Fast JL Transform

Hu Fu @SHUFE October 2023

• Recall: JL-transform multiplies $\mathbf{x} \in \mathbb{R}^d$ with a $t \times d$ matrix with i.i.d. standard Gaussian entries

- Recall: JL-transform multiplies $\mathbf{x} \in \mathbb{R}^d$ with a $t \times d$ matrix with i.i.d. standard Gaussian entries
- AMS emulates JL-transform with a matrix with $\{0,1\}$ entries, each row generated by a 4-wise independent hash function

- Recall: JL-transform multiplies $\mathbf{x} \in \mathbb{R}^d$ with a $t \times d$ matrix with i.i.d. standard Gaussian entries
- AMS emulates JL-transform with a matrix with $\{0,1\}$ entries, each row generated by a 4-wise independent hash function
- This suggests that the matrix in JL-transform may be made simpler

- Recall: JL-transform multiplies $\mathbf{x} \in \mathbb{R}^d$ with a $t \times d$ matrix with i.i.d. standard Gaussian entries
- AMS emulates JL-transform with a matrix with $\{0,1\}$ entries, each row generated by a 4-wise independent hash function
- This suggests that the matrix in JL-transform may be made simpler
 - Achlioptas (2003) gave a transform with matrix entries from $\{-1,0,1\}$, about 2/3 of them being 0

- Recall: JL-transform multiplies $\mathbf{x} \in \mathbb{R}^d$ with a $t \times d$ matrix with i.i.d. standard Gaussian entries
- AMS emulates JL-transform with a matrix with $\{0,1\}$ entries, each row generated by a 4-wise independent hash function
- This suggests that the matrix in JL-transform may be made simpler
 - Achlioptas (2003) gave a transform with matrix entries from $\{-1,0,1\}$, about 2/3 of them being 0
 - Count-Sketch in fact approximately preserves ℓ_2 norm (see Problem Set 3)

- Recall: JL-transform multiplies $\mathbf{x} \in \mathbb{R}^d$ with a $t \times d$ matrix with i.i.d. standard Gaussian entries
- AMS emulates JL-transform with a matrix with $\{0,1\}$ entries, each row generated by a 4-wise independent hash function
- This suggests that the matrix in JL-transform may be made simpler
 - Achlioptas (2003) gave a transform with matrix entries from $\{-1,0,1\}$, about 2/3 of them being 0
 - Count-Sketch in fact approximately preserves ℓ_2 norm (see Problem Set 3)
 - Recall we had pairwise independent hash functions $h:[d] \to [w]$ and $g:[d] \to \{\pm 1\}$.

- Recall: JL-transform multiplies $\mathbf{x} \in \mathbb{R}^d$ with a $t \times d$ matrix with i.i.d. standard Gaussian entries
- AMS emulates JL-transform with a matrix with $\{0,1\}$ entries, each row generated by a 4-wise independent hash function
- This suggests that the matrix in JL-transform may be made simpler
 - Achlioptas (2003) gave a transform with matrix entries from $\{-1,0,1\}$, about 2/3 of them being 0
 - Count-Sketch in fact approximately preserves ℓ_2 norm (see Problem Set 3)
 - Recall we had pairwise independent hash functions $h:[d] \to [w]$ and $g:[d] \to \{\pm 1\}$.
 - The operation of Count-Sketch can be seen as multiplying \mathbf{x} by a $w \times d$ matrix M with $M_{h(i),i} = g(i)$ and all other entries 0.

•
$$t = O(\log\left(\frac{1}{\delta}\right)\epsilon^{-2})$$
 if we would like to preserve the norm w.p. $1 - \delta$

• The original JL-transform takes time $\Omega(td)$ to multiply the matrix with ${f x}$

•
$$t = O(\log\left(\frac{1}{\delta}\right)e^{-2})$$
 if we would like to preserve the norm w.p. $1 - \delta$

Can it be made faster asymptotically?

