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• Recall: JL-transform multiplies  with a  matrix with i.i.d. standard Gaussian entriesx ∈ ℝd t × d

• AMS emulates JL-transform with a matrix with  entries, each row generated by a 4-wise 
independent hash function

{0,1}

• This suggests that the matrix in JL-transform may be made simpler

• Achlioptas (2003) gave a transform with matrix entries from , about 2/3 of them being 0{−1,0,1}

• Count-Sketch in fact approximately preserves  norm (see Problem Set 3)ℓ2

• Recall we had pairwise independent hash functions  and .  h : [d] → [w] g : [d] → {±1}

• The operation of Count-Sketch can be seen as multiplying  by a  matrix  with 
 and all other entries 0.

x w × d M
Mh(i),i = g(i)
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• Consider a  matrix : in each row a random entry is 1, and all other entries are .t × d S 0

𝔼 [(Sx)2
i ] =
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∑
j=1

x2
j

d
⇒ 𝔼 [∥

d
t

Sx∥2
2] = ∥x∥2

2

• How well does  concentrate around its expectation?∥Sx∥2
2

• In the worst case,  has only one non-zero entry, then  needs to be  for us to see that entryx t Θ(d)

• Generally, this doesn’t work well when 
∥x∥∞

∥x∥2
≈ 1
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∥x∥∞

∥x∥2
x

• E.g., the ratio is 1 for , but is only  if we rotate it to (1,0,⋯,0) 1/ d
(1/ d, ⋯,1/ d)

• The ratio is close to 1 if  “aligns well” with the axes, i.e., standard basisx

• Idea: first rotate  randomly — equivalent to multiplying it by a random 
orthogonal matrix 

x
M In fact in the original JL paper, the matrix is a projection 

onto a random -dimensional subspace of t Rd
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Def. A Hadamard matrix is an orthogonal  matrix with all entries from .d × d {1/ d, − 1/ d}

Example. H2 = (1 1
1 −1)/ 2

Walsh-Hadamard Matrices. Hd = (Hd/2 Hd/2
Hd/2 −Hd/2)/ 2 A recursive 

construction

Claim. The product  can be computed in time .Hdx O(d log d) similar to Fast Fourier Transform

Proof. Let  be the time to compute , then by recursive calls we have T(d) Hdx T(d) = O(d) + 2T(d/2)

Claim.  is a Hadamard matrixHd
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To apply Hoeffding’s bound, note that . 
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The theorem follows from a union bound over ’s.
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Another application of Hoeffding’s bound.



Fast JL-Transform
Thm.  For any  with , for ,

.


• : diagonal matrix with Rademacher entries


• : Walsh Hadamard matrix


• : Sampling matrix, with exactly one 1 in each row


• Running time: 

x ∈ ℝd ∥x∥ = 1 t ≥
2 ln2(4d/δ)ln(4/δ)

ϵ2

ℙ [∥
d
t

SHDx∥ ∈ [1 − ϵ,1 + ϵ]] ≥ 1 − δ

D ∈ {−1,0,1}d×d

H ∈ {−1/ d,1/ d}d×d

S ∈ {0,1}t×d

O((d + t)log d)


