Fast JL Transform

Hu Fu @SHUFE October 2023

AMS and JL in Perspective

AMS and JL in Perspective

- Recall: JL-transform multiplies $\mathbf{x} \in \mathbb{R}^{d}$ with a $t \times d$ matrix with i.i.d. standard Gaussian entries

AMS and JL in Perspective

- Recall: JL-transform multiplies $\mathbf{x} \in \mathbb{R}^{d}$ with a $t \times d$ matrix with i.i.d. standard Gaussian entries
- AMS emulates JL-transform with a matrix with $\{0,1\}$ entries, each row generated by a 4 -wise independent hash function

AMS and JL in Perspective

- Recall: JL-transform multiplies $\mathbf{x} \in \mathbb{R}^{d}$ with a $t \times d$ matrix with i.i.d. standard Gaussian entries
- AMS emulates JL-transform with a matrix with $\{0,1\}$ entries, each row generated by a 4 -wise independent hash function
- This suggests that the matrix in JL-transform may be made simpler

AMS and JL in Perspective

- Recall: JL-transform multiplies $\mathbf{x} \in \mathbb{R}^{d}$ with a $t \times d$ matrix with i.i.d. standard Gaussian entries
- AMS emulates JL-transform with a matrix with $\{0,1\}$ entries, each row generated by a 4 -wise independent hash function
- This suggests that the matrix in JL-transform may be made simpler
- Achlioptas (2003) gave a transform with matrix entries from $\{-1,0,1\}$, about $2 / 3$ of them being 0

AMS and JL in Perspective

- Recall: JL-transform multiplies $\mathbf{x} \in \mathbb{R}^{d}$ with a $t \times d$ matrix with i.i.d. standard Gaussian entries
- AMS emulates JL-transform with a matrix with $\{0,1\}$ entries, each row generated by a 4 -wise independent hash function
- This suggests that the matrix in JL-transform may be made simpler
- Achlioptas (2003) gave a transform with matrix entries from $\{-1,0,1\}$, about $2 / 3$ of them being 0
- Count-Sketch in fact approximately preserves ℓ_{2} norm (see Problem Set 3)

AMS and JL in Perspective

- Recall: JL-transform multiplies $\mathbf{x} \in \mathbb{R}^{d}$ with a $t \times d$ matrix with i.i.d. standard Gaussian entries
- AMS emulates JL-transform with a matrix with $\{0,1\}$ entries, each row generated by a 4 -wise independent hash function
- This suggests that the matrix in JL-transform may be made simpler
- Achlioptas (2003) gave a transform with matrix entries from $\{-1,0,1\}$, about $2 / 3$ of them being 0
- Count-Sketch in fact approximately preserves ℓ_{2} norm (see Problem Set 3)
- Recall we had pairwise independent hash functions $h:[d] \rightarrow[w]$ and $g:[d] \rightarrow\{ \pm 1\}$.

AMS and JL in Perspective

- Recall: JL-transform multiplies $\mathbf{x} \in \mathbb{R}^{d}$ with a $t \times d$ matrix with i.i.d. standard Gaussian entries
- AMS emulates JL-transform with a matrix with $\{0,1\}$ entries, each row generated by a 4 -wise independent hash function
- This suggests that the matrix in JL-transform may be made simpler
- Achlioptas (2003) gave a transform with matrix entries from $\{-1,0,1\}$, about $2 / 3$ of them being 0
- Count-Sketch in fact approximately preserves ℓ_{2} norm (see Problem Set 3)
- Recall we had pairwise independent hash functions $h:[d] \rightarrow[w]$ and $g:[d] \rightarrow\{ \pm 1\}$.
- The operation of Count-Sketch can be seen as multiplying \mathbf{x} by a $w \times d$ matrix M with $M_{h(i), i}=g(i)$ and all other entries 0.

Making JL-transform Faster

Making JL-transform Faster

- The original JL-transform takes time $\Omega(t d)$ to multiply the matrix with \mathbf{x}

Making JL-transform Faster

- The original JL-transform takes time $\Omega(t d)$ to multiply the matrix with \mathbf{x}
. $t=O\left(\log \left(\frac{1}{\delta}\right) \epsilon^{-2}\right)$ if we would like to preserve the norm w.p. $1-\delta$

Making JL-transform Faster

- The original JL-transform takes time $\Omega(t d)$ to multiply the matrix with \mathbf{x}
. $t=O\left(\log \left(\frac{1}{\delta}\right) \epsilon^{-2}\right)$ if we would like to preserve the norm w.p. $1-\delta$
- Can it be made faster asymptotically?

