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AMS and JL in Perspective

e Recall: JL-transform multiplies X & R< with a t X d matrix with i.i.d. standard Gaussian entries

« AMS emulates JL-transform with a matrix with {0,1} entries, each row generated by a 4-wise
iIndependent hash function

* This suggests that the matrix in JL-transform may be made simpler

 Achlioptas (2003) gave a transform with matrix entries from {—1,0,1}, about 2/3 of them being 0
» Count-Sketch in fact approximately preserves £, norm (see Problem Set 3)
 Recall we had pairwise independent hash functions 4 : [d] — [w]and g : [d] = {£1]}.

» The operation of Count-Sketch can be seen as multiplying X by a w X d matrix M with
M,,;y; = &(1) and all other entries 0.
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» The original JL-transform takes time €2(#d) to multiply the matrix with X
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. 1= 0(og (E) e~%) if we would like to preserve the norm w.p. 1 — &
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 [wo approaches:

e Sparse JL-Transforms: construct matrices satisfying the JL-property with few non-
Zero entries
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First Attempt

 What happens if we sample, for each entry, just one coordinate of X?

» Consider at X d matrix S: in each row a random entry is 1, and all other entries are O.

d ij P
(07 =Y = E \\\/;qu% = ||x|3
j=1

- How well does HSXH% concentrate around its expectation?

- In the worst case, X has only one non-zero entry, then ¢ needs to be ®(d) for us to see that entry
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. Generally, this doesn’t work well when
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Aside on Norms

e Ingeneral, for 1 <r <s, we have |[x]|, < ||x]]. < d%_%HXHS

» Special case: ||x||, < [|x]|; £ \/;leHz, by Cauchy-Schwarz

1 1
. To prove the general case, use Holder’s inequality: for p,g > 1 with — 4+ — =1
P 4
and f, g € R, we have ||fgll, < [IfII”llgll
. . \ \
. Letf: (‘xl‘a XXE |xd‘)’ g = (1,,1),]9 — ; > 1’ q = ¢ I/'-

S—r

.+ We have [|x||7 < [|x]|/d"5

1_1
= |Ixll, < [lxll @
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Def. A Hadamard matrix is an orthogonal d X d matrix with all entries from { 1/\/c_i, — 1/\/c_i 1.

Example. H, = (i 11)/\/5

Hd/2 Hd/2

: A recursive
Walsh-Hadamard Matrices. H, = -
Walsh-Hadamard Matrices. H,, ( H, - Hd/2) 2

Claim. H ; is a Hadamard matrix

Proof. By induction, each entry of H, isin {x1/4/d/2}, so each entry of His in { £ 1/\/21’}.

Ty, — Hg/z Hg/z (Hd/z Hy, ) 9 — 2HdT/2Hd/2 0 =]
d=d — \ T T )2 P— - T -
Hy, —Hyp df2 df2 0 2H ;,H )
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Walsh-Hadamard Matrix

Def. A Hadamard matrix is an orthogonal d X d matrix with all entries from { 1/\/c_i, — 1/\/c_z’ 1.

Example. H, = (i 11)/\/5

H H -
Walsh-Hadamard Matrices. H, = (e (e /\/5 (S
H;, —H, construction

. H ; is a Hadamard matrix

. The product H X can be computed in time O(d log d). jsimilar to Fast Fourier Transform

Proof. Let T(d) be the time to compute H X, then by recursive calls we have 7(d) = O(d) + 27(d/2)
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Proof. Without loss of generality, assume ||Xx||, = 1. Then ||y||, = [|[HDx||, = 1 as well.

|
To bound ||y||,, note that for each i, y; has the same distribution as — Z D;x; where D;’s are i.i.d.

1 v’

Rademacher variables. If we let z; := —Djxj, then -[zj] = (). But Chernoff bound does not apply...
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Thm. (Hoeffding's Bound) If X, ---, X, are independent random variables where X; € [a,, b,]. Let X = Z X

l

252

Zi (b; — a;)

Proof idea similar to Chernoff bound. Use the following bound on

Then P(| X — E[X]]| > 5) < 2exp

: . .. AX=E[X]) /12(17 _ a)2
Lemma. (Hoeffding's Lemma) If random variable X is in [a;, b;], then [E[e | <exp .




Thm. For nonzero X &€ IRd, lety = HDX, then P [ ‘

Proof. Without loss of generality, assume ||x||, = 1. Then ||y||, = [|[HDx||, = 1 as well.

. o 1 N
To bound ||y||,, note that for each i, y; has the same distribution as — Z D;x; where D;’s are i.i.d.

Vi

J
|
Rademacher variables. If we let 7 = —Djxj, then -[zj] = (). Chernoff bound does not apply since

Nz

i
Zj e { > }
Vd \/d
To apply Hoeffding’s bound, note that Z 4xj2/a’2 = 4/d.
J

2In(4d/o d 21n(4d/o6
P \sz\z\/ n ) S26Xp( n( ))=2
J

d 2 d

The theorem follows from a union bound over y:’s.
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« D e {—1,0,11%: diagonal matrix with Rademacher entries
« He {— 1/\/21,1/\/?1}‘1”1: Walsh Hadamard matrix

. S € {0,114 Sampling matrix, with exactly one 1 in each row

. . O 2 In(4d/9)
. |[HDx||, = 1. With probability > 1 — X |HDx||, < y
, 1 , r N 6 , _2In(4d/6)
. Letz := SHDX. Then for each z;, E[z7] = = E[l[z]|5] = = With probability > 1 — > 7 < for all z,.
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Another application of Hoeffding’s bound.



Fast JL-Transform

2 1n*(4d/8)In(4/6)

€2

Thm. For any x € R? with ||x|| = 1, for t >

d
p lH\/;SHDXH cl—el+e]|l >1-06.

- De {-1,0,1 }dXd: diagonal matrix with Rademacher entries

« HE {—1/\/3,1/\/6_1}d><d: Walsh Hadamard matrix

¢« 5 € {0,1 }th: Sampling matrix, with exactly one 1 in each row

 Running time: O((d + 1)log d)



