Streaming Algorithm: Count-Min and Count Sketch

Learning Goals

@ Frequency Estimation
@ The Count-Min Sketch
Cash register and turnstile models

Count-Sketch

Streaming Algorithm: Count-Min and Count Sketch

Frequency Estimation

o Recall the streaming model: the stream iy, ..., i, € [d] .= {1,--- ,d}.

Streaming Algorithm: Count-Min and Count Sketch

Frequency Estimation

o Recall the streaming model: the stream iy, ..., i, € [d] .= {1,--- ,d}.
@ The frequency vector x € VAY Xj = \ {t D :f} ‘

Streaming Algorithm: Count-Min and Count Sketch

Frequency Estimation

o Recall the streaming model: the stream iy, ..., i, € [d] .= {1,--- ,d}.
o The frequency vector x € Z9: x; = | {t : ir = j} |.
@ The AMS sketch estimates ||x||,.

Streaming Algorithm: Count-Min and Count Sketch

Frequency Estimation

o Recall the streaming model: the stream iy, ..., i, € [d] .= {1,--- ,d}.
o The frequency vector x € Z9: x; = | {t : ir = j} |.
@ The AMS sketch estimates ||x||,.

e What if we would like an estimate of each x;? This is called Frequency

Estimation.

Streaming Algorithm: Count-Min and Count Sketch

Frequency Estimation

o Recall the streaming model: the stream iy, ..., i, € [d] .= {1,--- ,d}.
o The frequency vector x € Z9: x; = | {t : ir = j} |.
@ The AMS sketch estimates ||x||,.

e What if we would like an estimate of each x;? This is called Frequency
Estimation.

@ Recall Bloom filter: we wanted to know quickly whether an element is
present, allowing mistakes.

Streaming Algorithm: Count-Min and Count Sketch

Frequency Estimation

o Recall the streaming model: the stream iy, ..., i, € [d] .= {1,--- ,d}.
o The frequency vector x € Z9: x; = | {t : ir = j} |.
@ The AMS sketch estimates ||x||,.

e What if we would like an estimate of each x;? This is called Frequency
Estimation.

@ Recall Bloom filter: we wanted to know quickly whether an element is
present, allowing mistakes.

o There we maintained many hash tables, and return YEes only if there is a
record in all tables

Streaming Algorithm: Count-Min and Count Sketch

Frequency Estimation

o Recall the streaming model: the stream iy, ..., i, € [d] .= {1,--- ,d}.
o The frequency vector x € Z9: x; = | {t : ir = j} |.
@ The AMS sketch estimates ||x||,.

e What if we would like an estimate of each x;? This is called Frequency
Estimation.

@ Recall Bloom filter: we wanted to know quickly whether an element is
present, allowing mistakes.
o There we maintained many hash tables, and return YEes only if there is a
record in all tables
e Can we emulate the idea here?

Streaming Algorithm: Count-Min and Count Sketch

Attempt with one hash table

@ Let’s try a hash function h from [d] to [k] for some k that we decide
later.

Streaming Algorithm: Count-Min and Count Sketch

Attempt with one hash table

@ Let’s try a hash function h from [d] to [k] for some k that we decide
later.

e Maintain counters C[1],-- - , C[k], initialized to 0.

Streaming Algorithm: Count-Min and Count Sketch

Attempt with one hash table

@ Let’s try a hash function h from [d] to [k] for some k that we decide
later.

e Maintain counters C[1],-- - , C[k], initialized to 0.

e When iy arrives, increase C[h(i;)] by 1.

Streaming Algorithm: Count-Min and Count Sketch

Attempt with one hash table

Let’s try a hash function h from [d] to [k] for some k that we decide
later.

e Maintain counters C[1],-- - , C[k], initialized to 0.

e When iy arrives, increase C[h(i;)] by 1.

@ In the end, to estimate x;, we return C[h(})].

Streaming Algorithm: Count-Min and Count Sketch

Attempt with one hash table

Let’s try a hash function h from [d] to [k] for some k that we decide
later.

e Maintain counters C[1],-- - , C[k], initialized to 0.

e When iy arrives, increase C[h(i;)] by 1.

@ In the end, to estimate x;, we return C[h(})].

Clearly, C[h(j)] is an overestimate of x; due to clashes.

