Learning Goals

- Streaming Algorithms
- Idea of AMS
- *k*-wise Independence

• Sometimes a device with limited storage processes a huge amount of data and must return statistics

- Sometimes a device with limited storage processes a huge amount of data and must return statistics
 - A network switch has a limited memory, and network traffic "streams" through it
 - At the end of the day, we may be interested in statistics such as
 - How many different requests have there been?
 - What is the most frequent request?
 - Variance of the package sizes?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Sometimes a device with limited storage processes a huge amount of data and must return statistics
 - A network switch has a limited memory, and network traffic "streams" through it
 - At the end of the day, we may be interested in statistics such as
 - How many different requests have there been?
 - What is the most frequent request?
 - Variance of the package sizes?
- Input: a sequence of indices $i_1, \ldots, i_n \in \{1, \cdots, d\}$

- Sometimes a device with limited storage processes a huge amount of data and must return statistics
 - A network switch has a limited memory, and network traffic "streams" through it
 - At the end of the day, we may be interested in statistics such as
 - How many different requests have there been?
 - What is the most frequent request?
 - Variance of the package sizes?
- Input: a sequence of indices $i_1, \ldots, i_n \in \{1, \cdots, d\}$

• *Frequency vector*: $x \in \mathbb{Z}^d$, with

$$x_j := |\{k : i_k = j\}|.$$

- Sometimes a device with limited storage processes a huge amount of data and must return statistics
 - A network switch has a limited memory, and network traffic "streams" through it
 - At the end of the day, we may be interested in statistics such as
 - How many different requests have there been?
 - What is the most frequent request?
 - Variance of the package sizes?
- Input: a sequence of indices $i_1, \ldots, i_n \in \{1, \cdots, d\}$

• *Frequency vector*: $x \in \mathbb{Z}^d$, with

$$x_j := |\{k : i_k = j\}|.$$

• Output: certain statistic of *x*, such as $||x||_p$, $||x||_0$, etc.

- Sometimes a device with limited storage processes a huge amount of data and must return statistics
 - A network switch has a limited memory, and network traffic "streams" through it
 - At the end of the day, we may be interested in statistics such as
 - How many different requests have there been?
 - What is the most frequent request?
 - Variance of the package sizes?
- Input: a sequence of indices $i_1, \ldots, i_n \in \{1, \cdots, d\}$

• *Frequency vector*: $x \in \mathbb{Z}^d$, with

$$x_j := |\{k : i_k = j\}|.$$

- Output: certain statistic of x, such as $||x||_p$, $||x||_0$, etc.
- The algorithm must use only $O(\log d)$ space.

- Sometimes a device with limited storage processes a huge amount of data and must return statistics
 - A network switch has a limited memory, and network traffic "streams" through it
 - At the end of the day, we may be interested in statistics such as
 - How many different requests have there been?
 - What is the most frequent request?
 - Variance of the package sizes?
- Input: a sequence of indices $i_1, \ldots, i_n \in \{1, \cdots, d\}$

• *Frequency vector*: $x \in \mathbb{Z}^d$, with

$$x_j := |\{k : i_k = j\}|.$$

- Output: certain statistic of x, such as $||x||_p$, $||x||_0$, etc.
- The algorithm must use only $O(\log d)$ space.
- We usually allow some error in the output

• Alon, Matias, Szegedy studied in 1996 the streaming problem for $||x||_2 = (\sum_i x_i^2)^{1/2}$, for which they won the Gödel prize in 2005.

▲ロト ▲圖ト ▲屋ト ▲屋ト

- Alon, Matias, Szegedy studied in 1996 the streaming problem for $||x||_2 = (\sum_i x_i^2)^{1/2}$, for which they won the Gödel prize in 2005.
- Naïve solution using JL-transform:

- Alon, Matias, Szegedy studied in 1996 the streaming problem for $||x||_2 = (\sum_i x_i^2)^{1/2}$, for which they won the Gödel prize in 2005.
- Naïve solution using JL-transform:
 - Maintain $L \in \mathbb{R}^{t \times d}$ whose entries are i.i.d. from $\mathcal{N}(0, \frac{1}{t})$.

- Alon, Matias, Szegedy studied in 1996 the streaming problem for $||x||_2 = (\sum_i x_i^2)^{1/2}$, for which they won the Gödel prize in 2005.
- Naïve solution using JL-transform:
 - Maintain $L \in \mathbb{R}^{t \times d}$ whose entries are i.i.d. from $\mathcal{N}(0, \frac{1}{t})$.
 - Initiate $y = 0 \in \mathbb{R}^t$.

イロト 人間 とくほ とくほ とう

- Alon, Matias, Szegedy studied in 1996 the streaming problem for $||x||_2 = (\sum_i x_i^2)^{1/2}$, for which they won the Gödel prize in 2005.
- Naïve solution using JL-transform:
 - Maintain $L \in \mathbb{R}^{t \times d}$ whose entries are i.i.d. from $\mathcal{N}(0, \frac{1}{t})$.
 - Initiate $y = 0 \in \mathbb{R}^t$.
 - When we see $i_k = j$, add the *j*-th column of *L* to *y*.

- Alon, Matias, Szegedy studied in 1996 the streaming problem for $||x||_2 = (\sum_i x_i^2)^{1/2}$, for which they won the Gödel prize in 2005.
- Naïve solution using JL-transform:
 - Maintain $L \in \mathbb{R}^{t \times d}$ whose entries are i.i.d. from $\mathcal{N}(0, \frac{1}{t})$.
 - Initiate $y = 0 \in \mathbb{R}^t$.
 - When we see $i_k = j$, add the *j*-th column of *L* to *y*.
 - Return ||*y*||.