•
$$t = O(\log\left(\frac{1}{\delta}\right)e^{-2})$$
 if we would like to preserve the norm w.p. $1 - \delta$

- Can it be made faster asymptotically?
- Two approaches:

•
$$t = O(\log\left(\frac{1}{\delta}\right)e^{-2})$$
 if we would like to preserve the norm w.p. $1 - \delta$

- Can it be made faster asymptotically?
- Two approaches:
 - Sparse JL-Transforms: construct matrices satisfying the JL-property with few non-zero entries

•
$$t = O(\log\left(\frac{1}{\delta}\right)e^{-2})$$
 if we would like to preserve the norm w.p. $1 - \delta$

- Can it be made faster asymptotically?
- Two approaches:
 - Sparse JL-Transforms: construct matrices satisfying the JL-property with few non-zero entries
 - Fast JL-Transforms: construct matrices satisfying the JL-property with structural properties which allow faster matrix multiplication [Ailon & Chazelle, 2006]

•
$$t = O(\log\left(\frac{1}{\delta}\right)e^{-2})$$
 if we would like to preserve the norm w.p. $1 - \delta$

- Can it be made faster asymptotically?
- Two approaches:
 - Sparse JL-Transforms: construct matrices satisfying the JL-property with few non-zero entries
 - Fast JL-Transforms: construct matrices satisfying the JL-property with structural properties which allow faster matrix multiplication [Ailon & Chazelle, 2006]

• What happens if we sample, for each entry, just one coordinate of x?

- What happens if we sample, for each entry, just one coordinate of x?
- Consider a $t \times d$ matrix S: in each row a random entry is 1, and all other entries are 0.

- What happens if we sample, for each entry, just one coordinate of x?
- Consider a $t \times d$ matrix S: in each row a random entry is 1, and all other entries are 0.

$$\mathbb{E}\left[(S\mathbf{x})_i^2\right] = \sum_{j=1}^d \frac{x_j^2}{d} \quad \Rightarrow \quad \mathbb{E}\left[\|\sqrt{\frac{d}{t}}S\mathbf{x}\|_2^2\right] = \|\mathbf{x}\|_2^2$$

- What happens if we sample, for each entry, just one coordinate of x?
- Consider a $t \times d$ matrix S: in each row a random entry is 1, and all other entries are 0.

$$\mathbb{E}\left[(S\mathbf{x})_i^2\right] = \sum_{j=1}^d \frac{x_j^2}{d} \quad \Rightarrow \quad \mathbb{E}\left[\|\sqrt{\frac{d}{t}}S\mathbf{x}\|_2^2\right] = \|\mathbf{x}\|_2^2$$

• How well does $||S\mathbf{x}||_2^2$ concentrate around its expectation?

- What happens if we sample, for each entry, just one coordinate of x?
- Consider a $t \times d$ matrix S: in each row a random entry is 1, and all other entries are 0.

$$\mathbb{E}\left[(S\mathbf{x})_i^2\right] = \sum_{j=1}^d \frac{x_j^2}{d} \quad \Rightarrow \quad \mathbb{E}\left[\|\sqrt{\frac{d}{t}}S\mathbf{x}\|_2^2\right] = \|\mathbf{x}\|_2^2$$

- How well does $||S\mathbf{x}||_2^2$ concentrate around its expectation?
- In the worst case, ${\bf x}$ has only one non-zero entry, then t needs to be $\Theta(d)$ for us to see that entry

- What happens if we sample, for each entry, just one coordinate of x?
- Consider a $t \times d$ matrix S: in each row a random entry is 1, and all other entries are 0.

$$\mathbb{E}\left[(S\mathbf{x})_i^2\right] = \sum_{j=1}^d \frac{x_j^2}{d} \quad \Rightarrow \quad \mathbb{E}\left[\|\sqrt{\frac{d}{t}}S\mathbf{x}\|_2^2\right] = \|\mathbf{x}\|_2^2$$

- How well does $||S\mathbf{x}||_2^2$ concentrate around its expectation?
- In the worst case, ${\bf x}$ has only one non-zero entry, then t needs to be $\Theta(d)$ for us to see that entry
- . Generally, this doesn't work well when $\frac{\|\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{2}} \approx 1$

The ratio $\frac{\|\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{2}}$ depends heavily on the bases in which we represent \mathbf{x}

- The ratio $\frac{\|\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{2}}$ depends heavily on the bases in which we represent \mathbf{x}
 - E.g., the ratio is 1 for $(1,0,\cdots,0)$, but is only $1/\sqrt{d}$ if we rotate it to $(1/\sqrt{d},\cdots,1/\sqrt{d})$

