Learning Goals

- Frequency Estimation
- The Count-Min Sketch
- Cash register and turnstile models
- Count-Sketch

Frequency Estimation

- Recall the streaming model: the stream $i_{1}, \ldots, i_{n} \in[d]:=\{1, \cdots, d\}$.

Frequency Estimation

- Recall the streaming model: the stream $i_{1}, \ldots, i_{n} \in[d]:=\{1, \cdots, d\}$.
- The frequency vector $x \in \mathbb{Z}^{d}: x_{j}=\left|\left\{t: i_{t}=j\right\}\right|$.

Frequency Estimation

- Recall the streaming model: the stream $i_{1}, \ldots, i_{n} \in[d]:=\{1, \cdots, d\}$.
- The frequency vector $x \in \mathbb{Z}^{d}: x_{j}=\left|\left\{t: i_{t}=j\right\}\right|$.
- The AMS sketch estimates $\|x\|_{2}$.

Frequency Estimation

- Recall the streaming model: the stream $i_{1}, \ldots, i_{n} \in[d]:=\{1, \cdots, d\}$.
- The frequency vector $x \in \mathbb{Z}^{d}: x_{j}=\left|\left\{t: i_{t}=j\right\}\right|$.
- The AMS sketch estimates $\|x\|_{2}$.
- What if we would like an estimate of each x_{j} ? This is called Frequency Estimation.

Frequency Estimation

- Recall the streaming model: the stream $i_{1}, \ldots, i_{n} \in[d]:=\{1, \cdots, d\}$.
- The frequency vector $x \in \mathbb{Z}^{d}: x_{j}=\left|\left\{t: i_{t}=j\right\}\right|$.
- The AMS sketch estimates $\|x\|_{2}$.
- What if we would like an estimate of each x_{j} ? This is called Frequency Estimation.
- Recall Bloom filter: we wanted to know quickly whether an element is present, allowing mistakes.

Frequency Estimation

- Recall the streaming model: the stream $i_{1}, \ldots, i_{n} \in[d]:=\{1, \cdots, d\}$.
- The frequency vector $x \in \mathbb{Z}^{d}: x_{j}=\left|\left\{t: i_{t}=j\right\}\right|$.
- The AMS sketch estimates $\|x\|_{2}$.
- What if we would like an estimate of each x_{j} ? This is called Frequency Estimation.
- Recall Bloom filter: we wanted to know quickly whether an element is present, allowing mistakes.
- There we maintained many hash tables, and return Yes only if there is a record in all tables

Frequency Estimation

- Recall the streaming model: the stream $i_{1}, \ldots, i_{n} \in[d]:=\{1, \cdots, d\}$.
- The frequency vector $x \in \mathbb{Z}^{d}: x_{j}=\left|\left\{t: i_{t}=j\right\}\right|$.
- The AMS sketch estimates $\|x\|_{2}$.
- What if we would like an estimate of each x_{j} ? This is called Frequency Estimation.
- Recall Bloom filter: we wanted to know quickly whether an element is present, allowing mistakes.
- There we maintained many hash tables, and return Yes only if there is a record in all tables
- Can we emulate the idea here?

Attempt with one hash table

- Let's try a hash function h from $[d]$ to $[k]$ for some k that we decide later.

Attempt with one hash table

- Let's try a hash function h from $[d]$ to $[k]$ for some k that we decide later.
- Maintain counters $C[1], \cdots, C[k]$, initialized to 0 .

Attempt with one hash table

- Let's try a hash function h from $[d]$ to $[k]$ for some k that we decide later.
- Maintain counters $C[1], \cdots, C[k]$, initialized to 0 .
- When i_{t} arrives, increase $C\left[h\left(i_{t}\right)\right]$ by 1 .

Attempt with one hash table

- Let's try a hash function h from [d] to $[k]$ for some k that we decide later.
- Maintain counters $C[1], \cdots, C[k]$, initialized to 0 .
- When i_{t} arrives, increase $C\left[h\left(i_{t}\right)\right]$ by 1 .
- In the end, to estimate x_{j}, we return $C[h(j)]$.

Attempt with one hash table

- Let's try a hash function h from [d] to $[k]$ for some k that we decide later.
- Maintain counters $C[1], \cdots, C[k]$, initialized to 0 .
- When i_{t} arrives, increase $C\left[h\left(i_{t}\right)\right]$ by 1 .
- In the end, to estimate x_{j}, we return $C[h(j)]$.
- Clearly, $C[h(j)]$ is an overestimate of x_{j} due to clashes.

Attempt with one hash table

- Let's try a hash function h from $[d]$ to $[k]$ for some k that we decide later.
- Maintain counters $C[1], \cdots, C[k]$, initialized to 0 .
- When i_{t} arrives, increase $C\left[h\left(i_{t}\right)\right]$ by 1 .
- In the end, to estimate x_{j}, we return $C[h(j)]$.
- Clearly, $C[h(j)]$ is an overestimate of x_{j} due to clashes.
- How many clashes are there?