- Alon, Matias, Szegedy studied in 1996 the streaming problem for $||x||_2 = (\sum_i x_i^2)^{1/2}$, for which they won the Gödel prize in 2005.
- Naïve solution using JL-transform:
 - Maintain $L \in \mathbb{R}^{t \times d}$ whose entries are i.i.d. from $\mathcal{N}(0, \frac{1}{t})$.
 - Initiate $y = 0 \in \mathbb{R}^t$.
 - When we see $i_k = j$, add the *j*-th column of *L* to *y*.
 - Return ||*y*||.
- Guarantee: for any $\delta > 0$, if we set $t = O(\log(\frac{1}{\delta})/\epsilon^2)$, with probability at least 1δ , we have $(1 \epsilon)||x|| \le ||y|| \le (1 + \epsilon)||x||$.

- Alon, Matias, Szegedy studied in 1996 the streaming problem for $||x||_2 = (\sum_i x_i^2)^{1/2}$, for which they won the Gödel prize in 2005.
- Naïve solution using JL-transform:
 - Maintain $L \in \mathbb{R}^{t \times d}$ whose entries are i.i.d. from $\mathcal{N}(0, \frac{1}{t})$.
 - Initiate $y = 0 \in \mathbb{R}^t$.
 - When we see $i_k = j$, add the *j*-th column of *L* to *y*.
 - Return ||*y*||.
- Guarantee: for any $\delta > 0$, if we set $t = O(\log(\frac{1}{\delta})/\epsilon^2)$, with probability at least 1δ , we have $(1 \epsilon)||x|| \le ||y|| \le (1 + \epsilon)||x||$.
- Issue: we must store a $t \times d$ matrix!

- Alon, Matias, Szegedy studied in 1996 the streaming problem for $||x||_2 = (\sum_i x_i^2)^{1/2}$, for which they won the Gödel prize in 2005.
- Naïve solution using JL-transform:
 - Maintain $L \in \mathbb{R}^{t \times d}$ whose entries are i.i.d. from $\mathcal{N}(0, \frac{1}{t})$.
 - Initiate $y = 0 \in \mathbb{R}^t$.
 - When we see $i_k = j$, add the *j*-th column of *L* to *y*.
 - Return ||*y*||.
- Guarantee: for any $\delta > 0$, if we set $t = O(\log(\frac{1}{\delta})/\epsilon^2)$, with probability at least 1δ , we have $(1 \epsilon)||x|| \le ||y|| \le (1 + \epsilon)||x||$.
- Issue: we must store a $t \times d$ matrix!
 - Sampling them anew each time does not work we must use the same linear transform for all the indices.

• We have an algorithm that unfortunately needs to store too much "randomness"

- We have an algorithm that unfortunately needs to store too much "randomness"
 - We were in a similar situation when we thought about hashing.

- We have an algorithm that unfortunately needs to store too much "randomness"
 - We were in a similar situation when we thought about hashing.
 - The solution there was a weaker notion of randomness (universal hashing), which makes possible hash functions that take less space to store.

- We have an algorithm that unfortunately needs to store too much "randomness"
 - We were in a similar situation when we thought about hashing.
 - The solution there was a weaker notion of randomness (universal hashing), which makes possible hash functions that take less space to store.
 - We had a small seed of randomness, and used that to grow a whole hashing function

- We have an algorithm that unfortunately needs to store too much "randomness"
 - We were in a similar situation when we thought about hashing.
 - The solution there was a weaker notion of randomness (universal hashing), which makes possible hash functions that take less space to store.
 - We had a small seed of randomness, and used that to grow a whole hashing function
- Let's try something similar.

- We have an algorithm that unfortunately needs to store too much "randomness"
 - We were in a similar situation when we thought about hashing.
 - The solution there was a weaker notion of randomness (universal hashing), which makes possible hash functions that take less space to store.
 - We had a small seed of randomness, and used that to grow a whole hashing function
- Let's try something similar.
- Recall the idea behind JL: if G_1, \dots, G_d are i.i.d. from $\mathcal{N}(0, 1)$, then $\sum_i G_i x_i \sim \mathcal{N}(0, ||x||^2)$.

- We have an algorithm that unfortunately needs to store too much "randomness"
 - We were in a similar situation when we thought about hashing.
 - The solution there was a weaker notion of randomness (universal hashing), which makes possible hash functions that take less space to store.
 - We had a small seed of randomness, and used that to grow a whole hashing function
- Let's try something similar.
- Recall the idea behind JL: if G_1, \dots, G_d are i.i.d. from $\mathcal{N}(0, 1)$, then $\sum_i G_i x_i \sim \mathcal{N}(0, ||x||^2)$.
- In general, if G_1, \dots, G_d are independent random variables, then $\operatorname{Var}[\sum_i G_i x_i] = \sum_i x_i^2 \operatorname{Var}[G_i].$

<ロ> (四) (四) (三) (三) (三)

Proof of Claim

Claim

If G_1, \dots, G_d are independent random variables, then $\operatorname{Var}[\sum_i G_i x_i] = \sum_i x_i^2 \operatorname{Var}[G_i].$

・ロト ・四ト ・ヨト ・ヨト

Proof of Claim

Claim

If G_1, \dots, G_d are independent random variables, then $\operatorname{Var}[\sum_i G_i x_i] = \sum_i x_i^2 \operatorname{Var}[G_i].$

Proof.

$$\operatorname{Var}\left[\sum_{i} G_{i}x_{i}\right] = \mathbf{E}\left[\left(\sum_{i} G_{i}x_{i} - \mathbf{E}\left[\sum_{i} G_{i}x_{i}\right]\right)^{2}\right]$$
$$= \sum_{i} \mathbf{E}\left[\left(G_{i}x_{i} - \mathbf{E}\left[G_{i}x_{i}\right]\right)^{2}\right] + \sum_{i \neq j} \mathbf{E}\left[\left(G_{i}x_{i} - \mathbf{E}\left[G_{i}x_{i}\right]\right) \cdot \left(G_{j}x_{j} - \mathbf{E}\left[G_{j}x_{j}\right]\right)\right]$$
$$= \sum_{i} x_{i}^{2} \operatorname{Var}\left[G_{i}\right] + \sum_{i \neq j} \mathbf{E}\left[G_{i}x_{i} - \mathbf{E}\left[G_{i}x_{i}\right]\right] \cdot \mathbf{E}\left[G_{j}x_{j} - \mathbf{E}\left[G_{j}x_{j}\right]\right]$$
$$= \sum_{i} x_{i}^{2} \operatorname{Var}\left[G_{i}\right].$$

Pairwise Independence

The only place where we used independence was for $i \neq j$, $\mathbf{E}[G_iG_j] = \mathbf{E}[G_i]\mathbf{E}[G_j]$. But this is much weaker than requiring *mutual independence* for all G_1, \dots, G_n .