- . The ratio $\frac{\|\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_2}$ depends heavily on the bases in which we represent \mathbf{x}
 - E.g., the ratio is 1 for $(1,0,\cdots,0)$, but is only $1/\sqrt{d}$ if we rotate it to $(1/\sqrt{d},\cdots,1/\sqrt{d})$
 - The ratio is close to 1 if **x** "aligns well" with the axes, i.e., standard basis

- The ratio $\frac{\|\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{2}}$ depends heavily on the bases in which we represent \mathbf{x}
 - E.g., the ratio is 1 for $(1,0,\cdots,0)$, but is only $1/\sqrt{d}$ if we rotate it to $(1/\sqrt{d},\cdots,1/\sqrt{d})$
 - The ratio is close to 1 if **x** "aligns well" with the axes, i.e., standard basis
 - Idea: first rotate ${\bf x}$ randomly equivalent to multiplying it by a random orthogonal matrix M

- The ratio $\frac{\|\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{2}}$ depends heavily on the bases in which we represent \mathbf{x}
 - E.g., the ratio is 1 for $(1,0,\cdots,0)$, but is only $1/\sqrt{d}$ if we rotate it to $(1/\sqrt{d},\cdots,1/\sqrt{d})$
 - The ratio is close to 1 if **x** "aligns well" with the axes, i.e., standard basis
 - Idea: first rotate ${\bf x}$ randomly equivalent to multiplying it by a random orthogonal matrix M In fact in the original JL paper, the matrix is a projection onto a random t-dimensional subspace of ${\bf R}^d$

• In general, for $1 \le r \le s$, we have $||x||_s \le ||x||_r \le d^{\frac{1}{r} - \frac{1}{s}} ||x||_s$

- In general, for $1 \le r \le s$, we have $||x||_s \le ||x||_r \le d^{\frac{1}{r} \frac{1}{s}} ||x||_s$
- Special case: $||x||_2 \le ||x||_1 \le \sqrt{d} ||x||_2$, by Cauchy-Schwarz

- In general, for $1 \le r \le s$, we have $||x||_s \le ||x||_r \le d^{\frac{1}{r} \frac{1}{s}} ||x||_s$
- Special case: $||x||_2 \le ||x||_1 \le \sqrt{d} ||x||_2$, by Cauchy-Schwarz
- . To prove the general case, use Hölder's inequality: for $p,q\geq 1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $f,g\in\mathbb{R}^d$, we have $\|fg\|_1\leq \|f\|^p\|g\|^q$

- In general, for $1 \le r \le s$, we have $||x||_s \le ||x||_r \le d^{\frac{1}{r} \frac{1}{s}} ||x||_s$
- Special case: $||x||_2 \le ||x||_1 \le \sqrt{d} ||x||_2$, by Cauchy-Schwarz
- To prove the general case, use Hölder's inequality: for $p,q\geq 1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $f,g\in\mathbb{R}^d$, we have $\|fg\|_1\leq \|f\|^p\|g\|^q$
 - Let $f = (|x_1^r|, ..., |x_d^r|), g = (1, ..., 1), p = \frac{s}{r} \ge 1, q = \frac{s}{s-r}.$

- In general, for $1 \le r \le s$, we have $||x||_s \le ||x||_r \le d^{\frac{1}{r} \frac{1}{s}} ||x||_s$
- Special case: $||x||_2 \le ||x||_1 \le \sqrt{d} ||x||_2$, by Cauchy-Schwarz
- To prove the general case, use Hölder's inequality: for $p,q\geq 1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $f,g\in\mathbb{R}^d$, we have $\|fg\|_1\leq \|f\|^p\|g\|^q$
 - Let $f = (|x_1^r|, ..., |x_d^r|), g = (1, ..., 1), p = \frac{s}{r} \ge 1, q = \frac{s}{s-r}.$
 - We have $||x||_r^r \le ||x||_s^r d^{\frac{s-r}{s}} \Rightarrow ||x||_r \le ||x||_s d^{\frac{1}{r} \frac{1}{s}}$

<u>Def.</u> A Hadamard matrix is an orthogonal $d \times d$ matrix with all entries from $\{1/\sqrt{d}, -1/\sqrt{d}\}$.

<u>Def.</u> A Hadamard matrix is an orthogonal $d \times d$ matrix with all entries from $\{1/\sqrt{d}, -1/\sqrt{d}\}$.

Example.
$$H_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} / \sqrt{2}$$

<u>Def</u>. A Hadamard matrix is an orthogonal $d \times d$ matrix with all entries from $\{1/\sqrt{d}, -1/\sqrt{d}\}$.

