
Applications of Cherno� Bound

Learning Goals

State the implementation of the �icksort algorithm

Define Las Vegas and Monte Carlo algorithms

Basic analysis of the running time of randomized algorithms

Develop intuitive understanding of the balls and bins asymptotics
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Applications of Cherno� Bound

Setup and the algorithm

Input: A set S of n integers a1, . . . , an.

Output: Sorted array of the n integers in increasing order.

Recall: Deterministic algorithms: Merge Sort (divide and conquor,
running time O(n log n).

Recall lower bound: any deterministic algorithm must make Ω(n log n)
comparisons in the worst case.
One of the best known sorting algorithm — �icksort(S):

Base case: If |S| ≤ 3, return sorted S.
Otherwise, pick an element a uniformly at random from S, form two
sets: S+ := {b : b > a}, S− := {b : b < a}. Return �icksort(S−), aj ,
�icksort(S+).

The randomly chosen a used to split S is called a pivot.
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Applications of Cherno� Bound

Categorization of Randomized Algorithms

A randomized algorithm is simply an algorithm with access to random
coins.

Two categories of randomized algorithms:
A Las Vegas algorithm always terminates with a correct solution; its
running time is a random variable.
A Monte Carlo algorithm returns a correct solution only probabilistically;
its running time may or may not be a random variable.

�icksort is a Las Vegas algorithm.
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Applications of Cherno� Bound

Analysis of �icksort

Theorem

With high probability, the running time of �icksort is O(n log n).

Observation: In each recursion, forming S+ and S− altogether takes
O(n) time.

Intuition: if aj always cuts S in the middle, then the running time is
T (n) ≈ 2T (n/2) + O(n)⇒ T (n) = O(n log n).
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Applications of Cherno� Bound

Analysis of �icksort

The execution of �icksort can be represented by a binary tree:
Each node is represented by the set of elements being sorted in the
current recursion.

For the node sorting S, its two children sort S− and S+, respectively.

The total running time for the nodes in one level of the three is O(n).

It su�ices to show the height of the tree is O(log n) w.h.p..

There are O(n) leaves. We show that the depth of each leaf is O(log n)
w.h.p., and then apply union bound.
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Applications of Cherno� Bound

Analysis of �icksort

Consider a fixed leaf of the tree, and the path from the root down to it.

We say a step in the path is “good” if the sets of the two children both
have sizes ≤ 2

3 that of the parent.

There can be at most log3/2 n good steps before we reach the leaf.

Let’s bound the probability that, in 27 ln n steps, there are fewer than
log n good steps.

Let Xi be the indicator variable for the i-th step being good, then
E[Xi] = 1

3 , and the Xi’s are i.i.d.

Let X be
∑27 ln n

i=1 Xi . By Cherno� bound, we have

Pr
[
X < log 3

2
n
]
≤ Pr

[
X <

1
3
E [X ]

]
≤ exp

(
−1

2
· (2

3
)2 · 9 ln n

)
= n−2.
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Applications of Cherno� Bound

Analysis of �icksort (Cont.)

Recall that there are n leaves.

By the union bound, the probability that any leaf has depth more than
27 ln n is no more than n · n−2 = n−1.

Therefore, with high probability, the height of the tree is bounded by
27 ln n.

Obviously the constants in the analysis were not fine-tuned.
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Applications of Cherno� Bound

Bins and Balls

When discussing hashing, we considered a naïve/ideal hash: mapping
elements of U uniformly at random to an address.

In our first lecture, we considered n tasks sending requests uniformly
at random to one of the servers.

Such scenarios arise o�en.

This is o�en abstracted as a balls and bins model: we have n balls and
m bins, and each ball is thrown uniformly at random to a bin.

Any bin receives in expectation n
m balls. If m = n, this is 1.

How about the bin that received the most balls? How many balls
should we expect to see there?
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Applications of Cherno� Bound

Balls and Bins when m = n

Let’s consider a particular bin. Let Xi be the indicator variable for the
event that the i-th ball falls in this bin.

Then Pr[Xi = 1] = 1
n .

Let X be
∑

i Xi . Note that E[X ] = 1.

For t > 0, we use Cherno� bound

Pr [X > (1 + t)E [X ]] ≤
(

et

(1 + t)1+t

)E[X ]

≤
(

e
1 + t

)1+t

.

We would like to find t so that this probability is smaller than n−2.
Essentially we are asking what solves xx = n.
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Applications of Cherno� Bound

Balls and Bins when m = n (Cont.)

To estimate the solution of xx = n, we first take logarithm,
x log x = log n, log x + log log x = log log n.

Note that x < log n.

We have 2 log x ≥ log x + log log x = log log n ≥ log x , so

1
2

x ≤ log n
log log n

≤ x ⇒ x = Θ

(
log n

log log n

)
.

Let the solution to xx = n be γ(n), and let 1 + t = eγ(n), we have(
e

1 + t

)1+t

=

(
1

γ(n)

)eγ(n)

= n−e < n−2.

September 23, 2023 10 / 12



Applications of Cherno� Bound

Balls and Bins when m = n (Cont.)

To estimate the solution of xx = n, we first take logarithm,
x log x = log n, log x + log log x = log log n.

Note that x < log n.

We have 2 log x ≥ log x + log log x = log log n ≥ log x , so

1
2

x ≤ log n
log log n

≤ x ⇒ x = Θ

(
log n

log log n

)
.

Let the solution to xx = n be γ(n), and let 1 + t = eγ(n), we have(
e

1 + t

)1+t

=

(
1

γ(n)

)eγ(n)

= n−e < n−2.

September 23, 2023 10 / 12



Applications of Cherno� Bound

Balls and Bins when m = n (Cont.)

To estimate the solution of xx = n, we first take logarithm,
x log x = log n, log x + log log x = log log n.

Note that x < log n.

We have 2 log x ≥ log x + log log x = log log n ≥ log x , so

1
2

x ≤ log n
log log n

≤ x ⇒ x = Θ

(
log n

log log n

)
.

Let the solution to xx = n be γ(n), and let 1 + t = eγ(n), we have(
e

1 + t

)1+t

=

(
1

γ(n)

)eγ(n)

= n−e < n−2.

September 23, 2023 10 / 12



Applications of Cherno� Bound

Balls and Bins when m = n (Cont.)

To estimate the solution of xx = n, we first take logarithm,
x log x = log n, log x + log log x = log log n.

Note that x < log n.

We have 2 log x ≥ log x + log log x = log log n ≥ log x , so

1
2

x ≤ log n
log log n

≤ x ⇒ x = Θ

(
log n

log log n

)
.

Let the solution to xx = n be γ(n), and let 1 + t = eγ(n), we have(
e

1 + t

)1+t

=

(
1

γ(n)

)eγ(n)

= n−e < n−2.

September 23, 2023 10 / 12



Applications of Cherno� Bound

Balls and Bins when m = n (Cont.)

By union bound, with probability at least 1− 1
n , no bin receives more

than eγ(n) = Θ( log n
log log n ) balls.

Remark
Using Poisson approximation, one can show that w.h.p. there is a bin with
Ω(log n/ log log n) balls!
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Applications of Cherno� Bound

Balls and Bins When n� m

As n grows, the number of balls concentrates more sharply around its
means.

E.g., take n = 16m log m, with the previous notation, E[X ] = 16 log m.

Pr [X ≥ 32 log m] = Pr [X ≥ 2E [X ]] ≤ e−E[X ]/3 = m−16/3 <
1

m2 ;

Pr [X ≤ 8 log m] = Pr
[

X ≤ 1
2
E [X ]

]
≤ e−E[X ]/8 =

1
m2 .

Theorem

For n = Ω(m log m), with high probability, the number of balls every bin
receives is between half and twice the average.
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