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Streaming Algorithm: AMS

Streaming Model

Sometimes a device with limited storage processes a huge amount of
data and must return statistics

A network switch has a limited memory, and network tra�ic “streams”
through it
At the end of the day, we may be interested in statistics such as

How many di�erent requests have there been?
What is the most frequent request?
Variance of the package sizes?

Input: a sequence of indices i1, . . . , in ∈ {1, · · · , d}
Frequency vector: x ∈ Zd , with

xj := | {k : ik = j} |.

Output: certain statistic of x , such as ||x||p, ||x||0, etc.

The algorithm must use only O(log d) space.

We usually allow some error in the output
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Streaming Algorithm: AMS

AMS

Alon, Matias, Szegedy studied in 1996 the streaming problem for
||x||2 = (

∑
i x

2
i )

1/2, for which they won the Gödel prize in 2005.

Naïve solution using JL-transform:
Maintain L ∈ Rt×d whose entries are i.i.d. from N (0, 1

t ).
Initiate y = 0 ∈ Rt .
When we see ik = j, add the j-th column of L to y .
Return ||y||.

Guarantee: for any δ > 0, if we set t = O(log( 1
δ )/ε

2), with probability
at least 1− δ, we have (1− ε)||x|| ≤ ||y|| ≤ (1 + ε)||x||.
Issue: we must store a t × d matrix!

Sampling them anew each time does not work — we must use the same
linear transform for all the indices.
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Streaming Algorithm: AMS

Reducing the Memory Needed

We have an algorithm that unfortunately needs to store too much
“randomness”

We were in a similar situation when we thought about hashing.
The solution there was a weaker notion of randomness (universal
hashing), which makes possible hash functions that take less space to
store.
We had a small seed of randomness, and used that to grow a whole
hashing function

Let’s try something similar.

Recall the idea behind JL: if G1, · · · ,Gd are i.i.d. from N (0, 1), then∑
i Gixi ∼ N (0, ||x||2).

In general, if G1, · · · ,Gd are independent random variables, then
Var[

∑
i Gixi] =

∑
i x

2
i Var[Gi].

October 9, 2023 4 / 18



Streaming Algorithm: AMS

Reducing the Memory Needed

We have an algorithm that unfortunately needs to store too much
“randomness”

We were in a similar situation when we thought about hashing.

The solution there was a weaker notion of randomness (universal
hashing), which makes possible hash functions that take less space to
store.
We had a small seed of randomness, and used that to grow a whole
hashing function

Let’s try something similar.

Recall the idea behind JL: if G1, · · · ,Gd are i.i.d. from N (0, 1), then∑
i Gixi ∼ N (0, ||x||2).

In general, if G1, · · · ,Gd are independent random variables, then
Var[

∑
i Gixi] =

∑
i x

2
i Var[Gi].

October 9, 2023 4 / 18



Streaming Algorithm: AMS

Reducing the Memory Needed

We have an algorithm that unfortunately needs to store too much
“randomness”

We were in a similar situation when we thought about hashing.
The solution there was a weaker notion of randomness (universal
hashing), which makes possible hash functions that take less space to
store.

We had a small seed of randomness, and used that to grow a whole
hashing function

Let’s try something similar.

Recall the idea behind JL: if G1, · · · ,Gd are i.i.d. from N (0, 1), then∑
i Gixi ∼ N (0, ||x||2).

In general, if G1, · · · ,Gd are independent random variables, then
Var[

∑
i Gixi] =

∑
i x

2
i Var[Gi].

October 9, 2023 4 / 18



Streaming Algorithm: AMS

Reducing the Memory Needed

We have an algorithm that unfortunately needs to store too much
“randomness”

We were in a similar situation when we thought about hashing.
The solution there was a weaker notion of randomness (universal
hashing), which makes possible hash functions that take less space to
store.
We had a small seed of randomness, and used that to grow a whole
hashing function

Let’s try something similar.

Recall the idea behind JL: if G1, · · · ,Gd are i.i.d. from N (0, 1), then∑
i Gixi ∼ N (0, ||x||2).

In general, if G1, · · · ,Gd are independent random variables, then
Var[

∑
i Gixi] =

∑
i x

2
i Var[Gi].

October 9, 2023 4 / 18



Streaming Algorithm: AMS

Reducing the Memory Needed

We have an algorithm that unfortunately needs to store too much
“randomness”

We were in a similar situation when we thought about hashing.
The solution there was a weaker notion of randomness (universal
hashing), which makes possible hash functions that take less space to
store.
We had a small seed of randomness, and used that to grow a whole
hashing function

Let’s try something similar.