Attempt with one hash table

- Let's try a hash function h from $[d]$ to $[k]$ for some k that we decide later.
- Maintain counters $C[1], \cdots, C[k]$, initialized to 0 .
- When i_{t} arrives, increase $C\left[h\left(i_{t}\right)\right]$ by 1 .
- In the end, to estimate x_{j}, we return $C[h(j)]$.
- Clearly, $C[h(j)]$ is an overestimate of x_{j} due to clashes.
- How many clashes are there?
- If h is sampled from a universal hash family, in expectation

$$
C[h(j)] \leq x_{j}+\frac{n}{k} .
$$

Attempt with one hash table

- Let's try a hash function h from [d] to $[k]$ for some k that we decide later.
- Maintain counters $C[1], \cdots, C[k]$, initialized to 0 .
- When i_{t} arrives, increase $C\left[h\left(i_{t}\right)\right]$ by 1 .
- In the end, to estimate x_{j}, we return $C[h(j)]$.
- Clearly, $C[h(j)]$ is an overestimate of x_{j} due to clashes.
- How many clashes are there?
- If h is sampled from a universal hash family, in expectation $C[h(j)] \leq x_{j}+\frac{n}{k}$.
- If we set $k=\frac{1}{\epsilon}$, this would give an estimate with ϵn additive error in expectation.

Attempt with one hash table

- Let's try a hash function h from [d] to $[k]$ for some k that we decide later.
- Maintain counters $C[1], \cdots, C[k]$, initialized to 0 .
- When i_{t} arrives, increase $C\left[h\left(i_{t}\right)\right]$ by 1 .
- In the end, to estimate x_{j}, we return $C[h(j)]$.
- Clearly, $C[h(j)]$ is an overestimate of x_{j} due to clashes.
- How many clashes are there?
- If h is sampled from a universal hash family, in expectation $C[h(j)] \leq x_{j}+\frac{n}{k}$.
- If we set $k=\frac{1}{\epsilon}$, this would give an estimate with ϵn additive error in expectation.
- Let's try pushing the guarantee to "with high probability" by repetitions!

Count-Min Sketch

The Count-Min algorithm by Cormode and Muthukrishnan (2005):

- Sample ℓ hash functions $h_{1}, \cdots, h_{\ell}:[d] \rightarrow[k]$ independently from a universal hash family; let k be $\frac{2}{\epsilon}$.

Count-Min Sketch

The Count-Min algorithm by Cormode and Muthukrishnan (2005):

- Sample ℓ hash functions $h_{1}, \cdots, h_{\ell}:[d] \rightarrow[k]$ independently from a universal hash family; let k be $\frac{2}{\epsilon}$.
- Maintain counters

$$
C_{1}[1], \cdots, C_{1}[k], C_{2}[1], \cdots, C_{2}[k], \cdots, C_{\ell}[1], \cdots, C_{\ell}[k], \text { initialized to } 0 .
$$

Count-Min Sketch

The Count-Min algorithm by Cormode and Muthukrishnan (2005):

- Sample ℓ hash functions $h_{1}, \cdots, h_{\ell}:[d] \rightarrow[k]$ independently from a universal hash family; let k be $\frac{2}{\epsilon}$.
- Maintain counters $C_{1}[1], \cdots, C_{1}[k], C_{2}[1], \cdots, C_{2}[k], \cdots, C_{\ell}[1], \cdots, C_{\ell}[k]$, initialized to 0 .
- When i_{t} arrives, for $j=1, \cdots, \ell$, increase $C_{j}\left[h_{j}\left(i_{t}\right)\right]$ by one.

Count-Min Sketch

The Count-Min algorithm by Cormode and Muthukrishnan (2005):

- Sample ℓ hash functions $h_{1}, \cdots, h_{\ell}:[d] \rightarrow[k]$ independently from a universal hash family; let k be $\frac{2}{\epsilon}$.
- Maintain counters $C_{1}[1], \cdots, C_{1}[k], C_{2}[1], \cdots, C_{2}[k], \cdots, C_{\ell}[1], \cdots, C_{\ell}[k]$, initialized to 0 .
- When i_{t} arrives, for $j=1, \cdots, \ell$, increase $C_{j}\left[h_{j}\left(i_{t}\right)\right]$ by one.
- At the end, to estimate x_{j}, return $\min \left\{C_{1}\left[h_{1}(j)\right], \cdots, C_{\ell}\left[h_{\ell}(j)\right]\right\}$.

Analysis of Count-Min

- For each (ball) $j \in[d]$ and (bin) $i \in[\ell], x_{j} \leq C_{i}\left[h_{i}(j)\right]$, so the output is never smaller than x_{j}.

Analysis of Count-Min

- For each (ball) $j \in[d]$ and (bin) $i \in[\ell], x_{j} \leq C_{i}\left[h_{i}(j)\right]$, so the output is never smaller than x_{j}.
- For each $j \in[d]$ and $i \in[\ell]$, let $Y_{i, j}$ be the number of elements that clashes with j under h_{i}, then $C_{i}\left[h_{i}(j)\right] \leq x_{j}+Y_{i, j}$.