Example.
$$H_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} / \sqrt{2}$$

Walsh-Hadamard Matrices.
$$H_d = \begin{pmatrix} H_{d/2} & H_{d/2} \\ H_{d/2} & -H_{d/2} \end{pmatrix} / \sqrt{2}$$

<u>Def</u>. A Hadamard matrix is an orthogonal $d \times d$ matrix with all entries from $\{1/\sqrt{d}, -1/\sqrt{d}\}$.

Example.
$$H_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} / \sqrt{2}$$

Walsh-Hadamard Matrices.
$$H_d = \begin{pmatrix} H_{d/2} & H_{d/2} \\ H_{d/2} & -H_{d/2} \end{pmatrix} / \sqrt{2}$$

A recursive construction

<u>Def.</u> A Hadamard matrix is an orthogonal $d \times d$ matrix with all entries from $\{1/\sqrt{d}, -1/\sqrt{d}\}$.

Example.
$$H_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} / \sqrt{2}$$

Walsh-Hadamard Matrices.
$$H_d = \begin{pmatrix} H_{d/2} & H_{d/2} \\ H_{d/2} & -H_{d/2} \end{pmatrix} / \sqrt{2}$$

A recursive construction

Claim. H_d is a Hadamard matrix

<u>Def.</u> A Hadamard matrix is an orthogonal $d \times d$ matrix with all entries from $\{1/\sqrt{d}, -1/\sqrt{d}\}$.

Example.
$$H_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} / \sqrt{2}$$

Walsh-Hadamard Matrices.
$$H_d = \begin{pmatrix} H_{d/2} & H_{d/2} \\ H_{d/2} & -H_{d/2} \end{pmatrix} / \sqrt{2}$$

A recursive construction

Claim. H_d is a Hadamard matrix

$$\begin{array}{l} \underline{\textit{Proof.}} \text{ By induction, each entry of } H_{d/2} \text{ is in } \{\pm 1/\sqrt{d/2}\}, \text{ so each entry of } H_d \text{ is in } \{\pm 1/\sqrt{d}\}. \\ H_d^\intercal H_d = \begin{pmatrix} H_{d/2}^\intercal & H_{d/2}^\intercal \\ H_{d/2}^\intercal & -H_{d/2}^\intercal \end{pmatrix} \begin{pmatrix} H_{d/2} & H_{d/2} \\ H_{d/2} & -H_{d/2} \end{pmatrix} / 2 = \begin{pmatrix} 2H_{d/2}^\intercal H_{d/2} & 0 \\ 0 & 2H_{d/2}^\intercal H_{d/2} \end{pmatrix} / 2 = I \\ \end{array}$$

<u>Def</u>. A Hadamard matrix is an orthogonal $d \times d$ matrix with all entries from $\{1/\sqrt{d}, -1/\sqrt{d}\}$.

Example.
$$H_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} / \sqrt{2}$$

Walsh-Hadamard Matrices.
$$H_d = \begin{pmatrix} H_{d/2} & H_{d/2} \\ H_{d/2} & -H_{d/2} \end{pmatrix} / \sqrt{2}$$

A recursive construction

Claim. H_d is a Hadamard matrix

<u>Claim</u>. The product $H_d \mathbf{x}$ can be computed in time $O(d \log d)$.

<u>Def</u>. A Hadamard matrix is an orthogonal $d \times d$ matrix with all entries from $\{1/\sqrt{d}, -1/\sqrt{d}\}$.

Example.
$$H_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} / \sqrt{2}$$

Walsh-Hadamard Matrices.
$$H_d = \begin{pmatrix} H_{d/2} & H_{d/2} \\ H_{d/2} & -H_{d/2} \end{pmatrix} / \sqrt{2}$$

A recursive construction

Claim. H_d is a Hadamard matrix

<u>Claim</u>. The product $H_d\mathbf{x}$ can be computed in time $O(d \log d)$.

similar to Fast Fourier Transform

Def. A Hadamard matrix is an orthogonal $d \times d$ matrix with all entries from $\{1/\sqrt{d}, -1/\sqrt{d}\}$.