Pairwise Independence

The only place where we used independence was for $i \neq j$, $\mathbf{E}[G_iG_j] = \mathbf{E}[G_i]\mathbf{E}[G_j]$. But this is much weaker than requiring *mutual independence* for all G_1, \dots, G_n .

Definition

Random variables X_1, \dots, X_n are said to be *pairwise independent* if for any $i \neq j$, X_i and X_j are independent, i.e., for any a, b, $\Pr[X_i = a \land X_j = b] = \Pr[X_i = a] \cdot \Pr[x_j = b].$

Pairwise Independence

The only place where we used independence was for $i \neq j$, $\mathbf{E}[G_iG_j] = \mathbf{E}[G_i]\mathbf{E}[G_j]$. But this is much weaker than requiring *mutual independence* for all G_1, \dots, G_n .

Definition

Random variables X_1, \dots, X_n are said to be *pairwise independent* if for any $i \neq j$, X_i and X_j are independent, i.e., for any a, b, $\mathbf{Pr}[X_i = a \land X_j = b] = \mathbf{Pr}[X_i = a] \cdot \mathbf{Pr}[x_j = b].$

In fact, we showed

Claim

If G_1, \dots, G_d are *pairwise* independent random variables, then $\operatorname{Var}[\sum_i G_i x_i] = \sum_i x_i^2 \operatorname{Var}[G_i].$

<ロ> (四) (四) (三) (三) (三)

Let our sample space be $\{1, 2, 3, 4\}$, each outcome having probability $\frac{1}{4}$.

Let our sample space be $\{1, 2, 3, 4\}$, each outcome having probability $\frac{1}{4}$. Let Y_1 take values 0, 0, 1, 1 for the four outcomes, respectively.

Let our sample space be $\{1, 2, 3, 4\}$, each outcome having probability $\frac{1}{4}$. Let Y_1 take values 0, 0, 1, 1 for the four outcomes, respectively. Let Y_2 take values 0, 1, 1, 0 for the four outcomes, respectively.

Let our sample space be $\{1, 2, 3, 4\}$, each outcome having probability $\frac{1}{4}$. Let Y_1 take values 0, 0, 1, 1 for the four outcomes, respectively. Let Y_2 take values 0, 1, 1, 0 for the four outcomes, respectively. Let Y_3 take values 0, 1, 0, 1 for the four outcomes, respectively.

Let our sample space be $\{1, 2, 3, 4\}$, each outcome having probability $\frac{1}{4}$. Let Y_1 take values 0, 0, 1, 1 for the four outcomes, respectively. Let Y_2 take values 0, 1, 1, 0 for the four outcomes, respectively. Let Y_3 take values 0, 1, 0, 1 for the four outcomes, respectively. Then Y_1 , Y_2 , Y_3 are pairwise independent but not mutually independent.

Construction of Pairwise Independent Hashing

• Recall our construction of universal hashing:

- for a prime number q, let \mathbb{F}_q denote the equivalent classes of $0, \ldots, q-1$ mod q. All operations below are understood to be mod q.
- Let U be \mathbb{F}_q^m . For any $\vec{s} = (s_1, \ldots, s_m) \in \mathbb{F}_q^m$, define hash function

$$h_{\vec{s}}: u = (u_1, \ldots, u_m) \mapsto \sum_i s_i u_i.$$

Construction of Pairwise Independent Hashing

• Recall our construction of universal hashing:

- for a prime number q, let \mathbb{F}_q denote the equivalent classes of $0, \ldots, q-1$ mod q. All operations below are understood to be mod q.
- Let U be \mathbb{F}_q^m . For any $\vec{s} = (s_1, \ldots, s_m) \in \mathbb{F}_q^m$, define hash function

$$h_{\vec{s}}: u = (u_1, \ldots, u_m) \mapsto \sum_i s_i u_i.$$

• We can see this as a random number generator: \vec{s} is the seed, drawn uniformly at random from \mathbb{F}_q^k .
Construction of Pairwise Independent Hashing

• Recall our construction of universal hashing:

- for a prime number q, let 𝔽_q denote the equivalent classes of 0,..., q − 1 mod q. All operations below are understood to be mod q.
- Let U be \mathbb{F}_q^m . For any $\vec{s} = (s_1, \ldots, s_m) \in \mathbb{F}_q^m$, define hash function

$$h_{\vec{s}}: u = (u_1, \ldots, u_m) \mapsto \sum_i s_i u_i.$$

- We can see this as a random number generator: s is the seed, drawn uniformly at random from F^k_q.
- Consider the case m = 1. For any $b \in \mathbb{F}_q$, $\Pr_s[h_s(u) = b] = \frac{1}{q}$.