Analysis of Count-Min

- For each (ball) $j \in[d]$ and (bin) $i \in[\ell], x_{j} \leq C_{i}\left[h_{i}(j)\right]$, so the output is never smaller than x_{j}.
- For each $j \in[d]$ and $i \in[\ell]$, let $Y_{i, j}$ be the number of elements that clashes with j under h_{i}, then $C_{i}\left[h_{i}(j)\right] \leq x_{j}+Y_{i, j}$.
- By universality, $\mathbf{E}\left[Y_{i j}\right] \leq \frac{n}{k}$.

Analysis of Count-Min

- For each (ball) $j \in[d]$ and (bin) $i \in[\ell], x_{j} \leq C_{i}\left[h_{i}(j)\right]$, so the output is never smaller than x_{j}.
- For each $j \in[d]$ and $i \in[\ell]$, let $Y_{i, j}$ be the number of elements that clashes with j under h_{i}, then $C_{i}\left[h_{i}(j)\right] \leq x_{j}+Y_{i, j}$.
- By universality, $\mathbf{E}\left[Y_{i j}\right] \leq \frac{n}{k}$.
- By Markov inequality, $\operatorname{Pr}\left[Y_{i j} \geq \frac{2 n}{k}=\epsilon n\right] \leq \frac{1}{2}$.

Analysis of Count-Min

- For each (ball) $j \in[d]$ and (bin) $i \in[\ell], x_{j} \leq C_{i}\left[h_{i}(j)\right]$, so the output is never smaller than x_{j}.
- For each $j \in[d]$ and $i \in[\ell]$, let $Y_{i, j}$ be the number of elements that clashes with j under h_{i}, then $C_{i}\left[h_{i}(j)\right] \leq x_{j}+Y_{i, j}$.
- By universality, $\mathbf{E}\left[Y_{i j}\right] \leq \frac{n}{k}$.
- By Markov inequality, $\operatorname{Pr}\left[Y_{i j} \geq \frac{2 n}{k}=\epsilon n\right] \leq \frac{1}{2}$.
- By independence, $\operatorname{Pr}\left[\cap_{i}\left\{Y_{i j} \geq \epsilon n\right\}\right] \leq 2^{-\ell}$.

Analysis of Count-Min

- For each (ball) $j \in[d]$ and (bin) $i \in[\ell], x_{j} \leq C_{i}\left[h_{i}(j)\right]$, so the output is never smaller than x_{j}.
- For each $j \in[d]$ and $i \in[\ell]$, let $Y_{i, j}$ be the number of elements that clashes with j under h_{i}, then $C_{i}\left[h_{i}(j)\right] \leq x_{j}+Y_{i, j}$.
- By universality, $\mathbf{E}\left[Y_{i j}\right] \leq \frac{n}{k}$.
- By Markov inequality, $\operatorname{Pr}\left[Y_{i j} \geq \frac{2 n}{k}=\epsilon n\right] \leq \frac{1}{2}$.
- By independence, $\operatorname{Pr}\left[\cap_{i}\left\{Y_{i j} \geq \epsilon n\right\}\right] \leq 2^{-\ell}$.
- Therefore, for some $\ell=O(\log d)$, with high probability our estimate is correct within additive ϵn error for all coordinates of x.

Analysis of Count-Min

- For each (ball) $j \in[d]$ and (bin) $i \in[\ell], x_{j} \leq C_{i}\left[h_{i}(j)\right]$, so the output is never smaller than x_{j}.
- For each $j \in[d]$ and $i \in[\ell]$, let $Y_{i, j}$ be the number of elements that clashes with j under h_{i}, then $C_{i}\left[h_{i}(j)\right] \leq x_{j}+Y_{i, j}$.
- By universality, $\mathbf{E}\left[Y_{i j}\right] \leq \frac{n}{k}$.
- By Markov inequality, $\operatorname{Pr}\left[Y_{i j} \geq \frac{2 n}{k}=\epsilon n\right] \leq \frac{1}{2}$.
- By independence, $\operatorname{Pr}\left[\cap_{i}\left\{Y_{i j} \geq \epsilon n\right\}\right] \leq 2^{-\ell}$.
- Therefore, for some $\ell=O(\log d)$, with high probability our estimate is correct within additive ϵn error for all coordinates of x.
- Space usage:
- Maintaining the counters: there are $k \ell=\frac{2}{\epsilon} \log d$ counters, each taking $O(\log n)$ space.

Analysis of Count-Min

- For each (ball) $j \in[d]$ and (bin) $i \in[\ell], x_{j} \leq C_{i}\left[h_{i}(j)\right]$, so the output is never smaller than x_{j}.
- For each $j \in[d]$ and $i \in[\ell]$, let $Y_{i, j}$ be the number of elements that clashes with j under h_{i}, then $C_{i}\left[h_{i}(j)\right] \leq x_{j}+Y_{i, j}$.
- By universality, $\mathbf{E}\left[Y_{i j}\right] \leq \frac{n}{k}$.
- By Markov inequality, $\operatorname{Pr}\left[Y_{i j} \geq \frac{2 n}{k}=\epsilon n\right] \leq \frac{1}{2}$.
- By independence, $\operatorname{Pr}\left[\cap_{i}\left\{Y_{i j} \geq \epsilon n\right\}\right] \leq 2^{-\ell}$.
- Therefore, for some $\ell=O(\log d)$, with high probability our estimate is correct within additive ϵn error for all coordinates of x.
- Space usage:
- Maintaining the counters: there are $k \ell=\frac{2}{\epsilon} \log d$ counters, each taking $O(\log n)$ space.
- Maintaining the hash functions: there are $\ell=O(\log d)$ of them, each taking $O(\log d)$ space.

More General Streaming Models

- Our streaming model so far: the stream $i_{1}, \ldots, i_{n} \in[d]:=\{1, \cdots, d\}$.

More General Streaming Models

- Our streaming model so far: the stream $i_{1}, \ldots, i_{n} \in[d]:=\{1, \cdots, d\}$.
- The frequency vector $x \in \mathbb{Z}^{d}: x_{j}=\left|\left\{t: i_{t}=j\right\}\right|$.

More General Streaming Models

- Our streaming model so far: the stream $i_{1}, \ldots, i_{n} \in[d]:=\{1, \cdots, d\}$.
- The frequency vector $x \in \mathbb{Z}^{d}: x_{j}=\left|\left\{t: i_{t}=j\right\}\right|$.
- Slight generalization: each data point at time t is a pair $\left(i_{t}, \Delta_{t}\right)$:
- i_{t} is the index
- Δ_{t} is the increment of the count at index i_{t}

More General Streaming Models

- Our streaming model so far: the stream $i_{1}, \ldots, i_{n} \in[d]:=\{1, \cdots, d\}$.
- The frequency vector $x \in \mathbb{Z}^{d}: x_{j}=\left|\left\{t: i_{t}=j\right\}\right|$.
- Slight generalization: each data point at time t is a pair $\left(i_{t}, \Delta_{t}\right)$:
- i_{t} is the index
- Δ_{t} is the increment of the count at index i_{t}
- Our streaming problems so far are special cases when all $\Delta_{t}=1$.

More General Streaming Models

- Our streaming model so far: the stream $i_{1}, \ldots, i_{n} \in[d]:=\{1, \cdots, d\}$.
- The frequency vector $x \in \mathbb{Z}^{d}: x_{j}=\left|\left\{t: i_{t}=j\right\}\right|$.
- Slight generalization: each data point at time t is a pair $\left(i_{t}, \Delta_{t}\right)$:
- i_{t} is the index
- Δ_{t} is the increment of the count at index i_{t}
- Our streaming problems so far are special cases when all $\Delta_{t}=1$.
- If Δ_{t} are positive real numbers, this is called the cash register model.

More General Streaming Models

- Our streaming model so far: the stream $i_{1}, \ldots, i_{n} \in[d]:=\{1, \cdots, d\}$.
- The frequency vector $x \in \mathbb{Z}^{d}: x_{j}=\left|\left\{t: i_{t}=j\right\}\right|$.
- Slight generalization: each data point at time t is a pair $\left(i_{t}, \Delta_{t}\right)$:
- i_{t} is the index
- Δ_{t} is the increment of the count at index i_{t}
- Our streaming problems so far are special cases when all $\Delta_{t}=1$.
- If Δ_{t} are positive real numbers, this is called the cash register model.
- If Δ_{t} are allowed to be negative, but every frequency counter x_{j} is guaranteed to be non-negative at all time, this is called the strict turnstile model.

More General Streaming Models

- Our streaming model so far: the stream $i_{1}, \ldots, i_{n} \in[d]:=\{1, \cdots, d\}$.
- The frequency vector $x \in \mathbb{Z}^{d}: x_{j}=\left|\left\{t: i_{t}=j\right\}\right|$.
- Slight generalization: each data point at time t is a pair $\left(i_{t}, \Delta_{t}\right)$:
- i_{t} is the index
- Δ_{t} is the increment of the count at index i_{t}
- Our streaming problems so far are special cases when all $\Delta_{t}=1$.
- If Δ_{t} are positive real numbers, this is called the cash register model.
- If Δ_{t} are allowed to be negative, but every frequency counter x_{j} is guaranteed to be non-negative at all time, this is called the strict turnstile model.
- If Δ_{t} can be negative, and x_{j} 's can be negative as well, this is called the turnstile model.

Frequency Estimation in Turnstile Model

Does Count-Min still work in these more general settings?

- In cash register model: Δ_{t} are positive real numbers.

Frequency Estimation in Turnstile Model

Does Count-Min still work in these more general settings?

- In cash register model: Δ_{t} are positive real numbers.
- Count-Min still works, just increase the counters by Δ_{t}; the error term is relaxed to $\epsilon\|x\|_{1}$.

Frequency Estimation in Turnstile Model

Does Count-Min still work in these more general settings?

- In cash register model: Δ_{t} are positive real numbers.
- Count-Min still works, just increase the counters by Δ_{t}; the error term is relaxed to $\epsilon\|x\|_{1}$.
- Recall $\|x\|_{1}=\sum_{i}\left|x_{i}\right|$.

Frequency Estimation in Turnstile Model

Does Count-Min still work in these more general settings?

- In cash register model: Δ_{t} are positive real numbers.
- Count-Min still works, just increase the counters by Δ_{t}; the error term is relaxed to $\epsilon\|x\|_{1}$.
- Recall $\|x\|_{1}=\sum_{i}\left|x_{i}\right|$.
- In the strict turnstile model, Δ_{t} are allowed to be negative, but every frequency counter x_{j} is guaranteed to be non-negative at all time.

Frequency Estimation in Turnstile Model

Does Count-Min still work in these more general settings?

- In cash register model: Δ_{t} are positive real numbers.
- Count-Min still works, just increase the counters by Δ_{t}; the error term is relaxed to $\epsilon\|x\|_{1}$.
- Recall $\|x\|_{1}=\sum_{i}\left|x_{i}\right|$.
- In the strict turnstile model, Δ_{t} are allowed to be negative, but every frequency counter x_{j} is guaranteed to be non-negative at all time.
- Count-Min still works.

Frequency Estimation in Turnstile Model

Does Count-Min still work in these more general settings?

- In cash register model: Δ_{t} are positive real numbers.
- Count-Min still works, just increase the counters by Δ_{t}; the error term is relaxed to $\epsilon\|x\|_{1}$.
- Recall $\|x\|_{1}=\sum_{i}\left|x_{i}\right|$.
- In the strict turnstile model, Δ_{t} are allowed to be negative, but every frequency counter x_{j} is guaranteed to be non-negative at all time.
- Count-Min still works.
- In the turnstile model, Δ_{t} can be negative, and x_{j} 's can be negative as well.

Frequency Estimation in Turnstile Model

Does Count-Min still work in these more general settings?

- In cash register model: Δ_{t} are positive real numbers.
- Count-Min still works, just increase the counters by Δ_{t}; the error term is relaxed to $\epsilon\|x\|_{1}$.
- Recall $\|x\|_{1}=\sum_{i}\left|x_{i}\right|$.
- In the strict turnstile model, Δ_{t} are allowed to be negative, but every frequency counter x_{j} is guaranteed to be non-negative at all time.
- Count-Min still works.
- In the turnstile model, Δ_{t} can be negative, and x_{j} 's can be negative as well.
- The analysis of Count-Min is problematic in this setting. Markov inequality needs nonnegativity!

Frequency Estimation for the Turnstile Model

- What goes wrong with the analysis of Count-Min is that the error term caused by clashes can be negative.

Frequency Estimation for the Turnstile Model

- What goes wrong with the analysis of Count-Min is that the error term caused by clashes can be negative.
- $C_{i}\left[h_{i}(j)\right]=x_{j}+$ error .

Frequency Estimation for the Turnstile Model

- What goes wrong with the analysis of Count-Min is that the error term caused by clashes can be negative.
- $C_{i}\left[h_{i}(j)\right]=x_{j}+$ error.
- When "error" is all nonnegative, we can take minimum among $C_{i}\left[h_{i}(j)\right]$. But when error can be negative, taking the minimum may seriously underestimate x_{j}.

Frequency Estimation for the Turnstile Model

- What goes wrong with the analysis of Count-Min is that the error term caused by clashes can be negative.
- $C_{i}\left[h_{i}(j)\right]=x_{j}+$ error.
- When "error" is all nonnegative, we can take minimum among $C_{i}\left[h_{i}(j)\right]$. But when error can be negative, taking the minimum may seriously underestimate x_{j}.
- Similarly, taking the maximum may overestimate x_{j}.

Frequency Estimation for the Turnstile Model

- What goes wrong with the analysis of Count-Min is that the error term caused by clashes can be negative.
- $C_{i}\left[h_{i}(j)\right]=x_{j}+$ error.
- When "error" is all nonnegative, we can take minimum among $C_{i}\left[h_{i}(j)\right]$. But when error can be negative, taking the minimum may seriously underestimate x_{j}.
- Similarly, taking the maximum may overestimate x_{j}.
- It is natural to try the median.

Frequency Estimation for the Turnstile Model

- What goes wrong with the analysis of Count-Min is that the error term caused by clashes can be negative.
- $C_{i}\left[h_{i}(j)\right]=x_{j}+$ error.
- When "error" is all nonnegative, we can take minimum among $C_{i}\left[h_{i}(j)\right]$. But when error can be negative, taking the minimum may seriously underestimate x_{j}.
- Similarly, taking the maximum may overestimate x_{j}.
- It is natural to try the median.

Claim

Let Z_{1}, \cdots, Z_{n} be i.i.d. random variables. Let M be a median. There is a constant $c>0$ such that:

- If $\operatorname{Pr}\left[Z_{i} \geq t\right] \leq p<\frac{1}{4}$, then $\operatorname{Pr}[M \geq t] \leq e^{-c n}$.
- If $\operatorname{Pr}\left[Z_{i} \leq t\right] \leq p<\frac{1}{4}$, then $\operatorname{Pr}[M \leq t] \leq e^{-c n}$.
- Algorithm: same setup and initialization as before
- At input $\left(i_{t}, \Delta_{t}\right)$, for $i=1, \cdots, \ell$, increase counter $C_{i}\left[h_{i}\left(i_{t}\right)\right]$ by Δ_{t}
- In the end, as an estimate of x_{j}, output a median of $\left\{C_{1}\left[h_{1}(j)\right], \cdots, C_{\ell}\left[h_{\ell}(j)\right]\right\}$.
- Algorithm: same setup and initialization as before
- At input $\left(i_{t}, \Delta_{t}\right)$, for $i=1, \cdots, \ell$, increase counter $C_{i}\left[h_{i}\left(i_{t}\right)\right]$ by Δ_{t}
- In the end, as an estimate of x_{j}, output a median of $\left\{C_{1}\left[h_{1}(j)\right], \cdots, C_{\ell}\left[h_{\ell}(j)\right]\right\}$.
- Consider any fixed index $j \in[d]$.
- Algorithm: same setup and initialization as before
- At input $\left(i_{t}, \Delta_{t}\right)$, for $i=1, \cdots, \ell$, increase counter $C_{i}\left[h_{i}\left(i_{t}\right)\right]$ by Δ_{t}
- In the end, as an estimate of x_{j}, output a median of $\left\{C_{1}\left[h_{1}(j)\right], \cdots, C_{\ell}\left[h_{\ell}(j)\right]\right\}$.
- Consider any fixed index $j \in[d]$.
- Which indices may cause positive error? $P:=\left\{j^{\prime}: x_{j^{\prime}}>0\right\}$.
- Algorithm: same setup and initialization as before
- At input $\left(i_{t}, \Delta_{t}\right)$, for $i=1, \cdots, \ell$, increase counter $C_{i}\left[h_{i}\left(i_{t}\right)\right]$ by Δ_{t}
- In the end, as an estimate of x_{j}, output a median of $\left\{C_{1}\left[h_{1}(j)\right], \cdots, C_{\ell}\left[h_{\ell}(j)\right]\right\}$.
- Consider any fixed index $j \in[d]$.
- Which indices may cause positive error? $P:=\left\{j^{\prime}: x_{j^{\prime}}>0\right\}$.
- Similarly, indices that may cause negative error are $N:=\left\{j^{\prime}: x_{j^{\prime}}<0\right\}$.
- Algorithm: same setup and initialization as before
- At input $\left(i_{t}, \Delta_{t}\right)$, for $i=1, \cdots, \ell$, increase counter $C_{i}\left[h_{i}\left(i_{t}\right)\right]$ by Δ_{t}
- In the end, as an estimate of x_{j}, output a median of $\left\{C_{1}\left[h_{1}(j)\right], \cdots, C_{\ell}\left[h_{\ell}(j)\right]\right\}$.
- Consider any fixed index $j \in[d]$.
- Which indices may cause positive error? $P:=\left\{j^{\prime}: x_{j^{\prime}}>0\right\}$.
- Similarly, indices that may cause negative error are $N:=\left\{j^{\prime}: x_{j^{\prime}}<0\right\}$.
- For any counter C_{i}, the expected error caused by indices in P is $\leq \frac{\|x\|_{1}}{k}$.
- Algorithm: same setup and initialization as before
- At input $\left(i_{t}, \Delta_{t}\right)$, for $i=1, \cdots, \ell$, increase counter $C_{i}\left[h_{i}\left(i_{t}\right)\right]$ by Δ_{t}
- In the end, as an estimate of x_{j}, output a median of $\left\{C_{1}\left[h_{1}(j)\right], \cdots, C_{\ell}\left[h_{\ell}(j)\right]\right\}$.
- Consider any fixed index $j \in[d]$.
- Which indices may cause positive error? $P:=\left\{j^{\prime}: x_{j^{\prime}}>0\right\}$.
- Similarly, indices that may cause negative error are $N:=\left\{j^{\prime}: x_{j^{\prime}}<0\right\}$.
- For any counter C_{i}, the expected error caused by indices in P is $\leq \frac{\|x\|_{1}}{k}$.
- By Markov inequality, $\operatorname{Pr}\left[\sum_{j^{\prime} \in P \backslash\{j\}} X_{j^{\prime}} \mathbb{1}_{h_{i}(j)=h_{i}\left(j^{\prime}\right)} \geq \frac{4\|x\|_{1}}{k}\right] \leq \frac{1}{4}$.
- Algorithm: same setup and initialization as before
- At input $\left(i_{t}, \Delta_{t}\right)$, for $i=1, \cdots, \ell$, increase counter $C_{i}\left[h_{i}\left(i_{t}\right)\right]$ by Δ_{t}
- In the end, as an estimate of x_{j}, output a median of

$$
\left\{C_{1}\left[h_{1}(j)\right], \cdots, C_{\ell}\left[h_{\ell}(j)\right]\right\}
$$

- Consider any fixed index $j \in[d]$.
- Which indices may cause positive error? $P:=\left\{j^{\prime}: x_{j^{\prime}}>0\right\}$.
- Similarly, indices that may cause negative error are $N:=\left\{j^{\prime}: x_{j^{\prime}}<0\right\}$.
- For any counter C_{i}, the expected error caused by indices in P is $\leq \frac{\|x\|_{1}}{k}$.
- By Markov inequality, $\operatorname{Pr}\left[\sum_{j^{\prime} \in P \backslash\{j\}} x_{j^{\prime}} \mathbb{1}_{h_{i}(j)=h_{i}\left(j^{\prime}\right)} \geq \frac{4\|x\|_{1}}{k}\right] \leq \frac{1}{4}$.
- Similarly, $\operatorname{Pr}\left[\sum_{j^{\prime} \in N \backslash\{j\}}\left|x_{j^{\prime}}\right| \mathbb{1}_{h_{i}(j)=h_{i}\left(j^{\prime}\right)} \geq \frac{4\|x\|_{1}}{k}\right] \leq \frac{1}{4}$.
- Algorithm: same setup and initialization as before
- At input $\left(i_{t}, \Delta_{t}\right)$, for $i=1, \cdots, \ell$, increase counter $C_{i}\left[h_{i}\left(i_{t}\right)\right]$ by Δ_{t}
- In the end, as an estimate of x_{j}, output a median of $\left\{C_{1}\left[h_{1}(j)\right], \cdots, C_{\ell}\left[h_{\ell}(j)\right]\right\}$.
- Consider any fixed index $j \in[d]$.
- Which indices may cause positive error? $P:=\left\{j^{\prime}: x_{j^{\prime}}>0\right\}$.
- Similarly, indices that may cause negative error are $N:=\left\{j^{\prime}: x_{j^{\prime}}<0\right\}$.
- For any counter C_{i}, the expected error caused by indices in P is $\leq \frac{\|x\|_{1}}{k}$.
- By Markov inequality, $\operatorname{Pr}\left[\sum_{j^{\prime} \in P \backslash\{j\}} x_{j^{\prime}} \mathbb{1}_{h_{i}(j)=h_{i}\left(j^{\prime}\right)} \geq \frac{4\|x\|_{1}}{k}\right] \leq \frac{1}{4}$.
- Similarly, $\operatorname{Pr}\left[\sum_{j^{\prime} \in N \backslash\{j\}}\left|x_{j^{\prime}}\right| \mathbb{1}_{h_{i}(j)=h_{i}\left(j^{\prime}\right)} \geq \frac{4\|x\|_{1}}{k}\right] \leq \frac{1}{4}$.
- Setting $k=\frac{4}{\epsilon}, \ell=O(\log d)$, with high probability our output for every coordinate is correct within $\epsilon\|x\|_{1}$ additive error.

Count-Sketch

- We can do a bit better to control the error term to within $\epsilon\|x\|_{2}$ - Recall that $\|x\|_{p}=\left(\sum_{i} x_{i}^{p}\right)^{1 / p}$ decreases with p for $p \in(0, \infty)$.

Count-Sketch

- We can do a bit better to control the error term to within $\epsilon\|x\|_{2}$ - Recall that $\|x\|_{p}=\left(\sum_{i} x_{i}^{p}\right)^{1 / p}$ decreases with p for $p \in(0, \infty)$.
- Common bound: $\|x\|_{2} \geq \frac{1}{\sqrt{n}}\|x\|_{1}$ by Cauchy-Schwartz

Count-SKetch

- We can do a bit better to control the error term to within $\epsilon\|x\|_{2}$
- Recall that $\|x\|_{p}=\left(\sum_{i} x_{i}^{p}\right)^{1 / p}$ decreases with p for $p \in(0, \infty)$.
- Common bound: $\|x\|_{2} \geq \frac{1}{\sqrt{n}}\|x\|_{1}$ by Cauchy-Schwartz
- Count-Sкetch due to Charikar, Chen, Farach-Colton (2004)
- Same setup as before, except that now
- each h_{i} is drawn from a 2-wise universal hash family;
- maintain hash functions $g_{1}, \ldots, g_{\ell}:[d] \rightarrow\{+1,-1\}$, each drawn independently from a 2 -wise universal hash family.

Count-SKetch

- We can do a bit better to control the error term to within $\epsilon\|x\|_{2}$
- Recall that $\|x\|_{p}=\left(\sum_{i} x_{i}^{p}\right)^{1 / p}$ decreases with p for $p \in(0, \infty)$.
- Common bound: $\|x\|_{2} \geq \frac{1}{\sqrt{n}}\|x\|_{1}$ by Cauchy-Schwartz
- Count-Sкetch due to Charikar, Chen, Farach-Colton (2004)
- Same setup as before, except that now
- each h_{i} is drawn from a 2 -wise universal hash family;
- maintain hash functions $g_{1}, \ldots, g_{\ell}:[d] \rightarrow\{+1,-1\}$, each drawn independently from a 2 -wise universal hash family.
- At input $\left(i_{t}, \Delta_{t}\right)$, for $i=1, \cdots, \ell$, increase counter $C_{i}\left[h_{i}\left(i_{t}\right)\right]$ by $g_{i_{t}} \Delta_{t}$.
- In the end, for index $j \in[d]$, output a median M among $g_{1}(j) C_{1}\left[h_{1}(j)\right], \cdots, g_{\ell}(j) C_{\ell}\left[h_{\ell}(j)\right]$.

Analysis of Count-Sketch

- For any $i \in[\ell]$ and $j \in[d]$. By pairwise independence of $g_{i}(\cdot)$'s,

$$
\mathbf{E}\left[C_{i}\left[h_{i}(j)\right] g_{i}(j)\right]=x_{j}+\mathbf{E}\left[\sum_{j^{\prime} \neq j} g_{i}(j) g_{i}\left(j^{\prime}\right) x_{j^{\prime}} \mathbb{1}_{h_{i}\left(j^{\prime}\right)=h_{i}(j)}\right]=x_{j} .
$$

Analysis of Count-Sketch

- For any $i \in[\ell]$ and $j \in[d]$. By pairwise independence of $g_{i}(\cdot)$'s,

$$
\mathbf{E}\left[C_{i}\left[h_{i}(j)\right] g_{i}(j)\right]=x_{j}+\mathbf{E}\left[\sum_{j^{\prime} \neq j} g_{i}(j) g_{i}\left(j^{\prime}\right) x_{j^{\prime}} \mathbb{1}_{h_{i}\left(j^{\prime}\right)=h_{i}(j)}\right]=x_{j} .
$$

- We bound the deviation by Chebyshev inequality:

Analysis of Count-Sketch

- For any $i \in[\ell]$ and $j \in[d]$. By pairwise independence of $g_{i}(\cdot)$'s,

$$
\mathbf{E}\left[C_{i}\left[h_{i}(j)\right] g_{i}(j)\right]=x_{j}+\mathbf{E}\left[\sum_{j^{\prime} \neq j} g_{i}(j) g_{i}\left(j^{\prime}\right) x_{j^{\prime}} \mathbb{1}_{h_{i}\left(j^{\prime}\right)=h_{i}(j)}\right]=x_{j} .
$$

- We bound the deviation by Chebyshev inequality:

$$
\operatorname{Var}\left[C_{i}\left[h_{i}(j)\right] g_{i}(j)\right]=\operatorname{Var}\left[\sum_{j^{\prime} \neq j} g_{i}(j) g_{i}\left(j^{\prime}\right) x_{j^{\prime}} \mathbb{1}_{h_{i}\left(j^{\prime}\right)=h_{i}(j)}\right] \leq \frac{\|x\|_{2}^{2}}{k} .
$$

Analysis of Count-Sketch

- For any $i \in[\ell]$ and $j \in[d]$. By pairwise independence of $g_{i}(\cdot)$'s,

$$
\mathbf{E}\left[C_{i}\left[h_{i}(j)\right] g_{i}(j)\right]=x_{j}+\mathbf{E}\left[\sum_{j^{\prime} \neq j} g_{i}(j) g_{i}\left(j^{\prime}\right) x_{j^{\prime}} \mathbb{1}_{h_{i}\left(j^{\prime}\right)=h_{i}(j)}\right]=x_{j} .
$$

- We bound the deviation by Chebyshev inequality:

$$
\begin{gathered}
\operatorname{Var}\left[C_{i}\left[h_{i}(j)\right] g_{i}(j)\right]=\operatorname{Var}\left[\sum_{j^{\prime} \neq j} g_{i}(j) g_{i}\left(j^{\prime}\right) x_{j^{\prime}} \mathbb{1}_{h_{i}\left(j^{\prime}\right)=h_{i}(j)}\right] \leq \frac{\|x\|_{2}^{2}}{k} . \\
\operatorname{Pr}\left[\left|g_{i}(j) C_{i}\left[h_{i}(j)\right]-x_{j}\right| \geq \epsilon\|x\|_{2}\right] \leq \frac{\|x\|_{2}^{2}}{k \epsilon^{2}\|x\|_{2}^{2}}=\frac{1}{k \epsilon^{2}}
\end{gathered}
$$

Analysis of Count-Sкетсн

- For any $i \in[\ell]$ and $j \in[d]$. By pairwise independence of $g_{i}(\cdot)$'s,

$$
\mathbf{E}\left[C_{i}\left[h_{i}(j)\right] g_{i}(j)\right]=x_{j}+\mathbf{E}\left[\sum_{j^{\prime} \neq j} g_{i}(j) g_{i}\left(j^{\prime}\right) x_{j^{\prime}} \mathbb{1}_{h_{i}\left(j^{\prime}\right)=h_{i}(j)}\right]=x_{j} .
$$

- We bound the deviation by Chebyshev inequality:

$$
\begin{gathered}
\operatorname{Var}\left[C_{i}\left[h_{i}(j)\right] g_{i}(j)\right]=\operatorname{Var}\left[\sum_{j^{\prime} \neq j} g_{i}(j) g_{i}\left(j^{\prime}\right) x_{j^{\prime}} \mathbb{1}_{h_{i}\left(j^{\prime}\right)=h_{i}(j)}\right] \leq \frac{\|x\|_{2}^{2}}{k} . \\
\operatorname{Pr}\left[\left|g_{i}(j) C_{i}\left[h_{i}(j)\right]-x_{j}\right| \geq \epsilon\|\boldsymbol{x}\|_{2}\right] \leq \frac{\|\boldsymbol{x}\|_{2}^{2}}{\boldsymbol{k} \epsilon^{2}\|\boldsymbol{x}\|_{2}^{2}}=\frac{1}{\boldsymbol{k} \epsilon^{2}}
\end{gathered}
$$

We can take $k=O\left(\frac{1}{\epsilon^{2}}\right)$.