Making JL-transform Faster

- The original JL-transform takes time $\Omega(t d)$ to multiply the matrix with \mathbf{x}
. $t=O\left(\log \left(\frac{1}{\delta}\right) \epsilon^{-2}\right)$ if we would like to preserve the norm w.p. $1-\delta$
- Can it be made faster asymptotically?
- Two approaches:

Making JL-transform Faster

- The original JL-transform takes time $\Omega(t d)$ to multiply the matrix with \mathbf{x}
. $t=O\left(\log \left(\frac{1}{\delta}\right) \epsilon^{-2}\right)$ if we would like to preserve the norm w.p. $1-\delta$
- Can it be made faster asymptotically?
- Two approaches:
- Sparse JL-Transforms: construct matrices satisfying the JL-property with few nonzero entries

Making JL-transform Faster

- The original JL-transform takes time $\Omega(t d)$ to multiply the matrix with \mathbf{x}
. $t=O\left(\log \left(\frac{1}{\delta}\right) \epsilon^{-2}\right)$ if we would like to preserve the norm w.p. $1-\delta$
- Can it be made faster asymptotically?
- Two approaches:
- Sparse JL-Transforms: construct matrices satisfying the JL-property with few nonzero entries
- Fast JL-Transforms: construct matrices satisfying the JL-property with structural properties which allow faster matrix multiplication [Ailon \& Chazelle, 2006]

Making JL-transform Faster

- The original JL-transform takes time $\Omega(t d)$ to multiply the matrix with \mathbf{x}
. $t=O\left(\log \left(\frac{1}{\delta}\right) \epsilon^{-2}\right)$ if we would like to preserve the norm w.p. $1-\delta$
- Can it be made faster asymptotically?
- Two approaches:
- Sparse JL-Transforms: construct matrices satisfying the JL-property with few nonzero entries
- Fast JL-Transforms: construct matrices satisfying the JL-property with structural properties which allow faster matrix multiplication [Ailon \& Chazelle, 2006]

First Attempt

First Attempt

- What happens if we sample, for each entry, just one coordinate of \mathbf{x} ?

First Attempt

- What happens if we sample, for each entry, just one coordinate of \mathbf{x} ?
- Consider a $t \times d$ matrix S : in each row a random entry is 1 , and all other entries are 0 .

First Attempt

- What happens if we sample, for each entry, just one coordinate of \mathbf{x} ?
- Consider a $t \times d$ matrix S : in each row a random entry is 1 , and all other entries are 0 .

$$
\mathbb{E}\left[(S \mathbf{x})_{i}^{2}\right]=\sum_{j=1}^{d} \frac{x_{j}^{2}}{d} \Rightarrow \mathbb{E}\left[\left\|\sqrt{\frac{d}{t}} S \mathbf{x}\right\|_{2}^{2}\right]=\|\mathbf{x}\|_{2}^{2}
$$

First Attempt

- What happens if we sample, for each entry, just one coordinate of \mathbf{x} ?
- Consider a $t \times d$ matrix S : in each row a random entry is 1 , and all other entries are 0 .

$$
\mathbb{E}\left[(S \mathbf{x})_{i}^{2}\right]=\sum_{j=1}^{d} \frac{x_{j}^{2}}{d} \Rightarrow \mathbb{E}\left[\left\|\sqrt{\frac{d}{t}} S \mathbf{x}\right\|_{2}^{2}\right]=\|\mathbf{x}\|_{2}^{2}
$$

- How well does $\|S \mathbf{x}\|_{2}^{2}$ concentrate around its expectation?

First Attempt

- What happens if we sample, for each entry, just one coordinate of \mathbf{x} ?
- Consider a $t \times d$ matrix S : in each row a random entry is 1 , and all other entries are 0 .

$$
\mathbb{E}\left[(S \mathbf{x})_{i}^{2}\right]=\sum_{j=1}^{d} \frac{x_{j}^{2}}{d} \Rightarrow \mathbb{E}\left[\left\|\sqrt{\frac{d}{t}} S \mathbf{x}\right\|_{2}^{2}\right]=\|\mathbf{x}\|_{2}^{2}
$$

- How well does $\|S \mathbf{x}\|_{2}^{2}$ concentrate around its expectation?
- In the worst case, \mathbf{x} has only one non-zero entry, then t needs to be $\Theta(d)$ for us to see that entry

First Attempt

- What happens if we sample, for each entry, just one coordinate of \mathbf{x} ?
- Consider a $t \times d$ matrix S : in each row a random entry is 1 , and all other entries are 0 .

$$
\mathbb{E}\left[(S \mathbf{x})_{i}^{2}\right]=\sum_{j=1}^{d} \frac{x_{j}^{2}}{d} \Rightarrow \mathbb{E}\left[\left\|\sqrt{\frac{d}{t}} S \mathbf{x}\right\|_{2}^{2}\right]=\|\mathbf{x}\|_{2}^{2}
$$

- How well does $\|S \mathbf{x}\|_{2}^{2}$ concentrate around its expectation?
- In the worst case, \mathbf{x} has only one non-zero entry, then t needs to be $\Theta(d)$ for us to see that entry
. Generally, this doesn't work well when $\frac{\|\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{2}} \approx 1$

Rotating \mathbf{x}

Rotating \mathbf{x}

- The ratio $\frac{\|\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{2}}$ depends heavily on the bases in which we represent \mathbf{x}

Rotating \mathbf{x}

- The ratio $\frac{\|\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{2}}$ depends heavily on the bases in which we represent \mathbf{x}
- E.g., the ratio is 1 for $(1,0, \cdots, 0)$, but is only $1 / \sqrt{d}$ if we rotate it to $(1 / \sqrt{d}, \cdots, 1 / \sqrt{d})$