Construction of Pairwise Independent Hashing

• Recall our construction of universal hashing:

- for a prime number q, let 𝔽_q denote the equivalent classes of 0,..., q − 1 mod q. All operations below are understood to be mod q.
- Let U be \mathbb{F}_q^m . For any $\vec{s} = (s_1, \ldots, s_m) \in \mathbb{F}_q^m$, define hash function

$$h_{\vec{s}}: u = (u_1, \ldots, u_m) \mapsto \sum_i s_i u_i.$$

- We can see this as a random number generator: s is the seed, drawn uniformly at random from F^k_q.
- Consider the case m = 1. For any $b \in \mathbb{F}_q$, $\mathbf{Pr}_s[h_s(u) = b] = \frac{1}{q}$.
- Now if we sample independent s₁, s₂ uniformly from 𝔽_q, then for any u ∈ 𝔽_q, h_{s1,s2}(u) := s₁u + s₂ is a random number in 𝔽_q.

ヘロン 人間 とくほ とくほ とう

Random variables $h_{s_1,s_2}(1), \dots, h_{s_1,s_2}(q-1)$ are pairwise independent random variables, each distributed uniformly on \mathbb{F}_q .

Random variables $h_{s_1,s_2}(1), \dots, h_{s_1,s_2}(q-1)$ are pairwise independent random variables, each distributed uniformly on \mathbb{F}_q .

Proof.

For any $b_1, b_2 \in \mathbb{F}_q$, and for any $u \neq v \in \mathbb{F}_q$, the equation

$$\begin{cases} s_1u + s_2 = b_1 \\ s_1v + s_2 = b_2 \end{cases} \Rightarrow \begin{pmatrix} 1 & u \\ 1 & v \end{pmatrix} \cdot \begin{pmatrix} s_1 \\ s_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

has a unique solution (since the coefficient matrix is full rank for $u \neq v$.)

Random variables $h_{s_1,s_2}(1), \dots, h_{s_1,s_2}(q-1)$ are pairwise independent random variables, each distributed uniformly on \mathbb{F}_q .

Proof.

has a uni

For any $b_1, b_2 \in \mathbb{F}_q$, and for any $u \neq v \in \mathbb{F}_q$, the equation

$$\begin{cases} s_1u + s_2 = b_1 \\ s_1v + s_2 = b_2 \end{cases} \Rightarrow \begin{pmatrix} 1 & u \\ 1 & v \end{pmatrix} \cdot \begin{pmatrix} s_1 \\ s_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$
que solution (since the coefficient matrix is full rank for $u \neq v$

Therefore $\Pr[h_{s_1,s_2}(u) = b_1 \wedge h_{s_1,s_2}(v) = b_2] = \frac{1}{q^2}$.

Random variables $h_{s_1,s_2}(1), \dots, h_{s_1,s_2}(q-1)$ are pairwise independent random variables, each distributed uniformly on \mathbb{F}_{q} .

Proof.

Tł Tł

For any $b_1, b_2 \in \mathbb{F}_q$, and for any $u \neq v \in \mathbb{F}_q$, the equation

$$\begin{cases} s_1u + s_2 = b_1 \\ s_1v + s_2 = b_2 \end{cases} \Rightarrow \begin{pmatrix} 1 & u \\ 1 & v \end{pmatrix} \cdot \begin{pmatrix} s_1 \\ s_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

has a unique solution (since the coefficient matrix is full rank for $u \neq v$.)
Therefore $\Pr[h_{s_1,s_2}(u) = b_1 \land h_{s_1,s_2}(v) = b_2] = \frac{1}{q^2}$.
This implies that $h_{s_1,s_2}(u)$ is uniformly distributed on \mathbb{F}_q .

k-wise Independence

Definition

Random variables X_1, \dots, X_n are said to be *k*-wise independent if any *k* of them are mutually independent.

k-wise Independence

Definition

Random variables X_1, \dots, X_n are said to be *k*-wise independent if any *k* of them are mutually independent.

Definition

A family \mathcal{H} of hash functions from U to $\{0, \ldots, m\}$ is *k*-universal if for any k distinct key values $u_1, \ldots, u_k \in U$, and any k (not necessarily distinct) hash addresses $b_1, \ldots, b_k \in \{0, \ldots, m-1\}$,

$$\mathbf{Pr}_{h\sim\mathcal{H}}\left[h(u_1)=b_1\wedge\cdots\wedge h(u_k)=b_k\right]=\left(\frac{1}{m}\right)^k$$

Construction of *k*-wise independent random variables

For prime q, let U be \mathbb{F}_q . Let random seeds s_1, \ldots, s_k be independent uniform samples from \mathbb{F}_q . Define

$$h_{(s_1,\ldots,s_k)}(u) := s_1 u^{k-1} + s_2 u^{k-2} + \ldots + s_{k-1} u + s_k.$$

Construction of *k*-wise independent random variables

For prime q, let U be \mathbb{F}_q . Let random seeds s_1, \ldots, s_k be independent uniform samples from \mathbb{F}_q . Define

$$h_{(s_1,\ldots,s_k)}(u) := s_1 u^{k-1} + s_2 u^{k-2} + \ldots + s_{k-1} u + s_k.$$

Theorem

The set of $h_{\vec{s}}$ thus defined is a k-universal hash family.

Construction of k-wise independent random variables

For prime q, let U be \mathbb{F}_q . Let random seeds s_1, \ldots, s_k be independent uniform samples from \mathbb{F}_q . Define

$$h_{(s_1,\ldots,s_k)}(u) := s_1 u^{k-1} + s_2 u^{k-2} + \ldots + s_{k-1} u + s_k.$$

Theorem

The set of $h_{\vec{s}}$ thus defined is a k-universal hash family.

Proof.

For any distinct $u_1, \ldots, u_k \in \mathbb{F}_q$, and $b_1, \ldots, b_k \in \mathbb{F}_q$ that are not necessarily distinct, we show that there is a unique $\vec{s} = (s_1, \ldots, s_k)$ such that $h_{\vec{s}}(u_i) = b_i$ for $i = 1, \cdots, k$.

Proof of *k*-Universality (Cont.)

(Continued).