Recall the idea behind JL: if G1, · · · ,Gd are i.i.d. from N (0, 1), then∑
i Gixi ∼ N (0, ||x||2).

In general, if G1, · · · ,Gd are independent random variables, then
Var[

∑
i Gixi] =

∑
i x

2
i Var[Gi].

October 9, 2023 4 / 18



Streaming Algorithm: AMS

Reducing the Memory Needed

We have an algorithm that unfortunately needs to store too much
“randomness”

We were in a similar situation when we thought about hashing.
The solution there was a weaker notion of randomness (universal
hashing), which makes possible hash functions that take less space to
store.
We had a small seed of randomness, and used that to grow a whole
hashing function

Let’s try something similar.

Recall the idea behind JL: if G1, · · · ,Gd are i.i.d. from N (0, 1), then∑
i Gixi ∼ N (0, ||x||2).

In general, if G1, · · · ,Gd are independent random variables, then
Var[

∑
i Gixi] =

∑
i x

2
i Var[Gi].

October 9, 2023 4 / 18



Streaming Algorithm: AMS

Reducing the Memory Needed

We have an algorithm that unfortunately needs to store too much
“randomness”

We were in a similar situation when we thought about hashing.
The solution there was a weaker notion of randomness (universal
hashing), which makes possible hash functions that take less space to
store.
We had a small seed of randomness, and used that to grow a whole
hashing function

Let’s try something similar.

Recall the idea behind JL: if G1, · · · ,Gd are i.i.d. from N (0, 1), then∑
i Gixi ∼ N (0, ||x||2).

In general, if G1, · · · ,Gd are independent random variables, then
Var[

∑
i Gixi] =

∑
i x

2
i Var[Gi].

October 9, 2023 4 / 18



Streaming Algorithm: AMS

Proof of Claim

Claim
If G1, · · · ,Gd are independent random variables, then
Var[

∑
i Gixi] =

∑
i x

2
i Var[Gi].

Proof.

Var

[∑
i

Gixi

]
= E

[(∑
i

Gixi − E

[∑
i

Gixi

])2]
=
∑
i

E
[
(Gixi − E [Gixi])

2]+∑
i 6=j

E [(Gixi − E [Gixi]) · (Gjxj − E [Gjxj])]

=
∑
i

x2
i Var [Gi] +

∑
i 6=j

E [Gixi − E [Gixi]] · E [Gjxj − E [Gjxj]]

=
∑
i

x2
i Var [Gi] .
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Streaming Algorithm: AMS

Pairwise Independence

The only place where we used independence was for i 6= j,
E[GiGj] = E[Gi]E[Gj]. But this is much weaker than requiring mutual
independence for all G1, · · · ,Gn.

Definition
Random variables X1, · · · ,Xn are said to be pairwise independent if for any
i 6= j, Xi and Xj are independent, i.e., for any a, b,
Pr[Xi = a ∧ Xj = b] = Pr[Xi = a] · Pr[xj = b].

In fact, we showed

Claim
If G1, · · · ,Gd are pairwise independent random variables, then
Var[

∑
i Gixi] =

∑
i x

2
i Var[Gi].
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Streaming Algorithm: AMS

Example of Pairwise Independent Random Variables

Let our sample space be {1, 2, 3, 4}, each outcome having probability 1
4 .

Let Y1 take values 0, 0, 1, 1 for the four outcomes, respectively.
Let Y2 take values 0, 1, 1, 0 for the four outcomes, respectively.
Let Y3 take values 0, 1, 0, 1 for the four outcomes, respectively.
Then Y1,Y2,Y3 are pairwise independent but not mutually independent.
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Streaming Algorithm: AMS

Construction of Pairwise Independent Hashing

Recall our construction of universal hashing:
for a prime number q, let Fq denote the equivalent classes of 0, . . . , q− 1
mod q. All operations below are understood to be mod q.
Let U be Fm

q . For any~s = (s1, . . . , sm) ∈ Fm
q , define hash function

h~s : u = (u1, . . . , um) 7→
∑
i

siui.

We can see this as a random number generator: ~s is the seed, drawn
uniformly at random from Fk

q .

Consider the case m = 1. For any b ∈ Fq, Prs[hs(u) = b] = 1
q .

Now if we sample independent s1, s2 uniformly from Fq, then for
any u ∈ Fq, hs1,s2(u) := s1u + s2 is a random number in Fq.

October 9, 2023 8 / 18



Streaming Algorithm: AMS

Construction of Pairwise Independent Hashing

Recall our construction of universal hashing:
for a prime number q, let Fq denote the equivalent classes of 0, . . . , q− 1
mod q. All operations below are understood to be mod q.
Let U be Fm

q . For any~s = (s1, . . . , sm) ∈ Fm
q , define hash function

h~s : u = (u1, . . . , um) 7→
∑
i

siui.