Rotating \mathbf{x}

- The ratio $\frac{\|\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{2}}$ depends heavily on the bases in which we represent \mathbf{x}
- E.g., the ratio is 1 for $(1,0, \cdots, 0)$, but is only $1 / \sqrt{d}$ if we rotate it to $(1 / \sqrt{d}, \cdots, 1 / \sqrt{d})$
- The ratio is close to 1 if \mathbf{x} "aligns well" with the axes, i.e., standard basis

Rotating \mathbf{x}

- The ratio $\frac{\|\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{2}}$ depends heavily on the bases in which we represent \mathbf{x}
- E.g., the ratio is 1 for $(1,0, \cdots, 0)$, but is only $1 / \sqrt{d}$ if we rotate it to $(1 / \sqrt{d}, \cdots, 1 / \sqrt{d})$
- The ratio is close to 1 if \mathbf{X} "aligns well" with the axes, i.e., standard basis
- Idea: first rotate \mathbf{x} randomly - equivalent to multiplying it by a random orthogonal matrix M

Rotating \mathbf{x}

- The ratio $\frac{\|\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{2}}$ depends heavily on the bases in which we represent \mathbf{x}
- E.g., the ratio is 1 for $(1,0, \cdots, 0)$, but is only $1 / \sqrt{d}$ if we rotate it to $(1 / \sqrt{d}, \cdots, 1 / \sqrt{d})$
- The ratio is close to 1 if \mathbf{x} "aligns well" with the axes, i.e., standard basis
- Idea: first rotate \mathbf{x} randomly - equivalent to multiplying it by a random orthogonal matrix M

Aside on Norms

Aside on Norms

- In general, for $1 \leq r \leq s$, we have $\|x\|_{s} \leq\|x\|_{r} \leq d^{\frac{1}{-}-\frac{1}{s}}\|x\|_{s}$

Aside on Norms

- In general, for $1 \leq r \leq s$, we have $\|x\|_{s} \leq\|x\|_{r} \leq d^{\frac{1}{r}-\frac{1}{s}}\|x\|_{s}$
- Special case: $\|x\|_{2} \leq\|x\|_{1} \leq \sqrt{d}\|x\|_{2}$, by Cauchy-Schwarz

Aside on Norms

- In general, for $1 \leq r \leq s$, we have $\|x\|_{s} \leq\|x\|_{r} \leq d^{\frac{1}{r}-\frac{1}{s}}\|x\|_{s}$
- Special case: $\|x\|_{2} \leq\|x\|_{1} \leq \sqrt{d}\|x\|_{2}$, by Cauchy-Schwarz
- To prove the general case, use Hölder's inequality: for $p, q \geq 1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $f, g \in \mathbb{R}^{d}$, we have $\|f g\|_{1} \leq\|f\|^{p}\|g\|^{q}$

Aside on Norms

- In general, for $1 \leq r \leq s$, we have $\|x\|_{s} \leq\|x\|_{r} \leq d^{\frac{1}{r}-\frac{1}{s}}\|x\|_{s}$
- Special case: $\|x\|_{2} \leq\|x\|_{1} \leq \sqrt{d}\|x\|_{2}$, by Cauchy-Schwarz
- To prove the general case, use Hölder's inequality: for $p, q \geq 1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $f, g \in \mathbb{R}^{d}$, we have $\|f g\|_{1} \leq\|f\|^{p}\|g\|^{q}$
- Let $f=\left(\left|x_{1}^{r}\right|, \ldots,\left|x_{d}^{r}\right|\right), g=(1, \cdots, 1), p=\frac{s}{r} \geq 1, q=\frac{s}{s-r}$.

Aside on Norms

- In general, for $1 \leq r \leq s$, we have $\|x\|_{s} \leq\|x\|_{r} \leq d^{\frac{1}{r}-\frac{1}{s}}\|x\|_{s}$
- Special case: $\|x\|_{2} \leq\|x\|_{1} \leq \sqrt{d}\|x\|_{2}$, by Cauchy-Schwarz
- To prove the general case, use Hölder's inequality: for $p, q \geq 1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $f, g \in \mathbb{R}^{d}$, we have $\|f g\|_{1} \leq\|f\|^{p}\|g\|^{q}$
- Let $f=\left(\left|x_{1}^{r}\right|, \ldots,\left|x_{d}^{r}\right|\right), g=(1, \cdots, 1), p=\frac{s}{r} \geq 1, q=\frac{s}{s-r}$.
- We have $\|x\|_{r}^{r} \leq\|x\|_{s}^{r} d^{\frac{s-r}{s}} \Rightarrow\|x\|_{r} \leq\|x\|_{s} d^{\frac{1}{r}-\frac{1}{s}}$

Walsh-Hadamard Matrix

Def. A Hadamard matrix is an orthogonal $d \times d$ matrix with all entries from $\{1 / \sqrt{d},-1 / \sqrt{d}\}$.