The full r

$$\begin{cases} s_1 u_1^{k-1} + \ldots + s_{k-1} u_1 + s_K = b_1 \\ s_1 u_2^{k-1} + \ldots + s_{k-1} u_2 + s_K = b_2 \\ \ddots \\ s_1 u_k^{k-1} + \ldots + s_{k-1} u_k + s_k = b_k \end{cases}$$

$$\Leftrightarrow \begin{pmatrix} u_1^{k-1} & u_1^{k-2} & \ldots & u_1 & 1 \\ u_2^{k-1} & u_2^{k-2} & \ldots & u_2 & 1 \\ \vdots & \ddots & \ddots & \vdots \\ u_k^{k-1} & u_k^{k-2} & \ldots & u_k & 1 \end{pmatrix} \cdot \begin{pmatrix} s_1 \\ s_2 \\ \cdots \\ s_k \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \cdots \\ b_k \end{pmatrix}.$$

coefficient matrix is a *Vandermonde matrix*. For distinct u_1, \ldots, u_k it has rank. So the system has a unique solution.

・ロト ・ 日下・ ・ ヨト・

 In the construction of universal hashing, our hash function mapped *U* = ℝ^m_q to ℝ_q. Our construction of *k*-universal hashing so far only allows mapping from ℝ_q to ℝ_q.

- In the construction of universal hashing, our hash function mapped *U* = ℝ^m_q to ℝ_q. Our construction of *k*-universal hashing so far only allows mapping from ℝ_q to ℝ_q.
- What if we'd like *h* to map \mathbb{F}_q^m to \mathbb{F}_q^ℓ , for $\ell < m$?

- In the construction of universal hashing, our hash function mapped *U* = ℝ^m_q to ℝ_q. Our construction of *k*-universal hashing so far only allows mapping from ℝ_q to ℝ_q.
- What if we'd like *h* to map \mathbb{F}_q^m to \mathbb{F}_q^ℓ , for $\ell < m$?
- If we have *k*-universal hashing from \mathbb{F}_q^m to \mathbb{F}_q^m , then we may take, say, the first ℓ coordinates of the hash code.

・ロト ・聞 と ・ 国 と ・ 国 と

- In the construction of universal hashing, our hash function mapped *U* = ℝ^m_q to ℝ_q. Our construction of *k*-universal hashing so far only allows mapping from ℝ_q to ℝ_q.
- What if we'd like *h* to map \mathbb{F}_q^m to \mathbb{F}_q^ℓ , for $\ell < m$?
- If we have *k*-universal hashing from \mathbb{F}_q^m to \mathbb{F}_q^m , then we may take, say, the first ℓ coordinates of the hash code.
- The whole construction would go through if \mathbb{F}_q^m supports the same operations as \mathbb{F}_q .

- In the construction of universal hashing, our hash function mapped *U* = ℝ^m_q to ℝ_q. Our construction of *k*-universal hashing so far only allows mapping from ℝ_q to ℝ_q.
- What if we'd like *h* to map \mathbb{F}_q^m to \mathbb{F}_q^ℓ , for $\ell < m$?
- If we have *k*-universal hashing from \mathbb{F}_q^m to \mathbb{F}_q^m , then we may take, say, the first ℓ coordinates of the hash code.
- The whole construction would go through if \mathbb{F}_q^m supports the same operations as \mathbb{F}_q .
 - Obviously, \mathbb{F}_q^m as a vector space supports addition and subtraction.

- In the construction of universal hashing, our hash function mapped *U* = ℝ^m_q to ℝ_q. Our construction of *k*-universal hashing so far only allows mapping from ℝ_q to ℝ_q.
- What if we'd like *h* to map \mathbb{F}_q^m to \mathbb{F}_q^ℓ , for $\ell < m$?
- If we have *k*-universal hashing from \mathbb{F}_q^m to \mathbb{F}_q^m , then we may take, say, the first ℓ coordinates of the hash code.
- The whole construction would go through if \mathbb{F}_q^m supports the same operations as \mathbb{F}_q .
 - Obviously, \mathbb{F}_q^m as a vector space supports addition and subtraction.
 - How do we define multiplication between vectors that satisfies commutativity, associativity and the distributive law, and admits the operation of division?

<ロ> (四) (四) (三) (三) (三)

• We may see a vector in \mathbb{F}_q^m as coefficients of a polynomial of degree m-1, and do multiplication of vectors as polynomial multiplications modulo a degree *n* irreducible polynomial.

- We may see a vector in \mathbb{F}_q^m as coefficients of a polynomial of degree m-1, and do multiplication of vectors as polynomial multiplications modulo a degree *n* irreducible polynomial.
- Example: On \mathbb{F}_2 , the polynomial $x^2 + x + 1$ is irreducible.

- We may see a vector in \mathbb{F}_q^m as coefficients of a polynomial of degree m-1, and do multiplication of vectors as polynomial multiplications modulo a degree *n* irreducible polynomial.
- Example: On \mathbb{F}_2 , the polynomial $x^2 + x + 1$ is irreducible.
- $(1,1) \cdot (1,0) = (0,1)$ because $(x+1)x = x^2 + x \equiv 1 \mod (x^2 + x + 1)$.

- We may see a vector in 𝔽^m_q as coefficients of a polynomial of degree *m* − 1, and do multiplication of vectors as polynomial multiplications modulo a degree *n* irreducible polynomial.
- Example: On \mathbb{F}_2 , the polynomial $x^2 + x + 1$ is irreducible.
- $(1,1) \cdot (1,0) = (0,1)$ because $(x+1)x = x^2 + x \equiv 1 \mod (x^2 + x + 1)$.
- In this example, you may alternatively think of *extending* the field \mathbb{F}_2 with an additional element α satisfying $\alpha^2 = \alpha + 1$.

