\lambda) s$, where $\lambda \geq(\beta / \alpha)^{2}$. Then every s-sparse vector $\mathbf{x} \in \mathbb{R}^{n}$ is recovered exactly by solving the program (*), i..e, the solution satisfies $\hat{\mathbf{x}}=\mathbf{x}$.

Proof. We have $A \mathbf{h}=\mathbf{0}$, we have $0=\|A \mathbf{h}\|_{2} \geq\left\|A \mathbf{h}_{I_{0,1}}\right\|_{2}-\left\|A \mathbf{h}_{\overline{I_{0,1}}}\right\|_{2}$
Since $\left|I_{0,1}\right| \leq s+\lambda s$, RIP yields $\left\|A \mathbf{h}_{I_{0,1}}\right\|_{2} \geq \alpha\left\|\mathbf{h}_{I_{0,1}}\right\|_{2}$

Theorem. Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1+\lambda) s$, where $\lambda \geq(\beta / \alpha)^{2}$. Then every s-sparse vector $\mathbf{x} \in \mathbb{R}^{n}$ is recovered exactly by solving the program (*), i..e, the solution satisfies $\hat{\mathbf{x}}=\mathbf{x}$.

Proof. We have $A \mathbf{h}=\mathbf{0}$, we have $0=\|A \mathbf{h}\|_{2} \geq\left\|A \mathbf{h}_{I_{0,1}}\right\|_{2}-\left\|A \mathbf{h}_{\overline{I_{0,1}}}\right\|_{2}$
Since $\left|I_{0,1}\right| \leq s+\lambda s$, RIP yields $\left\|A \mathbf{h}_{I_{0,1}}\right\|_{2} \geq \alpha\left\|\mathbf{h}_{I_{0,1}}\right\|_{2}$
On the other side, $\left\|A \mathbf{h}_{\overline{0_{0,1}}}\right\|_{2} \leq \sum_{i \geq 2}\left\|A \mathbf{h}_{I_{i}}\right\|_{2} \leq \beta \sum_{i \geq 2}\left\|\mathbf{h}_{I_{i}}\right\|_{2}$

Theorem. Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1+\lambda) s$, where $\lambda \geq(\beta / \alpha)^{2}$. Then every s-sparse vector $\mathbf{x} \in \mathbb{R}^{n}$ is recovered exactly by solving the program (*), i..e, the solution satisfies $\hat{\mathbf{x}}=\mathbf{x}$.

Proof. We have $A \mathbf{h}=\mathbf{0}$, we have $0=\|A \mathbf{h}\|_{2} \geq\left\|A \mathbf{h}_{I_{0,1}}\right\|_{2}-\left\|A \mathbf{h}_{\overline{I_{0,1}}}\right\|_{2}$
Since $\left|I_{0,1}\right| \leq s+\lambda s$, RIP yields $\left\|A \mathbf{h}_{I_{0,1}}\right\|_{2} \geq \alpha\left\|\mathbf{h}_{I_{0,1}}\right\|_{2}$
On the other side, $\left\|A \mathbf{h}_{\overline{O_{0,1}}}\right\|_{2} \leq \sum_{i \geq 2}\left\|A \mathbf{h}_{I_{i}}\right\|_{2} \leq \beta \sum_{i \geq 2}\left\|\mathbf{h}_{I_{i}}\right\|_{2}$
Crucial step: for $i \geq 2, \forall j \in I_{i}$, we have $\left|h_{j}\right| \leq \frac{1}{\lambda s}\left\|\mathbf{h}_{I_{i-1}}\right\|_{1}$, and so $\left\|\mathbf{h}_{I_{i}}\right\|_{2} \leq \frac{1}{\sqrt{\lambda s}}\left\|\mathbf{h}_{I_{i-1}}\right\|_{1}$

Theorem. Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1+\lambda) s$, where $\lambda \geq(\beta / \alpha)^{2}$. Then every s-sparse vector $\mathbf{x} \in \mathbb{R}^{n}$ is recovered exactly by solving the program (*), i..e, the solution satisfies $\hat{\mathbf{x}}=\mathbf{x}$.