Example.
$$H_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} / \sqrt{2}$$

Walsh-Hadamard Matrices.
$$H_d = \begin{pmatrix} H_{d/2} & H_{d/2} \\ H_{d/2} & -H_{d/2} \end{pmatrix} / \sqrt{2}$$

A recursive construction

Claim. H_d is a Hadamard matrix

<u>Claim</u>. The product $H_d\mathbf{x}$ can be computed in time $O(d \log d)$.

similar to Fast Fourier Transform

<u>Proof.</u> Let T(d) be the time to compute $H_d\mathbf{x}$, then by recursive calls we have T(d) = O(d) + 2T(d/2)

• Of course a "good" vector \mathbf{x} can become a "bad" $H_d \mathbf{x}$.

- Of course a "good" vector \mathbf{x} can become a "bad" $H_d \mathbf{x}$.
- We need to introduce randomness to ${\cal H}_d$

- Of course a "good" vector \mathbf{x} can become a "bad" $H_d \mathbf{x}$.
- We need to introduce randomness to ${\cal H}_d$
- The -1 in H_2 may as well be elsewhere; so is the "-" in the recursive definition

- Of course a "good" vector \mathbf{x} can become a "bad" $H_d \mathbf{x}$.
- We need to introduce randomness to ${\cal H}_d$
- The -1 in H_2 may as well be elsewhere; so is the "-" in the recursive definition
- Let D be a $d \times d$ diagonal matrix with diagonal entries randomly sampled from $\{-1,1\}$

- Of course a "good" vector \mathbf{x} can become a "bad" $H_d \mathbf{x}$.
- We need to introduce randomness to ${\cal H}_d$
- The -1 in H_2 may as well be elsewhere; so is the "—" in the recursive definition
- Let D be a $d \times d$ diagonal matrix with diagonal entries randomly sampled from $\{-1,1\}$
- H_dD is still Hadamard: $(H_dD)^{\mathsf{T}}H_dD = D^{\mathsf{T}}H_d^{\mathsf{T}}H_dD = I.$

- Of course a "good" vector \mathbf{x} can become a "bad" $H_d \mathbf{x}$.
- We need to introduce randomness to ${\cal H}_d$
- The -1 in H_2 may as well be elsewhere; so is the "—" in the recursive definition
- Let D be a $d \times d$ diagonal matrix with diagonal entries randomly sampled from $\{-1,1\}$
- H_dD is still Hadamard: $(H_dD)^{\mathsf{T}}H_dD = D^{\mathsf{T}}H_d^{\mathsf{T}}H_dD = I.$
- Write $H = H_d$ henceforth

- Of course a "good" vector \mathbf{x} can become a "bad" $H_d \mathbf{x}$.
- We need to introduce randomness to ${\cal H}_d$
- The -1 in H_2 may as well be elsewhere; so is the "—" in the recursive definition
- Let D be a $d \times d$ diagonal matrix with diagonal entries randomly sampled from $\{-1,1\}$
- H_dD is still Hadamard: $(H_dD)^{\mathsf{T}}H_dD = D^{\mathsf{T}}H_d^{\mathsf{T}}H_dD = I.$
- Write $H = H_d$ henceforth

Thm. For nonzero
$$\mathbf{x} \in \mathbb{R}^d$$
, let $\mathbf{y} = HD\mathbf{x}$, then $\mathbb{P}\left[\frac{\|\mathbf{y}\|_{\infty}}{\|\mathbf{y}\|_2} \ge \sqrt{\frac{2\ln(4d/\delta)}{d}}\right] \le \frac{\delta}{2}$.

Thm. For nonzero
$$\mathbf{x} \in \mathbb{R}^d$$
, let $\mathbf{y} = HD\mathbf{x}$, then $\mathbb{P}\left[\frac{\|\mathbf{y}\|_{\infty}}{\|\mathbf{y}\|_2} \ge \sqrt{\frac{2\ln(4d/\delta)}{d}}\right] \le \frac{\delta}{2}$.

Proof. Without loss of generality, assume $\|\mathbf{x}\|_2 = 1$. Then $\|\mathbf{y}\|_2 = \|HD\mathbf{x}\|_2 = 1$ as well.

To bound $\|\mathbf{y}\|_{\infty}$, note that for each i, y_i has the same distribution as $\frac{1}{\sqrt{d}}\sum_j D_j x_j$ where D_j 's are i.i.d.

Rademacher variables. If we let $z_j := \frac{1}{\sqrt{d}} D_j x_j$, then $\mathbb{E}[z_j] = 0$. But Chernoff bound does not apply...