- We may see a vector in 𝔽^m_q as coefficients of a polynomial of degree *m* − 1, and do multiplication of vectors as polynomial multiplications modulo a degree *n* irreducible polynomial.
- Example: On \mathbb{F}_2 , the polynomial $x^2 + x + 1$ is irreducible.
- $(1,1) \cdot (1,0) = (0,1)$ because $(x+1)x = x^2 + x \equiv 1 \mod (x^2 + x + 1)$.
- In this example, you may alternatively think of *extending* the field \mathbb{F}_2 with an additional element α satisfying $\alpha^2 = \alpha + 1$.
 - In much of the same way, the complex field is the extension of the real field with the addition of *i* that solves $i^2 = -1$.

イロン イボン イヨン イヨン 三日

- We may see a vector in 𝔽^m_q as coefficients of a polynomial of degree *m* − 1, and do multiplication of vectors as polynomial multiplications modulo a degree *n* irreducible polynomial.
- Example: On \mathbb{F}_2 , the polynomial $x^2 + x + 1$ is irreducible.
- $(1,1) \cdot (1,0) = (0,1)$ because $(x+1)x = x^2 + x \equiv 1 \mod (x^2 + x + 1)$.
- In this example, you may alternatively think of *extending* the field \mathbb{F}_2 with an additional element α satisfying $\alpha^2 = \alpha + 1$.
 - In much of the same way, the complex field is the extension of the real field with the addition of *i* that solves $i^2 = -1$.
 - So $(\alpha + 1)\alpha = \alpha^2 + \alpha = 1$.

イロン イボン イヨン イヨン 三日

- We may see a vector in 𝔽^m_q as coefficients of a polynomial of degree *m* − 1, and do multiplication of vectors as polynomial multiplications modulo a degree *n* irreducible polynomial.
- Example: On \mathbb{F}_2 , the polynomial $x^2 + x + 1$ is irreducible.
- $(1,1) \cdot (1,0) = (0,1)$ because $(x+1)x = x^2 + x \equiv 1 \mod (x^2 + x + 1)$.
- In this example, you may alternatively think of *extending* the field \mathbb{F}_2 with an additional element α satisfying $\alpha^2 = \alpha + 1$.
 - In much of the same way, the complex field is the extension of the real field with the addition of *i* that solves $i^2 = -1$.
 - So $(\alpha + 1)\alpha = \alpha^2 + \alpha = 1$.
- One can show that degree *n* irreducible polynomials always exist for \mathbb{F}_{q} . So we can construct fields $\mathbb{F}_{p^{m}}$ for any positive integer *m*.

イロン イボン イヨン イヨン 三日

- Let's use *k*-wise independent variables L_1, \dots, L_d , each distributed evenly on $\{-1, +1\}$, to emulate JL.
 - We'll decide *k* later.

- Let's use *k*-wise independent variables L_1, \dots, L_d , each distributed evenly on $\{-1, +1\}$, to emulate JL.
 - We'll decide k later.
 - L_1, \dots, L_d can be obtained from k-universal hash family \mathcal{H} : for $h_s \sim \mathcal{H}$ with seed s, let $L_j = h_s(j)$. for $j = 1, \dots, d$.

- Let's use *k*-wise independent variables L_1, \dots, L_d , each distributed evenly on $\{-1, +1\}$, to emulate JL.
 - We'll decide k later.
 - L_1, \dots, L_d can be obtained from k-universal hash family \mathcal{H} : for $h_s \sim \mathcal{H}$ with seed s, let $L_j = h_s(j)$. for $j = 1, \dots, d$.

• Consider $y := \sum_i L_i x_i$.

<ロ> (四) (四) (三) (三) (三)

- Let's use *k*-wise independent variables L_1, \dots, L_d , each distributed evenly on $\{-1, +1\}$, to emulate JL.
 - We'll decide k later.
 - L_1, \dots, L_d can be obtained from k-universal hash family \mathcal{H} : for $h_s \sim \mathcal{H}$ with seed s, let $L_j = h_s(j)$. for $j = 1, \dots, d$.
- Consider $y := \sum_i L_i x_i$.
 - $\mathbf{E}[y] = 0$ because $\mathbf{E}[L_i] = 0$ for each *i*. So $\operatorname{Var}[y] = \mathbf{E}[y^2] \mathbf{E}[y]^2 = \mathbf{E}[y^2]$.

<ロ> (四) (四) (三) (三) (三)

- Let's use *k*-wise independent variables L_1, \dots, L_d , each distributed evenly on $\{-1, +1\}$, to emulate JL.
 - We'll decide k later.
 - L_1, \dots, L_d can be obtained from k-universal hash family \mathcal{H} : for $h_s \sim \mathcal{H}$ with seed s, let $L_j = h_s(j)$. for $j = 1, \dots, d$.
- Consider $y \coloneqq \sum_i L_i x_i$.
 - $\mathbf{E}[y] = 0$ because $\mathbf{E}[L_i] = 0$ for each *i*. So $\operatorname{Var}[y] = \mathbf{E}[y^2] \mathbf{E}[y]^2 = \mathbf{E}[y^2]$.
 - The variance of $L_i x_i$ is $\mathbf{E}[L_i^2 x_i^2] = x_i^2$. As long as L_1, \dots, L_d are pairwise independent, we have $\operatorname{Var}[y] = \sum_i x_i^2 = ||x||^2$.

- Let's use *k*-wise independent variables L_1, \dots, L_d , each distributed evenly on $\{-1, +1\}$, to emulate JL.
 - We'll decide k later.
 - L_1, \dots, L_d can be obtained from k-universal hash family \mathcal{H} : for $h_s \sim \mathcal{H}$ with seed s, let $L_j = h_s(j)$. for $j = 1, \dots, d$.
- Consider $y \coloneqq \sum_i L_i x_i$.
 - $\mathbf{E}[y] = 0$ because $\mathbf{E}[L_i] = 0$ for each *i*. So $\operatorname{Var}[y] = \mathbf{E}[y^2] \mathbf{E}[y]^2 = \mathbf{E}[y^2]$.
 - The variance of $L_i x_i$ is $\mathbf{E}[L_i^2 x_i^2] = x_i^2$. As long as L_1, \dots, L_d are pairwise independent, we have $\operatorname{Var}[y] = \sum_i x_i^2 = ||x||^2$.
 - We would like to estimate $||x||^2$, so we would like y^2 to concentrate around its expectation.