Walsh-Hadamard Matrix

Def. A Hadamard matrix is an orthogonal $d \times d$ matrix with all entries from $\{1 / \sqrt{d},-1 / \sqrt{d}\}$.
Example. $H_{2}=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right) / \sqrt{2}$

Walsh-Hadamard Matrix

Def. A Hadamard matrix is an orthogonal $d \times d$ matrix with all entries from $\{1 / \sqrt{d},-1 / \sqrt{d}\}$.
Example. $H_{2}=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right) / \sqrt{2}$
Walsh-Hadamard Matrices. $H_{d}=\left(\begin{array}{cc}H_{d / 2} & H_{d / 2} \\ H_{d / 2} & -H_{d / 2}\end{array}\right) / \sqrt{2}$

Walsh-Hadamard Matrix

Def. A Hadamard matrix is an orthogonal $d \times d$ matrix with all entries from $\{1 / \sqrt{d},-1 / \sqrt{d}\}$.
Example. $H_{2}=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right) / \sqrt{2}$
Welsh-Hadamard Matrices. $H_{d}=\left(\begin{array}{cc}H_{d / 2} & H_{d / 2} \\ H_{d / 2} & -H_{d / 2}\end{array}\right) / \sqrt{2}$
A recursive
construction

Walsh-Hadamard Matrix

Def. A Hadamard matrix is an orthogonal $d \times d$ matrix with all entries from $\{1 / \sqrt{d},-1 / \sqrt{d}\}$.
Example. $H_{2}=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right) / \sqrt{2}$
Welsh-Hadamard Matrices. $H_{d}=\left(\begin{array}{cc}H_{d / 2} & H_{d / 2} \\ H_{d / 2} & -H_{d / 2}\end{array}\right) / \sqrt{2}$
A recursive
construction

[^0]
Walsh-Hadamard Matrix

Def. A Hadamard matrix is an orthogonal $d \times d$ matrix with all entries from $\{1 / \sqrt{d},-1 / \sqrt{d}\}$.
Example. $H_{2}=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right) / \sqrt{2}$
Welsh-Hadamard Matrices. $H_{d}=\left(\begin{array}{cc}H_{d / 2} & H_{d / 2} \\ H_{d / 2} & -H_{d / 2}\end{array}\right) / \sqrt{2}$

A recursive construction

Claim. H_{d} is a Hadamard matrix

Proof. By induction, each entry of $H_{d / 2}$ is in $\{ \pm 1 / \sqrt{d / 2}\}$, so each entry of H_{d} is in $\{ \pm 1 / \sqrt{d}\}$.
$H_{d}^{\top} H_{d}=\left(\begin{array}{cc}H_{d / 2}^{\top} & H_{d / 2}^{\top} \\ H_{d / 2}^{\top} & -H_{d / 2}^{\top}\end{array}\right)\left(\begin{array}{cc}H_{d / 2} & H_{d / 2} \\ H_{d / 2} & -H_{d / 2}\end{array}\right) / 2=\left(\begin{array}{cc}2 H_{d / 2}^{\top} H_{d / 2} & 0 \\ 0 & 2 H_{d / 2}^{\top} H_{d / 2}\end{array}\right) / 2=I$

Walsh-Hadamard Matrix

Def. A Hadamard matrix is an orthogonal $d \times d$ matrix with all entries from $\{1 / \sqrt{d},-1 / \sqrt{d}\}$.
Example. $H_{2}=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right) / \sqrt{2}$
Welsh-Hadamard Matrices. $H_{d}=\left(\begin{array}{cc}H_{d / 2} & H_{d / 2} \\ H_{d / 2} & -H_{d / 2}\end{array}\right) / \sqrt{2}$

A recursive
construction

Claim. H_{d} is a Hadamard matrix

Claim. The product $H_{d} \mathbf{x}$ can be computed in time $O(d \log d)$.

Walsh-Hadamard Matrix

Def. A Hadamard matrix is an orthogonal $d \times d$ matrix with all entries from $\{1 / \sqrt{d},-1 / \sqrt{d}\}$.
Example. $H_{2}=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right) / \sqrt{2}$
Welsh-Hadamard Matrices. $H_{d}=\left(\begin{array}{cc}H_{d / 2} & H_{d / 2} \\ H_{d / 2} & -H_{d / 2}\end{array}\right) / \sqrt{2}$
A recursive
construction

Claim. H_{d} is a Hadamard matrix

Claim. The product $H_{d} \mathbf{x}$ can be computed in time $O(d \log d)$.
similar to Fast Fourier Transform

Walsh-Hadamard Matrix

Def. A Hadamard matrix is an orthogonal $d \times d$ matrix with all entries from $\{1 / \sqrt{d},-1 / \sqrt{d}\}$.
Example. $H_{2}=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right) / \sqrt{2}$
Welsh-Hadamard Matrices. $H_{d}=\left(\begin{array}{cc}H_{d / 2} & H_{d / 2} \\ H_{d / 2} & -H_{d / 2}\end{array}\right) / \sqrt{2}$

A recursive
construction

Claim. H_{d} is a Hadamard matrix

Claim. The product $H_{d} \mathbf{x}$ can be computed in time $O(d \log d)$. similar to Fast Fourier Transform

Randomized Hadamard Matrix

Randomized Hadamard Matrix

- Of course a "good" vector \mathbf{x} can become a "bad" $H_{d} \mathbf{x}$.