Proof. Without loss of generality, assume $\|\mathbf{x}\|_2 = 1$. Then $\|\mathbf{y}\|_2 = \|HD\mathbf{x}\|_2 = 1$ as well.

To bound $\|\mathbf{y}\|_{\infty}$, note that for each i, y_i has the same distribution as $\frac{1}{\sqrt{d}}\sum_j D_j x_j$ where D_j 's are i.i.d.

Rademacher variables. If we let $z_j := \frac{1}{\sqrt{d}} D_j x_j$, then $\mathbb{E}[z_j] = 0$. But Chernoff bound does not apply...

<u>Thm</u>. (Hoeffding's Bound) If X_1, \dots, X_n are independent random variables where $X_i \in [a_i, b_i]$. Let $X = \sum_i X_i$.

Then
$$\mathbb{P}(|X - \mathbb{E}[X]| \ge s) \le 2 \exp\left(-\frac{2s^2}{\sum_i (b_i - a_i)^2}\right)$$
.

Proof. Without loss of generality, assume $\|\mathbf{x}\|_2 = 1$. Then $\|\mathbf{y}\|_2 = \|HD\mathbf{x}\|_2 = 1$ as well.

To bound $\|\mathbf{y}\|_{\infty}$, note that for each i, y_i has the same distribution as $\frac{1}{\sqrt{d}}\sum_j D_j x_j$ where D_j 's are i.i.d.

Rademacher variables. If we let $z_j := \frac{1}{\sqrt{d}} D_j x_j$, then $\mathbb{E}[z_j] = 0$. But Chernoff bound does not apply...

<u>Thm</u>. (Hoeffding's Bound) If X_1, \dots, X_n are independent random variables where $X_i \in [a_i, b_i]$. Let $X = \sum_i X_i$.

Then
$$\mathbb{P}(|X - \mathbb{E}[X]| \ge s) \le 2 \exp\left(-\frac{2s^2}{\sum_i (b_i - a_i)^2}\right)$$
.

Proof idea similar to Chernoff bound. Use the following bound on $\mathbb{E}[e^{\lambda X_i}]$:

Proof. Without loss of generality, assume $\|\mathbf{x}\|_2 = 1$. Then $\|\mathbf{y}\|_2 = \|HD\mathbf{x}\|_2 = 1$ as well.

To bound $\|\mathbf{y}\|_{\infty}$, note that for each i, y_i has the same distribution as $\frac{1}{\sqrt{d}}\sum_j D_j x_j$ where D_j 's are i.i.d.

Rademacher variables. If we let $z_j := \frac{1}{\sqrt{d}} D_j x_j$, then $\mathbb{E}[z_j] = 0$. But Chernoff bound does not apply...

<u>Thm</u>. (Hoeffding's Bound) If X_1, \dots, X_n are independent random variables where $X_i \in [a_i, b_i]$. Let $X = \sum_i X_i$.

Then
$$\mathbb{P}(|X - \mathbb{E}[X]| \ge s) \le 2 \exp\left(-\frac{2s^2}{\sum_i (b_i - a_i)^2}\right)$$
.

Proof idea similar to Chernoff bound. Use the following bound on $\mathbb{E}[e^{\lambda X_i}]$:

<u>Lemma</u>. (Hoeffding's Lemma) If random variable X is in $[a_i, b_i]$, then $\mathbb{E}[e^{\lambda(X-\mathbf{E}[X])}] \leq \exp\left(\frac{\lambda^2(b-a)^2}{8}\right)$.

Proof. Without loss of generality, assume $\|\mathbf{x}\|_2 = 1$. Then $\|\mathbf{y}\|_2 = \|HD\mathbf{x}\|_2 = 1$ as well.

To bound $\|\mathbf{y}\|_{\infty}$, note that for each i, y_i has the same distribution as $\frac{1}{\sqrt{d}}\sum_j D_j x_j$ where D_j 's are i.i.d.