<ロ> (四) (四) (三) (三) (三)

- Let's use *k*-wise independent variables L_1, \dots, L_d , each distributed evenly on $\{-1, +1\}$, to emulate JL.
 - We'll decide k later.
 - L_1, \dots, L_d can be obtained from k-universal hash family \mathcal{H} : for $h_s \sim \mathcal{H}$ with seed s, let $L_j = h_s(j)$. for $j = 1, \dots, d$.
- Consider $y \coloneqq \sum_i L_i x_i$.
 - $\mathbf{E}[y] = 0$ because $\mathbf{E}[L_i] = 0$ for each *i*. So $\operatorname{Var}[y] = \mathbf{E}[y^2] \mathbf{E}[y]^2 = \mathbf{E}[y^2]$.
 - The variance of $L_i x_i$ is $\mathbf{E}[L_i^2 x_i^2] = x_i^2$. As long as L_1, \dots, L_d are pairwise independent, we have $\operatorname{Var}[y] = \sum_i x_i^2 = ||x||^2$.
 - We would like to estimate $||x||^2$, so we would like y^2 to concentrate around its expectation.
 - We cannot afford the Chernoff bound because we don't have enough independence among *L_ix_i*. But we may use Chebyshev inequality if we can bound Var[*y*²]:

$$\Pr\left[|y^2 - \mathbf{E}\left[y^2\right]| > \alpha\right] \le \frac{\operatorname{Var}[y^2]}{\alpha^2}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Variance of
$$\sum_{i} y^2$$

$$\operatorname{Var}\left[y^{2}\right] \leq \mathbf{E}\left[y^{4}\right] = \mathbf{E}\left[\left(\sum_{i} L_{i} x_{i}\right)^{4}\right]$$
$$= \sum_{j_{1}, j_{2}, j_{3}, j_{4} \in [n]} \mathbf{E}\left[L_{j_{1}} L_{j_{2}} L_{j_{3}} L_{j_{4}}\right] x_{j_{1}} x_{j_{2}} x_{j_{3}} x_{j_{4}}.$$

October 9, 2023 16 / 18

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣

Variance of
$$\sum_{i} y^2$$

$$\operatorname{Var}\left[y^{2}\right] \leq \mathbf{E}\left[y^{4}\right] = \mathbf{E}\left[\left(\sum_{i} L_{i} x_{i}\right)^{4}\right]$$
$$= \sum_{j_{1}, j_{2}, j_{3}, j_{4} \in [n]} \mathbf{E}\left[L_{j_{1}} L_{j_{2}} L_{j_{3}} L_{j_{4}}\right] x_{j_{1}} x_{j_{2}} x_{j_{3}} x_{j_{4}}.$$

Now to simplify the analysis, we require L_1, \dots, L_d to be 4-wise independent.

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Variance of
$$\sum_{i} y^2$$

$$\operatorname{Var}\left[y^{2}\right] \leq \mathbf{E}\left[y^{4}\right] = \mathbf{E}\left[\left(\sum_{i} L_{i} x_{i}\right)^{4}\right]$$
$$= \sum_{j_{1}, j_{2}, j_{3}, j_{4} \in [n]} \mathbf{E}\left[L_{j_{1}} L_{j_{2}} L_{j_{3}} L_{j_{4}}\right] x_{j_{1}} x_{j_{2}} x_{j_{3}} x_{j_{4}}.$$

Now to simplify the analysis, we require L_1, \dots, L_d to be 4-wise independent.

Whenever some $j \in [n]$ appears only once among j_1, j_2, j_3, j_4 , the term $\mathbf{E}[L_{j_1}L_{j_2}L_{j_3}L_{j_4}] = 0$.

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ●

Variance of
$$\sum_{i} y^2$$

$$\operatorname{Var}\left[y^{2}\right] \leq \mathbf{E}\left[y^{4}\right] = \mathbf{E}\left[\left(\sum_{i} L_{i} x_{i}\right)^{4}\right]$$
$$= \sum_{j_{1}, j_{2}, j_{3}, j_{4} \in [n]} \mathbf{E}\left[L_{j_{1}} L_{j_{2}} L_{j_{3}} L_{j_{4}}\right] x_{j_{1}} x_{j_{2}} x_{j_{3}} x_{j_{4}}.$$

Now to simplify the analysis, we require L_1, \dots, L_d to be 4-wise independent.

Whenever some $j \in [n]$ appears only once among j_1, j_2, j_3, j_4 , the term $\mathbf{E}[L_{j_1}L_{j_2}L_{j_3}L_{j_4}] = 0$.

Only two kinds of factors remain non-zero:

• $j_1 = j_2 = j_3 = j_4 = j$, each such term appears once, contributing x_j^4 to the sum.

(日)
Variance of
$$\sum_{i} y^2$$

$$\operatorname{Var}\left[y^{2}\right] \leq \mathbf{E}\left[y^{4}\right] = \mathbf{E}\left[\left(\sum_{i} L_{i} x_{i}\right)^{4}\right]$$
$$= \sum_{j_{1}, j_{2}, j_{3}, j_{4} \in [n]} \mathbf{E}\left[L_{j_{1}} L_{j_{2}} L_{j_{3}} L_{j_{4}}\right] x_{j_{1}} x_{j_{2}} x_{j_{3}} x_{j_{4}}.$$

Now to simplify the analysis, we require L_1, \dots, L_d to be 4-wise independent.