Proof. We have $A \mathbf{h}=\mathbf{0}$, we have $0=\|A \mathbf{h}\|_{2} \geq\left\|A \mathbf{h}_{I_{0,1}}\right\|_{2}-\left\|A \mathbf{h}_{\overline{I_{0,1}}}\right\|_{2}$
Since $\left|I_{0,1}\right| \leq s+\lambda s$, RIP yields $\left\|A \mathbf{h}_{I_{0,1}}\right\|_{2} \geq \alpha\left\|\mathbf{h}_{I_{0,1}}\right\|_{2}$
On the other side, $\left\|A \mathbf{h}_{\overline{O_{0,1}}}\right\|_{2} \leq \sum_{i \geq 2}\left\|A \mathbf{h}_{I_{i}}\right\|_{2} \leq \beta \sum_{i \geq 2}\left\|\mathbf{h}_{I_{i}}\right\|_{2}$
Crucial step: for $i \geq 2, \forall j \in I_{i}$, we have $\left|h_{j}\right| \leq \frac{1}{\lambda s}\left\|\mathbf{h}_{I_{i-1}}\right\|_{1}$, and so $\left\|\mathbf{h}_{I_{i}}\right\|_{2} \leq \frac{1}{\sqrt{\lambda s}}\left\|\mathbf{h}_{I_{i-1}}\right\|_{1}$
Therefore $\sum_{i \geq 2}\left\|\mathbf{h}_{I_{i}}\right\|_{2} \leq \frac{1}{\sqrt{\lambda s}} \sum_{i \geq 1}\left\|\mathbf{h}_{I_{i}}\right\|_{1}=\frac{1}{\sqrt{\lambda s}}\left\|\mathbf{h}_{T_{0}}\right\|_{1} \leq \frac{1}{\sqrt{\lambda s}}\left\|\mathbf{h}_{I_{0}}\right\|_{1} \leq \frac{1}{\sqrt{\lambda}}\left\|\mathbf{h}_{I_{0}}\right\|_{2} \leq \frac{1}{\sqrt{\lambda}}\left\|\mathbf{h}_{I_{0,1}}\right\|_{2}$

Theorem. Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1+\lambda) s$, where $\lambda \geq(\beta / \alpha)^{2}$. Then every s-sparse vector $\mathbf{x} \in \mathbb{R}^{n}$ is recovered exactly by solving the program (*), i..e, the solution satisfies $\hat{\mathbf{x}}=\mathbf{x}$.

Proof. We have $A \mathbf{h}=\mathbf{0}$, we have $0=\|A \mathbf{h}\|_{2} \geq\left\|A \mathbf{h}_{I_{0,1}}\right\|_{2}-\left\|A \mathbf{h}_{\overline{I_{0,1}}}\right\|_{2}$
Since $\left|I_{0,1}\right| \leq s+\lambda s$, RIP yields $\left\|A \mathbf{h}_{I_{0,1}}\right\|_{2} \geq \alpha\left\|\mathbf{h}_{I_{0,1}}\right\|_{2}$
On the other side, $\left\|A \mathbf{h}_{\overline{0_{0,1}}}\right\|_{2} \leq \sum_{i \geq 2}\left\|A \mathbf{h}_{I_{i}}\right\|_{2} \leq \beta \sum_{i \geq 2}\left\|\mathbf{h}_{I_{i}}\right\|_{2}$

Theorem. Suppose that an $m \times n$ matrix A satisfies the RIP with some parameters α, β and $(1+\lambda) s$, where $\lambda \geq(\beta / \alpha)^{2}$. Then every s-sparse vector $\mathbf{x} \in \mathbb{R}^{n}$ is recovered exactly by solving the program (*), i..e, the solution satisfies $\hat{\mathbf{x}}=\mathbf{x}$.

Proof. We have $A \mathbf{h}=\mathbf{0}$, we have $0=\|A \mathbf{h}\|_{2} \geq\left\|A \mathbf{h}_{I_{0,1}}\right\|_{2}-\left\|A \mathbf{h}_{\overline{I_{0,1}}}\right\|_{2}$
Since $\left|I_{0,1}\right| \leq s+\lambda s$, RIP yields $\left\|A \mathbf{h}_{I_{0,1}}\right\|_{2} \geq \alpha\left\|\mathbf{h}_{I_{0,1}}\right\|_{2}$
On the other side, $\left\|A \mathbf{h}_{\overline{O_{0,1}}}\right\|_{2} \leq \sum_{i \geq 2}\left\|A \mathbf{h}_{I_{i}}\right\|_{2} \leq \beta \sum_{i \geq 2}\left\|\mathbf{h}_{I_{i}}\right\|_{2}$
So we have $\frac{\beta}{\sqrt{\lambda}}\left\|\mathbf{h}_{I_{0,1}}\right\|_{2} \geq \alpha\left\|\mathbf{h}_{I_{0,1}}\right\|_{2}$. But since $\lambda \geq(\beta / \alpha)^{2}$, this implies $\mathbf{h}_{I_{0,1}}=\mathbf{0}$, which by definition means $\mathbf{h}=\mathbf{0}$.