Rademacher variables. If we let $z_j := \frac{1}{\sqrt{d}} D_j x_j$, then $\mathbb{E}[z_j] = 0$. Chernoff bound does not apply since

$$z_j \in \{\frac{-x_j}{\sqrt{d}}, \frac{x_j}{\sqrt{d}}\}.$$

To apply Hoeffding's bound, note that $\sum_{i} 4x_j^2/d^2 = 4/d$.

$$\mathbb{P}\left[\left|\sum_{j} z_{j}\right| \geq \sqrt{\frac{2\ln(4d/\delta)}{d}}\right] \leq 2\exp\left(-\frac{d}{2}\frac{2\ln(4d/\delta)}{d}\right) = 2 \cdot \frac{\delta}{4d} = \frac{\delta}{2d}.$$

The theorem follows from a union bound over y_i 's.

• For any
$$\mathbf{x} \in \mathbb{R}^d$$
 with $\|\mathbf{x}\| = 1$, $\mathbb{P}[\|\sqrt{\frac{d}{t}}SHD\mathbf{x}\| \in [1-\epsilon,1+\epsilon]] = ?$

• For any
$$\mathbf{x} \in \mathbb{R}^d$$
 with $\|\mathbf{x}\| = 1$, $\mathbb{P}[\|\sqrt{\frac{d}{t}}SHD\mathbf{x}\| \in [1-\epsilon,1+\epsilon]] = ?$

• $D \in \{-1,0,1\}^{d \times d}$: diagonal matrix with Rademacher entries

• For any
$$\mathbf{x} \in \mathbb{R}^d$$
 with $\|\mathbf{x}\| = 1$, $\mathbb{P}[\|\sqrt{\frac{d}{t}}SHD\mathbf{x}\| \in [1-\epsilon,1+\epsilon]] = ?$

- $D \in \{-1,0,1\}^{d \times d}$: diagonal matrix with Rademacher entries
- $H \in \{-1/\sqrt{d}, 1/\sqrt{d}\}^{d \times d}$: Walsh Hadamard matrix

• For any
$$\mathbf{x} \in \mathbb{R}^d$$
 with $\|\mathbf{x}\| = 1$, $\mathbb{P}[\|\sqrt{\frac{d}{t}}SHD\mathbf{x}\| \in [1-\epsilon,1+\epsilon]] = ?$

- $D \in \{-1,0,1\}^{d \times d}$: diagonal matrix with Rademacher entries
- $H \in \{-1/\sqrt{d}, 1/\sqrt{d}\}^{d \times d}$: Walsh Hadamard matrix
- $S \in \{0,1\}^{t \times d}$: Sampling matrix, with exactly one 1 in each row

• For any
$$\mathbf{x} \in \mathbb{R}^d$$
 with $\|\mathbf{x}\| = 1$, $\mathbb{P}[\|\sqrt{\frac{d}{t}}SHD\mathbf{x}\| \in [1-\epsilon,1+\epsilon]] = ?$

- $D \in \{-1,0,1\}^{d \times d}$: diagonal matrix with Rademacher entries
- $H \in \{-1/\sqrt{d}, 1/\sqrt{d}\}^{d \times d}$: Walsh Hadamard matrix
- $S \in \{0,1\}^{t \times d}$: Sampling matrix, with exactly one 1 in each row
- $||HD\mathbf{x}||_2 = 1$. With probability $\geq 1 \frac{\delta}{2}$, $||HD\mathbf{x}||_{\infty} \leq \sqrt{\frac{2\ln(4d/\delta)}{d}}$

- . For any $\mathbf{x} \in \mathbb{R}^d$ with $\|\mathbf{x}\| = 1$, $\mathbb{P}[\|\sqrt{\frac{d}{t}}SHD\mathbf{x}\| \in [1-\epsilon,1+\epsilon]] = ?$
 - $D \in \{-1,0,1\}^{d \times d}$: diagonal matrix with Rademacher entries
 - $H \in \{-1/\sqrt{d}, 1/\sqrt{d}\}^{d \times d}$: Walsh Hadamard matrix
 - $S \in \{0,1\}^{t \times d}$: Sampling matrix, with exactly one 1 in each row
- $||HD\mathbf{x}||_2 = 1$. With probability $\geq 1 \frac{\delta}{2}$, $||HD\mathbf{x}||_{\infty} \leq \sqrt{\frac{2\ln(4d/\delta)}{d}}$
- Let $\mathbf{z} := SHD\mathbf{x}$. Then for each z_i , $\mathbb{E}[z_i^2] = \frac{1}{d}$, $\mathbb{E}[\|\mathbf{z}\|_2^2] = \frac{t}{d}$. With probability $\geq 1 \frac{\delta}{2}$, $z_i^2 \leq \frac{2\ln(4d/\delta)}{d}$ for all z_i .