Whenever some $j \in [n]$ appears only once among j_1, j_2, j_3, j_4 , the term $\mathbf{E}[L_{j_1}L_{j_2}L_{j_3}L_{j_4}] = 0$.

Only two kinds of factors remain non-zero:

- $j_1 = j_2 = j_3 = j_4 = j$, each such term appears once, contributing x_j^4 to the sum.
- $\{j_1, j_2, j_3, j_4\}$ consist of two pairs. For each $i_1, i_2 \in [n], i_1 < i_2$, these terms contribute altogether $6x_{i_1}^2x_{i_2}^2$.

So we have $\operatorname{Var}[y^2] \le \sum_{j \in [n]} x_j^4 + 6 \sum_{i_1 < i_2} x_{i_1}^2 x_{i_2}^2 \le 3 ||x||_2^4$.

So we have $\operatorname{Var}[y^2] \le \sum_{j \in [n]} x_j^4 + 6 \sum_{i_1 < i_2} x_{i_1}^2 x_{i_2}^2 \le 3 ||x||_2^4$. Therefore $\Pr[|y^2 - ||x||^2| > \alpha] \le 3 ||x||_2^4 / \alpha^2$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

So we have
$$\operatorname{Var}[y^2] \leq \sum_{j \in [n]} x_j^4 + 6 \sum_{i_1 < i_2} x_{i_1}^2 x_{i_2}^2 \leq 3 ||x||_2^4$$
. Therefore $\Pr[|y^2 - ||x||^2| > \alpha] \leq 3 ||x||_2^4 / \alpha^2$.
• We'd like $\alpha = \epsilon ||x||_2^2$.

ヘロアスログス ログスログ 日本

So we have $\operatorname{Var}[y^2] \leq \sum_{j \in [n]} x_j^4 + 6 \sum_{i_1 < i_2} x_{i_1}^2 x_{i_2}^2 \leq 3 ||x||_2^4$. Therefore $\Pr[|y^2 - ||x||^2| > \alpha] \leq 3 ||x||_2^4 / \alpha^2$.

- We'd like $\alpha = \epsilon ||\mathbf{x}||_2^2$.
- To make the error rate smaller, let's have t independent estimates y_1, \ldots, y_t .

So we have $\operatorname{Var}[y^2] \leq \sum_{j \in [n]} x_j^4 + 6 \sum_{i_1 < i_2} x_{i_1}^2 x_{i_2}^2 \leq 3 ||x||_2^4$. Therefore $\Pr[|y^2 - ||x||^2| > \alpha] \leq 3 ||x||_2^4 / \alpha^2$.

- We'd like $\alpha = \epsilon ||\mathbf{x}||_2^2$.
- To make the error rate smaller, let's have t independent estimates y_1, \ldots, y_t .
 - This uses a matrix $L \in \{+1, -1\}^{t \times d}$, whose rows are indepedent, but within each row, $L_{i,1}, \dots, L_{i,d}$ are only 4-wise independent.

So we have $\operatorname{Var}[y^2] \leq \sum_{j \in [n]} x_j^4 + 6 \sum_{i_1 < i_2} x_{i_1}^2 x_{i_2}^2 \leq 3 ||x||_2^4$. Therefore $\Pr[|y^2 - ||x||^2| > \alpha] \leq 3 ||x||_2^4 / \alpha^2$.

- We'd like $\alpha = \epsilon ||\mathbf{x}||_2^2$.
- To make the error rate smaller, let's have t independent estimates y_1, \ldots, y_t .
 - This uses a matrix $L \in \{+1, -1\}^{t \times d}$, whose rows are indepedent, but within each row, $L_{i,1}, \dots, L_{i,d}$ are only 4-wise independent.
- The variance of $\frac{1}{t} \sum_{i} y_i$ is bounded by $\frac{3||x||^4}{t}$.

So we have $\operatorname{Var}[y^2] \le \sum_{j \in [n]} x_j^4 + 6 \sum_{i_1 < i_2} x_{i_1}^2 x_{i_2}^2 \le 3 ||x||_2^4$. Therefore $\Pr[|y^2 - ||x||^2| > \alpha] \le 3 ||x||_2^4 / \alpha^2$.

- We'd like $\alpha = \epsilon ||\mathbf{x}||_2^2$.
- To make the error rate smaller, let's have t independent estimates y_1, \ldots, y_t .
 - This uses a matrix $L \in \{+1, -1\}^{t \times d}$, whose rows are indepedent, but within each row, $L_{i,1}, \dots, L_{i,d}$ are only 4-wise independent.
- The variance of $\frac{1}{t} \sum_{i} y_i$ is bounded by $\frac{3||x||^4}{t}$.
- So as long as $\frac{3}{\epsilon^2 t} \leq \delta$, i.e., $t \geq \frac{3}{\epsilon^2 \delta}$, we have $\Pr[|\frac{1}{t}\sum_i y_i ||x||^2] > \epsilon ||x||^2] < \delta$.

• We need to store y_1, \ldots, y_t throughout the algorithm.

<ロ> (四) (四) (三) (三) (三)

- We need to store y_1, \ldots, y_t throughout the algorithm.
- We need to store the hash functions we use to generate each row of *L*.

- We need to store y_1, \ldots, y_t throughout the algorithm.
- We need to store the hash functions we use to generate each row of *L*.
 - For k-universal hashing from [d], the seed takes space $O(k \log d)$.

- We need to store y_1, \ldots, y_t throughout the algorithm.
- We need to store the hash functions we use to generate each row of *L*.
 - For k-universal hashing from [d], the seed takes space $O(k \log d)$.
 - We used 4-universal hashing, so each hash function takes $O(\log d)$ space, and there are *t* of them.
- Altogether the space used is $O(\frac{\log d}{\epsilon^2 \delta})$.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト