Chernoff Bound

Learning Goals

@ Define variance and standard deviation
o State Chebyshev inequality and Chernoff inequality

@ Compare the conditions and strengths of Markov, Chebyshev and
Chernoff inequalities

@ Understand the main idea and steps in the proofs of these bounds

@ Intuition for the bounds given by the simplified forms of the Chernoff
bound



Chebyshev Inequality

Definition

The variance of a random variable X is
Var[X] == E[(X — E[X])?] = E[X?] — (E[X])?. Its square root, 1/Var[X], is
the standard deviation of X, and is often denoted as o.




Chebyshev Inequality

Definition

The variance of a random variable X is
Var[X] == E[(X — E[X])?] = E[X?] — (E[X])?. Its square root, 1/Var[X], is
the standard deviation of X, and is often denoted as o.

Theorem (Chebyshev Inequality)
For any oo > 0, Pr[|X — E[X]| > ao] < 5.
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Chebyshev Inequality

Definition

The variance of a random variable X is
Var[X] == E[(X — E[X])?] = E[X?] — (E[X])?. Its square root, 1/Var[X], is
the standard deviation of X, and is often denoted as o.

Theorem (Chebyshev Inequality)
For any oo > 0, Pr[|X — E[X]| > ao] < 5.

Proof.
Apply Markov inequality to the random variable (X — E[X])*:

Pr[IX — E[X]| > ao] = Pr [(X — E[X]) > a?Var [X]] < é
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For what distributions is Chebyshev inequality tight? I

The Markov inequality in the proof is tight.

= A distribution where | X — E[X]| takes two values: 0 and ao

= X takes three values: E[X], E[X] + ao and E[X] — a0, with equal
probability on the latter two values.
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If X and Y are independent random variables, then E[XY] = E[X] - E[Y], and
Var[X + Y| = Var[X] + Var[Y].
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Useful Facts for Independent Random Variables

Lemma

If X and Y are independent random variables, then E[XY] = E[X] - E[Y], and
Var[X + Y| = Var[X] + Var[Y].

Y.

EXY] =) (x)Pr[X=x,Y =y]

=Y () PriX =x]Pr[Y =]

X’y

=> xPrx=x]> yPr[y=y|=E[X]-E[Y].
x y

Without independence, Var[X + Y] in general is not equal to

Var X| + Var Y|. L]
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Chernoff Bound

Application of Chebyshev Inequality: Weak Law of Large
Numbers

Let Xy, X, - - - be independently, identically distributed (i.i.d.) random
variables, and each has finite variance. For each n > 1, let X, be % 27:1 Xi.
Then for any § > 0, lim, . Pr[|X, — E[X,]| > ] = 0.
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Application of Chebyshev Inequality: Weak Law of Large
Numbers

Let Xy, X, - - - be independently, identically distributed (i.i.d.) random
variables, and each has finite variance. For each n > 1, let X, be % 27:1 Xi.
Then for any § > 0, lim, . Pr[|X, — E[X,]| > ] = 0.

By independence, Var[X,] = - Y7, Var[X]] = 1 Var[X;].
By Chebyshev inequality, Pr[|X, — E[X,]| > 4] < %.
The right hand side goes to 0 as n goes to infinity. Ol
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Landscape so far

e Markov inequality: Pr[X > o E[X]] <
e X must be nonnegative.

@ Chebyshev inequality: Pr[|X — E[X]| > ao] < .
o In both, the tail bound shrinks polynomially with the distance from E[X].
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o

@ Methodologically, the proof of Chebyshev inequality amplifies the
deviation | X — E[X]| by taking its square.
o Take a nonnegative, fast growing function f(-) and apply Markov
inequality to f(X)
e Historically, Chebyshev — Markov — Kolmogorov

o Bernstein and Chernoff exploited the idea by looking at f(x) = e**.



Chernoff Bound: I.I.D. Case

Let Xi,- -+, X, be i.i.d. Bernoulli variables, such that Pr[X; = 1] = p and
Pr[X; = 0] = ¢ .= 1 — pfor each i. Define X = >, Xi.

Theorem (Chernoff Bound)
Forany t > 0,

Pr[X>(p+t)n]Sexp{(—(p—i—t)lnp:t—(q—t)lnq;t) n}.
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Chernoff Bound: I.I.D. Case

Let Xi,- -+, X, be i.i.d. Bernoulli variables, such that Pr[X; = 1] = p and
Pr[X; = 0] = ¢ .= 1 — pfor each i. Define X = >, Xi.