• For any
$$\mathbf{x} \in \mathbb{R}^d$$
 with $\|\mathbf{x}\| = 1$, $\mathbb{P}[\|\sqrt{\frac{d}{t}}SHD\mathbf{x}\| \in [1-\epsilon,1+\epsilon]] = ?$

- $D \in \{-1,0,1\}^{d \times d}$: diagonal matrix with Rademacher entries
- $H \in \{-1/\sqrt{d}, 1/\sqrt{d}\}^{d \times d}$: Walsh Hadamard matrix
- $S \in \{0,1\}^{t \times d}$: Sampling matrix, with exactly one 1 in each row
- $\|HD\mathbf{x}\|_2 = 1$. With probability $\geq 1 \frac{\delta}{2}$, $\|HD\mathbf{x}\|_{\infty} \leq \sqrt{\frac{2\ln(4d/\delta)}{d}}$
- Let $\mathbf{z} := SHD\mathbf{x}$. Then for each z_i , $\mathbb{E}[z_i^2] = \frac{1}{d}$, $\mathbb{E}[\|\mathbf{z}\|_2^2] = \frac{t}{d}$. With probability $\geq 1 \frac{\delta}{2}$, $z_i^2 \leq \frac{2\ln(4d/\delta)}{d}$ for all z_i .

Claim. If
$$z_i^2 \le \frac{2\ln(4d/\delta)}{d}$$
, for $t = \frac{2\ln^2(4d/\delta)\ln(4/\delta)}{\epsilon^2}$, $\mathbb{P}\left[\|\sqrt{\frac{d}{t}}S\mathbf{z}\|_2^2 \notin [1-\epsilon, 1+\epsilon]\right] \le \frac{\delta}{2}$

• For any
$$\mathbf{x} \in \mathbb{R}^d$$
 with $\|\mathbf{x}\| = 1$, $\mathbb{P}[\|\sqrt{\frac{d}{t}}SHD\mathbf{x}\| \in [1-\epsilon,1+\epsilon]] = ?$

- $D \in \{-1,0,1\}^{d \times d}$: diagonal matrix with Rademacher entries
- $H \in \{-1/\sqrt{d}, 1/\sqrt{d}\}^{d \times d}$: Walsh Hadamard matrix
- $S \in \{0,1\}^{t \times d}$: Sampling matrix, with exactly one 1 in each row
- $\|HD\mathbf{x}\|_2 = 1$. With probability $\geq 1 \frac{\delta}{2}$, $\|HD\mathbf{x}\|_{\infty} \leq \sqrt{\frac{2\ln(4d/\delta)}{d}}$
- Let $\mathbf{z} := SHD\mathbf{x}$. Then for each z_i , $\mathbb{E}[z_i^2] = \frac{1}{d}$, $\mathbb{E}[\|\mathbf{z}\|_2^2] = \frac{t}{d}$. With probability $\geq 1 \frac{\delta}{2}$, $z_i^2 \leq \frac{2\ln(4d/\delta)}{d}$ for all z_i .

Claim. If
$$z_i^2 \le \frac{2\ln(4d/\delta)}{d}$$
, for $t = \frac{2\ln^2(4d/\delta)\ln(4/\delta)}{\epsilon^2}$, $\mathbb{P}\left[\|\sqrt{\frac{d}{t}}S\mathbf{z}\|_2^2 \notin [1-\epsilon, 1+\epsilon]\right] \le \frac{\delta}{2}$

Fast JL-Transform

Thm. For any
$$\mathbf{x} \in \mathbb{R}^d$$
 with $\|\mathbf{x}\| = 1$, for $t \ge \frac{2 \ln^2(4d/\delta) \ln(4/\delta)}{\epsilon^2}$,
$$\mathbb{P}\left[\|\sqrt{\frac{d}{t}}SHD\mathbf{x}\| \in [1 - \epsilon, 1 + \epsilon]\right] \ge 1 - \delta.$$

- $D \in \{-1,0,1\}^{d \times d}$: diagonal matrix with Rademacher entries
- $H \in \{-1/\sqrt{d}, 1/\sqrt{d}\}^{d \times d}$: Walsh Hadamard matrix
- $S \in \{0,1\}^{t \times d}$: Sampling matrix, with exactly one 1 in each row
- Running time: $O((d + t)\log d)$