3/1

Streaming Algorithm: Count-Min and Count Sketch

Attempt with one hash table

Let’s try a hash function h from [d] to [k] for some k that we decide
later.

e Maintain counters C[1],-- - , C[k], initialized to 0.

e When iy arrives, increase C[h(i;)] by 1.

@ In the end, to estimate x;, we return C[h(})].

e Clearly, C[h(j)] is an overestimate of x; due to clashes.

e How many clashes are there?

Streaming Algorithm: Count-Min and Count Sketch

Attempt with one hash table

Let’s try a hash function h from [d] to [k] for some k that we decide
later.

e Maintain counters C[1],-- - , C[k], initialized to 0.

e When iy arrives, increase C[h(i;)] by 1.

@ In the end, to estimate x;, we return C[h(})].

e Clearly, C[h(j)] is an overestimate of x; due to clashes.

e How many clashes are there?

e If his sampled from a universal hash family, in expectation
Clh()] < x + ¢.

Streaming Algorithm: Count-Min and Count Sketch

Attempt with one hash table

Let’s try a hash function h from [d] to [k] for some k that we decide
later.

e Maintain counters C[1],-- - , C[k], initialized to 0.

e When iy arrives, increase C[h(i;)] by 1.

@ In the end, to estimate x;, we return C[h(})].

e Clearly, C[h(j)] is an overestimate of x; due to clashes.

e How many clashes are there?

e If his sampled from a universal hash family, in expectation
ClA) < x + 2.

o If we set k = 1, this would give an estimate with en additive error in
expectation.

Streaming Algorithm: Count-Min and Count Sketch

Attempt with one hash table

Let’s try a hash function h from [d] to [k] for some k that we decide
later.

e Maintain counters C[1],-- - , C[k], initialized to 0.

e When iy arrives, increase C[h(i;)] by 1.

@ In the end, to estimate x;, we return C[h(})].

e Clearly, C[h(j)] is an overestimate of x; due to clashes.

e How many clashes are there?
e If his sampled from a universal hash family, in expectation
CIAG) < %+ 2.
o If we set k = 1, this would give an estimate with en additive error in
expectation.
o Let’s try pushing the guarantee to “with high probability” by repetitions!

Streaming Algorithm: Count-Min and Count Sketch

Count-Min Sketch

The CounT-MIN algorithm by Cormode and Muthukrishnan (2005):

e Sample ¢ hash functions hq,-- - , hy : [d] — [k] independently from a
universal hash family; let k be %

Streaming Algorithm: Count-Min and Count Sketch

Count-Min Sketch

The CounT-MIN algorithm by Cormode and Muthukrishnan (2005):

e Sample ¢ hash functions hq,-- - , hy : [d] — [k] independently from a
universal hash family; let k be %

@ Maintain counters
Ci[1],---, Cilk], Co[1], -+ -, Cofk], - -+, Ce[], - - -, Ce[k], initialized to 0.

Streaming Algorithm: Count-Min and Count Sketch

Count-Min Sketch

The CounT-MIN algorithm by Cormode and Muthukrishnan (2005):

e Sample ¢ hash functions hq,-- - , hy : [d] — [k] independently from a
universal hash family; let k be %

@ Maintain counters
Ci[1],---, Cilk], Co[1], -+ -, Cofk], - -+, Ce[], - - -, Ce[k], initialized to 0.

@ When i; arrives, for j = 1,--- , £, increase C;j[h;(i;)] by one.

Streaming Algorithm: Count-Min and Count Sketch

Count-Min Sketch

The CounT-MIN algorithm by Cormode and Muthukrishnan (2005):

e Sample ¢ hash functions hq,-- - , hy : [d] — [k] independently from a
universal hash family; let k be %

@ Maintain counters
Ci[1],---, Cilk], Co[1], -+ -, Cofk], - -+, Ce[], - - -, Ce[k], initialized to 0.

@ When i; arrives, for j = 1,--- , £, increase C;j[h;(i;)] by one.

o At the end, to estimate xj, return min {C;[h1())], - - - , Ce[he())]}-

Streaming Algorithm: Count-Min and Count Sketch

Analysis of COUNT-MIN

@ For each (ball) j € [d] and (bin) i € [€], x; < Ci[hi())], so the output is
never smaller than x;.

Streaming Algorithm: Count-Min and Count Sketch

Analysis of COUNT-MIN

@ For each (ball) j € [d] and (bin) i € [€], x; < Ci[hi())], so the output is
never smaller than x;.

@ Foreachj € [d] and i € [{], let Y; be the number of elements that
clashes with j under h;, then Ci[hi(j)] < x; + Vi

Streaming Algorithm: Count-Min and Count Sketch

Analysis of COUNT-MIN

@ For each (ball) j € [d] and (bin) i € [€], x; < Ci[hi())], so the output is
never smaller than x;.
@ Foreachj € [d] and i € [{], let Y; be the number of elements that
clashes with j under h;, then Ci[hi(j)] < x; + Vi
o By universality, E[Y;] < 7.

5/1

Streaming Algorithm: Count-Min and Count Sketch

Analysis of COUNT-MIN

@ For each (ball) j € [d] and (bin) i € [€], x; < Ci[hi())], so the output is
never smaller than x;.
@ Foreachj € [d] and i € [{], let Y; be the number of elements that
clashes with j under h;, then Ci[hi(j)] < x; + Vi
o By universality, E[Y;] < 7.
o By Markov inequality, Pr[Y; > 27

en) < 1.

5/1

Streaming Algorithm: Count-Min and Count Sketch

Analysis of COUNT-MIN

@ For each (ball) j € [d] and (bin) i € [€], x; < Ci[hi())], so the output is
never smaller than x;.
@ Foreachj € [d] and i € [{], let Y; be the number of elements that
clashes with j under h;, then Ci[hi(j)] < x; + Vi
o By universality, E[Y;] < 7.
o By Markov inequality, Pr[Y; > 22 = en] <
o By independence, Pr[N;{Y; > en}] < 27°.

1
2

5/11

Streaming Algorithm: Count-Min and Count Sketch

Analysis of COUNT-MIN

For each (ball) j € [d] and (bin) i € [€], x; < Ci[hi(j)], so the output is
never smaller than x;.

For each j € [d] and i € [(], let Y; ; be the number of elements that
clashes with j under h;, then Ci[hi(j)] < x; + Vi

o By universality, E[Y;] < 7.

o By Markov inequality, Pr[Y; > 22 = en] <
By independence, Pr[N;{Y; > en}] < 27°.
Therefore, for some ¢ = O(log d), with high probability our estimate is
correct within additive en error for all coordinates of x.

1
2

Streaming Algorithm: Count-Min and Count Sketch

Analysis of COUNT-MIN

For each (ball) j € [d] and (bin) i € [€], x; < Ci[hi(j)], so the output is
never smaller than x;.

For each j € [d] and i € [(], let Y; ; be the number of elements that
clashes with j under h;, then Ci[hi(j)] < x; + Vi

o By universality, E[Y;] < 7.

o By Markov inequality, Pr[Y; > 22 = en] <
By independence, Pr[N;{Y; > en}] < 27°.
Therefore, for some ¢ = O(log d), with high probability our estimate is
correct within additive en error for all coordinates of x.

1
2

Space usage:
e Maintaining the counters: there are k{ = % log d counters, each taking
O(log n) space.

Streaming Algorithm: Count-Min and Count Sketch

Analysis of COUNT-MIN

For each (ball) j € [d] and (bin) i € [€], x; < Ci[hi(j)], so the output is
never smaller than x;.

For each j € [d] and i € [(], let Y; ; be the number of elements that
clashes with j under h;, then Ci[hi(j)] < x; + Vi

o By universality, E[Y;] < 7.

o By Markov inequality, Pr[Y; > 22 = en] <
By independence, Pr[N;{Y; > en}] < 27°.
Therefore, for some ¢ = O(log d), with high probability our estimate is
correct within additive en error for all coordinates of x.

1
2

Space usage:
e Maintaining the counters: there are k{ = % log d counters, each taking
O(log n) space.
o Maintaining the hash functions: there are ¢ = O(log d) of them, each
taking O(log d) space.

Streaming Algorithm: Count-Min and Count Sketch

More General Streaming Models

@ Our streaming model so far: the stream iy, ..., i, € [d] = {1, -+, d}.

Streaming Algorithm: Count-Min and Count Sketch

More General Streaming Models

@ Our streaming model so far: the stream iy, ..., i, € [d] = {1, -+, d}.

@ The frequency vector x € VAR X; = |{t:ig=j}|

Streaming Algorithm: Count-Min and Count Sketch

More General Streaming Models

@ Our streaming model so far: the stream iy, ..., i, € [d] = {1, -+, d}.
o The frequency vector x € Z9: x; = | {t : ir = j}|.
e Slight generalization: each data point at time t is a pair (i¢, A;):

e i is the index
e A;is the increment of the count at index i;

Streaming Algorithm: Count-Min and Count Sketch

More General Streaming Models

@ Our streaming model so far: the stream iy, ..., i, € [d] = {1, -+, d}.
o The frequency vector x € Z9: x; = | {t : ir = j}|.
e Slight generalization: each data point at time t is a pair (i¢, A;):

e i is the index
e A;is the increment of the count at index i;

@ Our streaming problems so far are special cases when all A; = 1.

Streaming Algorithm: Count-Min and Count Sketch

More General Streaming Models

@ Our streaming model so far: the stream iy, ..., i, € [d] = {1, -+, d}.

The frequency vector x € Z¢: xj = [{t:ir=j}|

Slight generalization: each data point at time t is a pair (i¢, A;):

e i is the index
e A;is the increment of the count at index i;

@ Our streaming problems so far are special cases when all A; = 1.

If A; are positive real numbers, this is called the cash register model.

Streaming Algorithm: Count-Min and Count Sketch

More General Streaming Models

@ Our streaming model so far: the stream iy, ..., i, € [d] = {1, -+, d}.
o The frequency vector x € Z9: x; = | {t : ir = j}|.
e Slight generalization: each data point at time t is a pair (i¢, A;):

e i is the index
e A;is the increment of the count at index i;

@ Our streaming problems so far are special cases when all A; = 1.
o If A; are positive real numbers, this is called the cash register model.

o If A; are allowed to be negative, but every frequency counter x; is
guaranteed to be non-negative at all time, this is called the strict
turnstile model.

Streaming Algorithm: Count-Min and Count Sketch

More General Streaming Models

@ Our streaming model so far: the stream iy, ..., i, € [d] = {1, -+, d}.
o The frequency vector x € Z9: x; = | {t : ir = j}|.
e Slight generalization: each data point at time t is a pair (i¢, A;):

e i is the index
e A;is the increment of the count at index i;

@ Our streaming problems so far are special cases when all A; = 1.
o If A; are positive real numbers, this is called the cash register model.

o If A; are allowed to be negative, but every frequency counter x; is
guaranteed to be non-negative at all time, this is called the strict
turnstile model.

e If A; can be negative, and x;’s can be negative as well, this is called the
turnstile model.

Streaming Algorithm: Count-Min and Count Sketch

Frequency Estimation in Turnstile Model

Does CouNT-MiIN still work in these more general settings?

@ In cash register model: A; are positive real numbers.

7/1

Streaming Algorithm: Count-Min and Count Sketch

Frequency Estimation in Turnstile Model

Does CouNT-MiIN still work in these more general settings?

@ In cash register model: A; are positive real numbers.

e CounT-MIN still works, just increase the counters by Ay; the error term
is relaxed to €||x||;.

7/1

Streaming Algorithm: Count-Min and Count Sketch

Frequency Estimation in Turnstile Model

Does CouNT-MiIN still work in these more general settings?

@ In cash register model: A; are positive real numbers.
e CounT-MIN still works, just increase the counters by Ay; the error term
is relaxed to €||x||;.
o Recall ||x||s =, |xi.

Streaming Algorithm: Count-Min and Count Sketch

Frequency Estimation in Turnstile Model

Does CouNT-MiIN still work in these more general settings?

@ In cash register model: A; are positive real numbers.
e CounT-MIN still works, just increase the counters by Ay; the error term
is relaxed to €||x||;.
o Recall ||x||s =, |xi.
@ In the strict turnstile model, A; are allowed to be negative, but every
frequency counter x; is guaranteed to be non-negative at all time.

7/1

Streaming Algorithm: Count-Min and Count Sketch

Frequency Estimation in Turnstile Model

Does CouNT-MiIN still work in these more general settings?

@ In cash register model: A; are positive real numbers.
e CounT-MIN still works, just increase the counters by Ay; the error term
is relaxed to €||x||;.
o Recall ||x||s =, |xi.
@ In the strict turnstile model, A; are allowed to be negative, but every
frequency counter x; is guaranteed to be non-negative at all time.
o CounT-MinN still works.

7/1

Streaming Algorithm: Count-Min and Count Sketch

Frequency Estimation in Turnstile Model

Does CouNT-MiIN still work in these more general settings?

@ In cash register model: A; are positive real numbers.
e CounT-MIN still works, just increase the counters by Ay; the error term
is relaxed to €||x||;.
o Recall ||x||s =, |xi.
@ In the strict turnstile model, A; are allowed to be negative, but every
frequency counter x; is guaranteed to be non-negative at all time.
o CounT-MinN still works.

@ In the turnstile model, A; can be negative, and x;’s can be negative as
well.

7/1

Streaming Algorithm: Count-Min and Count Sketch

Frequency Estimation in Turnstile Model

Does CouNT-MiIN still work in these more general settings?

@ In cash register model: A; are positive real numbers.
e CounT-MIN still works, just increase the counters by Ay; the error term
is relaxed to €||x||;.
o Recall ||x||s =, |xi.
@ In the strict turnstile model, A; are allowed to be negative, but every
frequency counter x; is guaranteed to be non-negative at all time.
o CounT-MinN still works.

@ In the turnstile model, A; can be negative, and x;’s can be negative as
well.

o The analysis of CoUNT-MIN is problematic in this setting. Markov
inequality needs nonnegativity!

7/1

Streaming Algorithm: Count-Min and Count Sketch

Frequency Estimation for the Turnstile Model

@ What goes wrong with the analysis of CouNT-MIN is that the error
term caused by clashes can be negative.

8/1

Streaming Algorithm: Count-Min and Count Sketch

Frequency Estimation for the Turnstile Model

@ What goes wrong with the analysis of CouNT-MIN is that the error
term caused by clashes can be negative.

o Ci[hi(j)] = xj+error.

8/1

Streaming Algorithm: Count-Min and Count Sketch

Frequency Estimation for the Turnstile Model

@ What goes wrong with the analysis of CouNT-MIN is that the error
term caused by clashes can be negative.

o Ci[hi(j)] = xj+error.

o When “error” is all nonnegative, we can take minimum among C;[h;(j)].

But when error can be negative, taking the minimum may seriously
underestimate x;.

8/1

Streaming Algorithm: Count-Min and Count Sketch

Frequency Estimation for the Turnstile Model

@ What goes wrong with the analysis of CouNT-MIN is that the error
term caused by clashes can be negative.
o Ci[hi(j)] = xj+error.
o When “error” is all nonnegative, we can take minimum among C;[h;(j)].
But when error can be negative, taking the minimum may seriously
underestimate x;.
o Similarly, taking the maximum may overestimate x;.

Streaming Algorithm: Count-Min and Count Sketch

Frequency Estimation for the Turnstile Model

@ What goes wrong with the analysis of CouNT-MIN is that the error
term caused by clashes can be negative.

o Ci[hi(j)] = xj+error.

o When “error” is all nonnegative, we can take minimum among C;[h;(j)].

But when error can be negative, taking the minimum may seriously
underestimate x;.

o Similarly, taking the maximum may overestimate x;.

e It is natural to try the median.

8/1

Streaming Algorithm: Count-Min and Count Sketch

Frequency Estimation for the Turnstile Model

@ What goes wrong with the analysis of CouNT-MIN is that the error
term caused by clashes can be negative.
o Ci[hi(j)] = xj+error.
o When “error” is all nonnegative, we can take minimum among C;[h;(j)].
But when error can be negative, taking the minimum may seriously
underestimate x;.
o Similarly, taking the maximum may overestimate x;.
e It is natural to try the median.

Let Z;,--- , Z, be i.i.d. random variables. Let M be a median. There is a
constant ¢ > 0 such that:

o IfPr[Z; > 1] < p <, thenPr[M>t] < e .

o IfPr[Z; <t]<p< i thenPriM <] <e .

Streaming Algorithm: Count-Min and Count Sketch

@ Algorithm: same setup and initialization as before
o Atinput (it, A;), for i = 1,--- ¢, increase counter C;[h;(i;)] by A;
o In the end, as an estimate of x;, output a median of

{G[mG), -+ Celhe (]}

Streaming Algorithm: Count-Min and Count Sketch

@ Algorithm: same setup and initialization as before
o Atinput (it, A;), for i = 1,--- ¢, increase counter C;[h;(i;)] by A;
o In the end, as an estimate of x;, output a median of
{GmG) -+, Celhe ()]}
e Consider any fixed index j € [d].

Streaming Algorithm: Count-Min and Count Sketch

@ Algorithm: same setup and initialization as before
o Atinput (it, A;), for i = 1,--- ¢, increase counter C;[h;(i;)] by A;
o In the end, as an estimate of x;, output a median of
{GmG) -+, Celhe ()]}
e Consider any fixed index j € [d].
o Which indices may cause positive error? P := {j' : x; > 0}.

Streaming Algorithm: Count-Min and Count Sketch

@ Algorithm: same setup and initialization as before
o Atinput (it, A;), for i = 1,--- ¢, increase counter C;[h;(i;)] by A;
o In the end, as an estimate of x;, output a median of
{GmG) -+, Celhe ()]}
e Consider any fixed index j € [d].
o Which indices may cause positive error? P := {j' : x; > 0}.
o Similarly, indices that may cause negative error are N := {j' : x; < 0}.

Streaming Algorithm: Count-Min and Count Sketch

@ Algorithm: same setup and initialization as before
o Atinput (it, A;), for i = 1,--- ¢, increase counter C;[h;(i;)] by A;
o In the end, as an estimate of x;, output a median of
{GmG) -+, Celhe ()]}
e Consider any fixed index j € [d].
o Which indices may cause positive error? P := {j' : x; > 0}.
o Similarly, indices that may cause negative error are N := {j' : x; < 0}.

e For any counter Cj, the expected error caused by indices in P is < @

Streaming Algorithm: Count-Min and Count Sketch

Algorithm: same setup and initialization as before
o Atinput (it, A;), for i = 1,--- ¢, increase counter C;[h;(i;)] by A;
o In the end, as an estimate of x;, output a median of
{GmG) -+, Celhe ()]}
Consider any fixed index j € [d].

o Which indices may cause positive error? P := {j' : x; > 0}.
o Similarly, indices that may cause negative error are N := {j' : x; < 0}.

e For any counter Cj, the expected error caused by indices in P is < @

By Markov inequality, Pr[3 . cp\ 11 X Li(j)=hi(7) = %] <1

Streaming Algorithm: Count-Min and Count Sketch

Algorithm: same setup and initialization as before
o Atinput (it, A;), for i = 1,--- ¢, increase counter C;[h;(i;)] by A;
o In the end, as an estimate of x;, output a median of
{GmG) -+, Celhe ()]}
Consider any fixed index j € [d].

o Which indices may cause positive error? P := {j' : x; > 0}.
o Similarly, indices that may cause negative error are N := {j' : x; < 0}.

e For any counter Cj, the expected error caused by indices in P is < @

By Markov inequality, Pr[3 . cp\ 11 X Li(j)=hi(7) = %] <1

Similarly, Pr(>= 5 e gy %7 | La(=hi() = %] <1

Streaming Algorithm: Count-Min and Count Sketch

Algorithm: same setup and initialization as before
o Atinput (it, A;), for i = 1,--- ¢, increase counter C;[h;(i;)] by A;
o In the end, as an estimate of x;, output a median of
{GmG) -+, Celhe ()]}
Consider any fixed index j € [d].
o Which indices may cause positive error? P := {j' : x; > 0}.
o Similarly, indices that may cause negative error are N := {j' : x; < 0}.

e For any counter Cj, the expected error caused by indices in P is < @

o By Markov inequality, Pr[>_;cp\ 1 X Li()=hi() = %] <1
o Similarly, Pr[> iy X[Lni(y=hi(r) = %] <1
e Setting k = 2, ¢ = O(log d), with high probability our output for every

coordinate is correct within €||x||; additive error.

Streaming Algorithm: Count-Min and Count Sketch

COUNT-SKETCH

@ We can do a bit better to control the error term to within €||x]|>

o Recall that ||x]|, = (3 xp)]/p decreases with p for p € (0,00).

i

Streaming Algorithm: Count-Min and Count Sketch

COUNT-SKETCH

@ We can do a bit better to control the error term to within €||x]|>

o Recall that ||x]|, = (3 xp)]/p decreases with p for p € (0,00).

i

o Common bound: ||x||, > ﬁ\|x||1 by Cauchy-Schwartz

Streaming Algorithm: Count-Min and Count Sketch

COUNT-SKETCH

@ We can do a bit better to control the error term to within €||x]|>

i

o Common bound: ||x||, > ﬁ\|x||1 by Cauchy-Schwartz

@ CouNT-SKETCH due to Charikar, Chen, Farach-Colton (2004)
e Same setup as before, except that now

o Recall that ||x]|, = (3 xp)]/p decreases with p for p € (0,00).

e each h;j is drawn from a 2-wise universal hash family;
e maintain hash functions g, ..., g : [d] = {+1, =1}, each drawn
independently from a 2-wise universal hash family.

Streaming Algorithm: Count-Min and Count Sketch

COUNT-SKETCH

@ We can do a bit better to control the error term to within €||x]|>

o Recall that ||x]|, = (3 xp)]/p decreases with p for p € (0,00).

i

o Common bound: ||x||, > ﬁ\|x||1 by Cauchy-Schwartz

@ CouNT-SKETCH due to Charikar, Chen, Farach-Colton (2004)
e Same setup as before, except that now
e each h;j is drawn from a 2-wise universal hash family;
e maintain hash functions g, ..., g : [d] = {+1, =1}, each drawn
independently from a 2-wise universal hash family.
o Atinput (ir, A;), for i = 1,--- , ¢, increase counter C;[h;(i;)] by g;, A+
o In the end, for index j € [d], output 2 median M among
(GG, -+ (/) Celhe (/)]

Streaming Algorithm: Count-Min and Count Sketch

Analysis of COUNT-SKETCH

@ Forany i€ [{] and j € [d]. By pairwise independence of g;(-)’s,

E[Cilm()g()] = x +E | > ()&% Lninenty | =%
i

11/11

Streaming Algorithm: Count-Min and Count Sketch

Analysis of COUNT-SKETCH
@ Forany i€ [{] and j € [d]. By pairwise independence of g;(-)’s,

E[Cilm()g()] = x +E | > ()&% Lninenty | =%
i

@ We bound the deviation by Chebyshev inequality:

11/11

Streaming Algorithm: Count-Min and Count Sketch

Analysis of COUNT-SKETCH
@ Forany i€ [{] and j € [d]. By pairwise independence of g;(-)’s,

E[Cilm()g()] = x +E | > ()&% Lninenty | =%
i

@ We bound the deviation by Chebyshev inequality:

2
Var [GB(NE0) = Var | 3 6Dl Lngrrongy | < E.

J#

11/11

Streaming Algorithm: Count-Min and Count Sketch

Analysis of COUNT-SKETCH

@ Forany i€ [{] and j € [d]. By pairwise independence of g;(-)’s,

E [Ci[hi(/)]gi(/)] = x;+E Zgi(j)gi(j/)xj/ﬂh,(j/):h,.(j) = Xj.
J'#j

@ We bound the deviation by Chebyshev inequality:

Var [CIR (NGO = Var | 3 @& Tngryng | < P92,

L =k
J'#i
Pr [l() Cilhi()] — x| > ellxlla] < 22— 1
n T ke[x[} ke

11/11

Streaming Algorithm: Count-Min and Count Sketch

Analysis of COUNT-SKETCH

@ Forany i€ [{] and j € [d]. By pairwise independence of g;(-)’s,

E[Cilm()g()] = x +E | > ()&% Lninenty | =%
i

@ We bound the deviation by Chebyshev inequality:

2
. . .] X
Var [C [N G)] = Var | 3 6De0) Tnyny | < U2,
J#i

: . X112 1
Pr[|gi(j)Cilhi(j)] — x;| = < =75
8l 1> clxll] < ol = L

We can take k = O(%).
] October 14,2023 11/11

	Streaming Algorithm: Count-Min and Count Sketch