Theorem (Chernoff Bound)

Forany t > 0,

Pr[X>(p+t)n]gexp{(—(p—i—t)lnp:t—(q—t)lnq;t) n}.

~

For any A > 0, by Markov inequality we have

AX
Pr(X> (p+ t)n] = Pr [eAx > eA(ert)n] < E\E;t)] _
e n

By independence, we have E[e*X] = E[eXi "] = ], E[e"] = (pe* + q)".
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Proof of Chernoff Bound (Cont.)

So far we have Pr[X > (p+ t)n] < (pe +q) .

A(p+t)
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Proof of Chernoff Bound (Cont.)

e”+
So far we have Pr[X > (p+ t)n] < (pMsz)y) .

Take a )\ that minimizes the RHS: let e* be q A

o—o e get the bound in the
theorem statement.

O

Remarks:
e Note the bound’s exponential decay with n.
e The negative of the exponent, (p + t) log pTH +(q—t)log q%t, is the
relative entropy, a.k.a. KL-divergence, from the distribution (p, q) to the
distribution (p + t, ¢ — t) on the two-point space {1,0}.
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Proof of Chernoff Bound (Cont.)

e”+
So far we have Pr[X > (p+ t)n] < (pMsz)y) .

Take a \ that minimizes the RHS: let e* be q ZJF;, we get the bound in the

theorem statement. ]

Remarks:

e Note the bound’s exponential decay with n.

e The negative of the exponent, (p + t) log pTH +(q—t)log q%t, is the
relative entropy, a.k.a. KL-divergence, from the distribution (p, q) to the
distribution (p + t, ¢ — t) on the two-point space {1,0}.

The same proof yields the same bound for Pr[X < (p — t)n].
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Useful Forms of Chernoff Bound

Corollary
Let X1, - -, Xn be independently distributed on [0, 1] and X = ), Xi.
@ forallt >0,

PriX>E[X]+1,Pr[X <E[X] — ] < e 2/m

o foranye <1,

Pelx> (14 EX] < (ﬁ)” <op(-SED);

(1+e€

Pr[X < (1—)E[X]] < (Uf—;_efm < o (-% E [x]) |



Useful Forms of Chernoff Bound (Cont.)

Corollary ((Cont.))
@ Foranye > 1,

€

PriX > (1+ € E[X] < ((H"’W)Em < exp (—g E [x]) :

o Ift > 2eE[X], then

PriX >t <27.



Proof Sketch

Proof Sketch.
o Let f(t)be (p+¢t)In %t +(g—1t)In qT_t. Show f(t) > 2t? by showing
f(0) =f'(0) =0 and f”(t) > 4 for all 0 < t < g followed by Taylor’s
theorem with remainder.
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Proof Sketch

Proof Sketch
o Let f(t) be (p+ t) In 2L 4 (g — t) In L. Show f(t) > 2¢* by showing

f(0) =f'(0) =0 and f”(t) > 4 for all 0 < t < g followed by Taylor’s

theorem with remainder.

o Let g(x) be f(px), then £(0) = pf'(px), and so g(0)
g (1) > pIn2 > 2p. Deduce that for x € (0, 1), g(x)

| =
|
o
o
Q
|
Na)
Q|
."1~
=
|

= g'(0) = 0. Show
> px?/3.
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Proof Sketch.

o Let f(t)be (p+t)In %t +(g—1t)In ‘%t. Show f(t) > 2t* by showing
£(0) = f'(0) =0 and f"(t) > 4 forall 0 < t < g followed by Taylor’s
theorem with remainder.
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o Let f(t)be (p+t)In %t +(g—1t)In ‘%t. Show f(t) > 2t* by showing
£(0) = f'(0) =0 and f"(t) > 4 forall 0 < t < g followed by Taylor’s
theorem with remainder.

o Let g(x) be f(px), then g'(0) = pf’(px), and so g(0) = g'(0) = 0. Show
g (1) > pIn2 > 2p. Deduce that for x € (0, 1), g(x) > px?/3.

o Set h(x) = g(—x). Then H'(x) = —g'(—x), and h(0) = H'(0) = 0.
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See assigned reading for more details. Or take them as exercises.
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