We can see this as a random number generator: ~s is the seed, drawn
uniformly at random from Fk

q .

Consider the case m = 1. For any b ∈ Fq, Prs[hs(u) = b] = 1
q .

Now if we sample independent s1, s2 uniformly from Fq, then for
any u ∈ Fq, hs1,s2(u) := s1u + s2 is a random number in Fq.

October 9, 2023 8 / 18



Streaming Algorithm: AMS

Construction of Pairwise Independent Hashing

Recall our construction of universal hashing:
for a prime number q, let Fq denote the equivalent classes of 0, . . . , q− 1
mod q. All operations below are understood to be mod q.
Let U be Fm

q . For any~s = (s1, . . . , sm) ∈ Fm
q , define hash function

h~s : u = (u1, . . . , um) 7→
∑
i

siui.

We can see this as a random number generator: ~s is the seed, drawn
uniformly at random from Fk

q .

Consider the case m = 1. For any b ∈ Fq, Prs[hs(u) = b] = 1
q .

Now if we sample independent s1, s2 uniformly from Fq, then for
any u ∈ Fq, hs1,s2(u) := s1u + s2 is a random number in Fq.

October 9, 2023 8 / 18



Streaming Algorithm: AMS

Construction of Pairwise Independent Hashing

Recall our construction of universal hashing:
for a prime number q, let Fq denote the equivalent classes of 0, . . . , q− 1
mod q. All operations below are understood to be mod q.
Let U be Fm

q . For any~s = (s1, . . . , sm) ∈ Fm
q , define hash function

h~s : u = (u1, . . . , um) 7→
∑
i

siui.

We can see this as a random number generator: ~s is the seed, drawn
uniformly at random from Fk

q .

Consider the case m = 1. For any b ∈ Fq, Prs[hs(u) = b] = 1
q .

Now if we sample independent s1, s2 uniformly from Fq, then for
any u ∈ Fq, hs1,s2(u) := s1u + s2 is a random number in Fq.
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Streaming Algorithm: AMS

Claim

Random variables hs1,s2(1), · · · , hs1,s2(q − 1) are pairwise independent
random variables, each distributed uniformly on Fq.

Proof.
For any b1, b2 ∈ Fq, and for any u 6= v ∈ Fq, the equation{

s1u + s2 = b1

s1v + s2 = b2
⇒
(

1 u
1 v

)
·
(

s1

s2

)
=

(
b1

b2

)
has a unique solution (since the coe�icient matrix is full rank for u 6= v .)
Therefore Pr[hs1,s2(u) = b1 ∧ hs1,s2(v) = b2] =

1
q2 .

This implies that hs1,s2(u) is uniformly distributed on Fq.
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Streaming Algorithm: AMS

k-wise Independence

Definition
Random variables X1, · · · ,Xn are said to be k-wise independent if any k of
them are mutually independent.

Definition

A familyH of hash functions from U to {0, . . . ,m} is k-universal if for any k
distinct key values u1, . . . , uk ∈ U, and any k (not necessarily distinct) hash
addresses b1, . . . , bk ∈ {0, . . . ,m− 1},

Prh∼H [h(u1) = b1 ∧ · · · ∧ h(uk) = bk ] =
(

1
m

)k

.
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Streaming Algorithm: AMS

Construction of k-wise independent random variables

For prime q, let U be Fq. Let random seeds s1, . . . , sk be independent
uniform samples from Fq. Define

h(s1,...,sk)(u) := s1uk−1 + s2uk−2 + . . .+ sk−1u + sk .

Theorem
The set of h~s thus defined is a k-universal hash family.

Proof.
For any distinct u1, . . . , uk ∈ Fq, and b1, . . . , bk ∈ Fq that are not
necessarily distinct, we show that there is a unique~s = (s1, . . . , sk) such
that h~s(ui) = bi for i = 1, · · · , k.
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Streaming Algorithm: AMS

Proof of k-Universality (Cont.)

(Continued).


s1uk−1

1 + . . .+ sk−1u1 + sK = b1

s1uk−1
2 + . . .+ sk−1u2 + sK = b2

· · ·
s1uk−1

k + . . .+ sk−1uk + sk = bk

⇔


uk−1

1 uk−2
1 . . . u1 1

uk−1
2 uk−2

2 . . . u2 1
· · · · · ·

uk−1
k uk−2

k . . . uk 1

 ·


s1

s2

· · ·
sk

 =


b1

b2

· · ·
bk

 .

The coe�icient matrix is a Vandermonde matrix. For distinct u1, . . . , uk it has
full rank. So the system has a unique solution.
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Streaming Algorithm: AMS

Diversion: Brief Introduction to Finite Fields

In the construction of universal hashing, our hash function mapped
U = Fm

q to Fq. Our construction of k-universal hashing so far only
allows mapping from Fq to Fq.

What if we’d like h to map Fm
q to F`q, for ` < m?

If we have k-universal hashing from Fm
q to Fm

q , then we may take, say,
the first ` coordinates of the hash code.

The whole construction would go through if Fm
q supports the same

operations as Fq.
Obviously, Fm

q as a vector space supports addition and subtraction.
How do we define multiplication between vectors that satisfies
commutativity, associativity and the distributive law, and admits the
operation of division?
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Streaming Algorithm: AMS

Field Extension

We may see a vector in Fm
q as coe�icients of a polynomial of degree

m− 1, and do multiplication of vectors as polynomial multiplications
modulo a degree n irreducible polynomial.

Example: On F2, the polynomial x2 + x + 1 is irreducible.

(1, 1) · (1, 0) = (0, 1) because (x + 1)x = x2 + x ≡ 1 mod (x2 + x + 1).
In this example, you may alternatively think of extending the field F2
with an additional element α satisfying α2 = α+ 1.

In much of the same way, the complex field is the extension of the real
field with the addition of i that solves i2 = −1.
So (α+ 1)α = α2 + α = 1.

One can show that degree n irreducible polynomials always exist for
Fq. So we can construct fields Fpm for any positive integer m.
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Streaming Algorithm: AMS

JL with k-wise Independent Hash

Let’s use k-wise independent variables L1, · · · , Ld , each distributed
evenly on {−1,+1}, to emulate JL.

We’ll decide k later.

L1, · · · , Ld can be obtained from k-universal hash familyH: for hs ∼ H
with seed s, let Lj = hs(j). for j = 1, . . . , d .

Consider y :=
∑

i Lixi .
E[y] = 0 because E[Li] = 0 for each i. So Var[y] = E[y2]−E[y]2 = E[y2].
The variance of Lixi is E[L2

i x
2
i ] = x2

i . As long as L1, · · · , Ld are pairwise
independent, we have Var[y] =

∑
i x

2
i = ||x||2.

We would like to estimate ||x||2, so we would like y2 to concentrate
around its expectation.
We cannot a�ord the Cherno� bound because we don’t have enough
independence among Lixi . But we may use Chebyshev inequality if we
can bound Var[y2]:

Pr
[
|y2 − E

[
y2] | > α

]
≤ Var[y2]

α2 .
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Streaming Algorithm: AMS

Variance of
∑

i y
2

Var
[
y2] ≤ E

[
y4] = E

[(∑
i

Lixi

)4]
=

∑
j1,j2,j3,j4∈[n]

E [Lj1Lj2Lj3Lj4 ] xj1xj2xj3xj4 .

Now to simplify the analysis, we require L1, · · · , Ld to be 4-wise
independent.
Whenever some j ∈ [n] appears only once among j1, j2, j3, j4, the term
E[Lj1Lj2Lj3Lj4 ] = 0.
Only two kinds of factors remain non-zero:

j1 = j2 = j3 = j4 = j, each such term appears once, contributing x4
j to

the sum.
{j1, j2, j3, j4} consist of two pairs. For each i1, i2 ∈ [n], i1 < i2, these
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Multiple Samples

So we have Var[y2] ≤
∑

j∈[n] x
4
j + 6

∑
i1<i2 x

2
i1x

2
i2 ≤ 3||x||42.

Therefore
Pr[|y2 − ||x||2| > α] ≤ 3||x||42/α2.

We’d like α = ε||x||22.
To make the error rate smaller, let’s have t independent estimates
y1, . . . , yt .

This uses a matrix L ∈ {+1,−1}t×d , whose rows are indepedent, but
within each row, Li,1, · · · , Li,d are only 4-wise independent.

The variance of 1
t

∑
i yi is bounded by 3||x||4

t .

So as long as 3
ε2t ≤ δ, i.e., t ≥ 3

ε2δ , we have
Pr[| 1t

∑
i yi − ||x||2| > ε||x||2] < δ.
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Streaming Algorithm: AMS

Space requirement

We need to store y1, . . . , yt throughout the algorithm.

We need to store the hash functions we use to generate each row of L.
For k-universal hashing from [d], the seed takes space O(k log d).
We used 4-universal hashing, so each hash function takes O(log d)
space, and there are t of them.

Altogether the space used is O( log dε2δ ).
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