Randomized Hadamard Matrix

- Of course a "good" vector \mathbf{x} can become a "bad" $H_{d} \mathbf{x}$.
- We need to introduce randomness to H_{d}

Randomized Hadamard Matrix

- Of course a "good" vector \mathbf{x} can become a "bad" $H_{d} \mathbf{x}$.
- We need to introduce randomness to H_{d}
- The - 1 in H_{2} may as well be elsewhere; so is the "-" in the recursive definition

Randomized Hadamard Matrix

- Of course a "good" vector \mathbf{x} can become a "bad" $H_{d} \mathbf{x}$.
- We need to introduce randomness to H_{d}
- The - 1 in H_{2} may as well be elsewhere; so is the "-" in the recursive definition
- Let D be a $d \times d$ diagonal matrix with diagonal entries randomly sampled from $\{-1,1\}$

Randomized Hadamard Matrix

- Of course a "good" vector \mathbf{x} can become a "bad" $H_{d} \mathbf{x}$.
- We need to introduce randomness to H_{d}
- The - 1 in H_{2} may as well be elsewhere; so is the "-" in the recursive definition
- Let D be a $d \times d$ diagonal matrix with diagonal entries randomly sampled from $\{-1,1\}$
- $H_{d} D$ is still Hadamard: $\left(H_{d} D\right)^{\top} H_{d} D=D^{\top} H_{d}^{\top} H_{d} D=I$.

Randomized Hadamard Matrix

- Of course a "good" vector \mathbf{x} can become a "bad" $H_{d} \mathbf{x}$.
- We need to introduce randomness to H_{d}
- The - 1 in H_{2} may as well be elsewhere; so is the "-" in the recursive definition
- Let D be a $d \times d$ diagonal matrix with diagonal entries randomly sampled from $\{-1,1\}$
- $H_{d} D$ is still Hadamard: $\left(H_{d} D\right)^{\top} H_{d} D=D^{\top} H_{d}^{\top} H_{d} D=I$.
- Write $H=H_{d}$ henceforth

Randomized Hadamard Matrix

- Of course a "good" vector \mathbf{x} can become a "bad" $H_{d} \mathbf{x}$.
- We need to introduce randomness to H_{d}
- The - 1 in H_{2} may as well be elsewhere; so is the "-" in the recursive definition
- Let D be a $d \times d$ diagonal matrix with diagonal entries randomly sampled from $\{-1,1\}$
- $H_{d} D$ is still Hadamard: $\left(H_{d} D\right)^{\top} H_{d} D=D^{\top} H_{d}^{\top} H_{d} D=I$.
- Write $H=H_{d}$ henceforth

Thm. For nonzero $\mathbf{x} \in \mathbb{R}^{d}$, let $\mathbf{y}=H D \mathbf{x}$, then $\mathbb{P}\left[\frac{\|\mathbf{y}\|_{\infty}}{\|\mathbf{y}\|_{2}} \geq \sqrt{\frac{2 \ln (4 d / \delta)}{d}}\right] \leq \frac{\delta}{2}$.
Thm. For nonzero $\mathbf{x} \in \mathbb{R}^{d}$, let $\mathbf{y}=H D \mathbf{x}$, then $\mathbb{P}\left[\frac{\|\mathbf{y}\|_{\infty}}{\|\mathbf{y}\|_{2}} \geq \sqrt{\frac{2 \ln (4 d / \delta)}{d}}\right] \leq \frac{\delta}{2}$.

Thm. For nonzero $\mathbf{x} \in \mathbb{R}^{d}$, let $\mathbf{y}=H D \mathbf{x}$, then $\mathbb{P}\left[\frac{\|\mathbf{y}\|_{\infty}}{\|\mathbf{y}\|_{2}} \geq \sqrt{\frac{2 \ln (4 d / \delta)}{d}}\right] \leq \frac{\delta}{2}$.
Proof. Without loss of generality, assume $\|\mathbf{x}\|_{2}=1$. Then $\|\mathbf{y}\|_{2}=\|H D \mathbf{x}\|_{2}=1$ as well.
To bound $\|\mathbf{y}\|_{\infty}$, note that for each i, y_{i} has the same distribution as $\frac{1}{\sqrt{d}} \sum_{j} D_{j} x_{j}$ where D_{j} 's are i.i.d.
Rademacher variables. If we let $z_{j}:=\frac{1}{\sqrt{d}} D_{j} x_{j}$, then $\mathbb{E}\left[z_{j}\right]=0$. But Chernoff bound does not apply...

Thm. For nonzero $\mathbf{x} \in \mathbb{R}^{d}$, let $\mathbf{y}=H D \mathbf{x}$, then $\mathbb{P}\left[\frac{\|\mathbf{y}\|_{\infty}}{\|\mathbf{y}\|_{2}} \geq \sqrt{\frac{2 \ln (4 d / \delta)}{d}}\right] \leq \frac{\delta}{2}$.
Proof. Without loss of generality, assume $\|\mathbf{x}\|_{2}=1$. Then $\|\mathbf{y}\|_{2}=\|H D \mathbf{x}\|_{2}=1$ as well.
To bound $\|\mathrm{y}\|_{\infty}$, note that for each i, y_{i} has the same distribution as $\frac{1}{\sqrt{d}} \sum_{j} D_{j} x_{j}$ where D_{j} 's are i.i.d.
Rademacher variables. If we let $z_{j}:=\frac{1}{\sqrt{d}} D_{j} x_{j}$, then $\mathbb{E}\left[z_{j}\right]=0$. But Chernoff bound does not apply...
Thm. (Hoeffding's Bound) If X_{1}, \cdots, X_{n} are independent random variables where $X_{i} \in\left[a_{i}, b_{i}\right]$. Let $X=\sum X_{i}$.
Then $\mathbb{P}(|X-\mathbb{E}[X]| \geq s) \leq 2 \exp \left(-\frac{2 s^{2}}{\sum_{i}\left(b_{i}-a_{i}\right)^{2}}\right)$.

Thm. For nonzero $\mathbf{x} \in \mathbb{R}^{d}$, let $\mathbf{y}=H D \mathbf{x}$, then $\mathbb{P}\left[\frac{\|\mathbf{y}\|_{\infty}}{\|\mathbf{y}\|_{2}} \geq \sqrt{\frac{2 \ln (4 d / \delta)}{d}}\right] \leq \frac{\delta}{2}$.
Proof. Without loss of generality, assume $\|\mathbf{x}\|_{2}=1$. Then $\|\mathbf{y}\|_{2}=\|H D \mathbf{x}\|_{2}=1$ as well.
To bound $\|\mathrm{y}\|_{\infty}$, note that for each i, y_{i} has the same distribution as $\frac{1}{\sqrt{d}} \sum_{j} D_{j} x_{j}$ where D_{j} 's are i.i.d.
Rademacher variables. If we let $z_{j}:=\frac{1}{\sqrt{d}} D_{j} x_{j}$, then $\mathbb{E}\left[z_{j}\right]=0$. But Chernoff bound does not apply...
Thm. (Hoeffding's Bound) If X_{1}, \cdots, X_{n} are independent random variables where $X_{i} \in\left[a_{i}, b_{i}\right]$. Let $X=\sum X_{i}$.
Then $\mathbb{P}(|X-\mathbb{E}[X]| \geq s) \leq 2 \exp \left(-\frac{2 s^{2}}{\sum_{i}\left(b_{i}-a_{i}\right)^{2}}\right)$.
Proof idea similar to Chernoff bound. Use the following bound on $\mathbb{E}\left[e^{\lambda X_{i}}\right]$:

Thm. For nonzero $\mathbf{x} \in \mathbb{R}^{d}$, let $\mathbf{y}=H D \mathbf{x}$, then $\mathbb{P}\left[\frac{\|\mathbf{y}\|_{\infty}}{\|\mathbf{y}\|_{2}} \geq \sqrt{\frac{2 \ln (4 d / \delta)}{d}}\right] \leq \frac{\delta}{2}$.
Proof. Without loss of generality, assume $\|\mathbf{x}\|_{2}=1$. Then $\|\mathbf{y}\|_{2}=\|H D \mathbf{x}\|_{2}=1$ as well.
To bound $\|\mathrm{y}\|_{\infty}$, note that for each i, y_{i} has the same distribution as $\frac{1}{\sqrt{d}} \sum_{j} D_{j} x_{j}$ where D_{j} 's are i.i.d.
Rademacher variables. If we let $z_{j}:=\frac{1}{\sqrt{d}} D_{j} x_{j}$, then $\mathbb{E}\left[z_{j}\right]=0$. But Chernoff bound does not apply...
Thm. (Hoeffding's Bound) If X_{1}, \cdots, X_{n} are independent random variables where $X_{i} \in\left[a_{i}, b_{i}\right]$. Let $X=\sum X_{i}$.
Then $\mathbb{P}(|X-\mathbb{E}[X]| \geq s) \leq 2 \exp \left(-\frac{2 s^{2}}{\sum_{i}\left(b_{i}-a_{i}\right)^{2}}\right)$.
Proof idea similar to Chernoff bound. Use the following bound on $\mathbb{E}\left[e^{\lambda X_{i}}\right]$:
Lemma. (Hoeffiding's Lemma) If random variable X is in $\left[a_{i}, b_{i}\right]$, then $\mathbb{E}\left[e^{\lambda(X-\mathbb{E}[X])}\right] \leq \exp \left(\frac{\lambda^{2}(b-a)^{2}}{8}\right)$.
Thm. For nonzero $\mathrm{x} \in \mathbb{R}^{d}$, let $\mathrm{y}=H D \mathbf{x}$, then $\mathbb{P}\left[\frac{\|\mathbf{y}\|_{\infty}}{\|\mathbf{y}\|_{2}} \geq \sqrt{\frac{2 \ln (4 d / \delta)}{d}}\right] \leq \frac{\delta}{2}$.

Proof. Without loss of generality, assume $\|x\|_{2}=1$. Then $\|\mathbf{y}\|_{2}=\|H D \mathbf{x}\|_{2}=1$ as well.
To bound $\|\mathrm{y}\|_{\infty}$, note that for each i, y_{i} has the same distribution as $\frac{1}{\sqrt{d}} \sum_{j} D_{j} x_{j}$ where D_{j} 's are i.i.d.
Rademacher variables. If we let $z_{j}:=\frac{1}{\sqrt{d}} D_{j} x_{j}$, then $\mathbb{E}\left[z_{j}\right]=0$. Chernoff bound does not apply since $z_{j} \in\left\{\frac{-x_{j}}{\sqrt{d}}, \frac{x_{j}}{\sqrt{d}}\right\}$.
To apply Hoeffding's bound, note that $\sum 4 x_{j}^{2} / d^{2}=4 / d$.

$$
\mathbb{P}\left[\left|\sum_{j} z_{j}\right| \geq \sqrt{\frac{2 \ln (4 d / \delta)}{d}}\right] \leq 2 \exp \left(-\frac{d}{2} \frac{2 \ln (4 d / \delta)}{d}\right)=2 \cdot \frac{\delta}{4 d}=\frac{\delta}{2 d} .
$$

The theorem follows from a union bound over y_{i} 's.

The Pieces We Have...

The Pieces We Have...

. For any $\mathbf{x} \in \mathbb{R}^{d}$ with $\|\mathbf{x}\|=1, \mathbb{P}\left[\left\|\sqrt{\frac{d}{t}} S H D \mathbf{x}\right\| \in[1-\epsilon, 1+\epsilon]\right]=$?

The Pieces We Have...

. For any $\mathbf{x} \in \mathbb{R}^{d}$ with $\|\mathbf{x}\|=1, \mathbb{P}\left[\left\|\sqrt{\frac{d}{t}} S H D \mathbf{x}\right\| \in[1-\epsilon, 1+\epsilon]\right]=$?

- $D \in\{-1,0,1\}^{d \times d}$: diagonal matrix with Rademacher entries

The Pieces We Have...

. For any $\mathbf{x} \in \mathbb{R}^{d}$ with $\|\mathbf{x}\|=1, \mathbb{P}\left[\left\|\sqrt{\frac{d}{t}} S H D \mathbf{x}\right\| \in[1-\epsilon, 1+\epsilon]\right]=$?

- $D \in\{-1,0,1\}^{d \times d}$: diagonal matrix with Rademacher entries
- $H \in\{-1 / \sqrt{d}, 1 / \sqrt{d}\}^{d \times d}$: Walsh Hadamard matrix

The Pieces We Have...

. For any $\mathbf{x} \in \mathbb{R}^{d}$ with $\|\mathbf{x}\|=1, \mathbb{P}\left[\left\|\sqrt{\frac{d}{t}} S H D \mathbf{x}\right\| \in[1-\epsilon, 1+\epsilon]\right]=$?

- $D \in\{-1,0,1\}^{d \times d}$: diagonal matrix with Rademacher entries
- $H \in\{-1 / \sqrt{d}, 1 / \sqrt{d}\}^{d \times d}$: Walsh Hadamard matrix
- $S \in\{0,1\}^{I \times d}$: Sampling matrix, with exactly one 1 in each row

The Pieces We Have...

. For any $\mathbf{x} \in \mathbb{R}^{d}$ with $\|\mathbf{x}\|=1, \mathbb{P}\left[\left\|\sqrt{\frac{d}{t}} S H D \mathbf{x}\right\| \in[1-\epsilon, 1+\epsilon]\right]=$?

- $D \in\{-1,0,1\}^{d \times d}$: diagonal matrix with Rademacher entries
- $H \in\{-1 / \sqrt{d}, 1 / \sqrt{d}\}^{d \times d}$: Walsh Hadamard matrix
- $S \in\{0,1\}^{I \times d}$: Sampling matrix, with exactly one 1 in each row
- $\|H D \mathbf{x}\|_{2}=1$. With probability $\geq 1-\frac{\delta}{2},\|H D \mathbf{x}\|_{\infty} \leq \sqrt{\frac{2 \ln (4 d / \delta)}{d}}$

The Pieces We Have...

. For any $\mathbf{x} \in \mathbb{R}^{d}$ with $\|\mathbf{x}\|=1, \mathbb{P}\left[\left\|\sqrt{\frac{d}{t}} S H D \mathbf{x}\right\| \in[1-\epsilon, 1+\epsilon]\right]=$?

- $D \in\{-1,0,1\}^{d \times d}$: diagonal matrix with Rademacher entries
- $H \in\{-1 / \sqrt{d}, 1 / \sqrt{d}\}^{d \times d}$: Walsh Hadamard matrix
- $S \in\{0,1\}^{I \times d}$: Sampling matrix, with exactly one 1 in each row
- $\|H D \mathbf{x}\|_{2}=1$. With probability $\geq 1-\frac{\delta}{2},\|H D \mathbf{x}\|_{\infty} \leq \sqrt{\frac{2 \ln (4 d / \delta)}{d}}$
. Let $\mathbf{z}:=S H D \mathbf{x}$. Then for each $z_{i}, \mathbb{E}\left[z_{i}^{2}\right]=\frac{1}{d}, \mathbb{E}\left[\|\mathbf{z}\|_{2}^{2}\right]=\frac{t}{d}$. With probability $\geq 1-\frac{\delta}{2}, z_{i}^{2} \leq \frac{2 \ln (4 d / \delta)}{d}$ for all z_{i}.

The Pieces We Have...

. For any $\mathbf{x} \in \mathbb{R}^{d}$ with $\|\mathbf{x}\|=1, \mathbb{P}\left[\left\|\sqrt{\frac{d}{t}} S H D \mathbf{x}\right\| \in[1-\epsilon, 1+\epsilon]\right]=$?

- $D \in\{-1,0,1\}^{d \times d}$: diagonal matrix with Rademacher entries
- $H \in\{-1 / \sqrt{d}, 1 / \sqrt{d}\}^{d \times d}$: Walsh Hadamard matrix
- $S \in\{0,1\}^{I \times d}$: Sampling matrix, with exactly one 1 in each row
- $\|H D \mathbf{x}\|_{2}=1$. With probability $\geq 1-\frac{\delta}{2},\|H D \mathbf{x}\|_{\infty} \leq \sqrt{\frac{2 \ln (4 d / \delta)}{d}}$
. Let $\mathbf{z}:=S H D \mathbf{x}$. Then for each $z_{i}, \mathbb{E}\left[z_{i}^{2}\right]=\frac{1}{d}, \mathbb{E}\left[\|\mathbf{z}\|_{2}^{2}\right]=\frac{t}{d}$. With probability $\geq 1-\frac{\delta}{2}, z_{i}^{2} \leq \frac{2 \ln (4 d / \delta)}{d}$ for all z_{i}.
Claim. If $z_{i}^{2} \leq \frac{2 \ln (4 d / \delta)}{d}$, for $t=\frac{2 \ln ^{2}(4 d / \delta) \ln (4 / \delta)}{\epsilon^{2}}, \mathbb{P}\left[\left\|\sqrt{\frac{d}{t}} S z\right\|_{2}^{2} \notin[1-\epsilon, 1+\epsilon]\right] \leq \frac{\delta}{2}$

The Pieces We Have...

. For any $\mathbf{x} \in \mathbb{R}^{d}$ with $\|\mathbf{x}\|=1, \mathbb{P}\left[\left\|\sqrt{\frac{d}{t}} S H D \mathbf{x}\right\| \in[1-\epsilon, 1+\epsilon]\right]=$?

- $D \in\{-1,0,1\}^{d \times d}$: diagonal matrix with Rademacher entries
- $H \in\{-1 / \sqrt{d}, 1 / \sqrt{d}\}^{d \times d}$: Walsh Hadamard matrix
- $S \in\{0,1\}^{I \times d}$: Sampling matrix, with exactly one 1 in each row
- $\|H D \mathbf{x}\|_{2}=1$. With probability $\geq 1-\frac{\delta}{2},\|H D \mathbf{x}\|_{\infty} \leq \sqrt{\frac{2 \ln (4 d / \delta)}{d}}$
. Let $\mathbf{z}:=S H D \mathbf{x}$. Then for each $z_{i}, \mathbb{E}\left[z_{i}^{2}\right]=\frac{1}{d}, \mathbb{E}\left[\|\mathbf{z}\|_{2}^{2}\right]=\frac{t}{d}$. With probability $\geq 1-\frac{\delta}{2}, z_{i}^{2} \leq \frac{2 \ln (4 d / \delta)}{d}$ for all z_{i}.
Claim. If $z_{i}^{2} \leq \frac{2 \ln (4 d / \delta)}{d}$, for $t=\frac{2 \ln ^{2}(4 d / \delta) \ln (4 / \delta)}{\epsilon^{2}}, \mathbb{P}\left[\left\|\sqrt{\frac{d}{t}} S z\right\|_{2}^{2} \notin[1-\epsilon, 1+\epsilon]\right] \leq \frac{\delta}{2}$

Fast JL-Transform

Thm. For any $\mathbf{x} \in \mathbb{R}^{d}$ with $\|\mathbf{x}\|=1$, for $t \geq \frac{2 \ln ^{2}(4 d / \delta) \ln (4 / \delta)}{\epsilon^{2}}$,
$\mathbb{P}\left[\left\|\sqrt{\frac{d}{t}} S H D \mathbf{x}\right\| \in[1-\epsilon, 1+\epsilon]\right] \geq 1-\delta$.

- $D \in\{-1,0,1\}^{d \times d}$: diagonal matrix with Rademacher entries
- $H \in\{-1 / \sqrt{d}, 1 / \sqrt{d}\}^{d \times d}$: Walsh Hadamard matrix
- $S \in\{0,1\}^{t \times d}$: Sampling matrix, with exactly one 1 in each row
- Running time: $O((d+t) \log d)$

[^0]: Claim. H_{d} is a Hadamard matrix

