
Streaming Algorithm: Distinct Elements

Distinct Elements

We are back to our basic streaming model:
i1, . . . , in ∈ [d] = {1, · · · , d}.
The frequency vector x ∈ Zd : xj = | {t : it = j} |.

Counting distinct elements: estimate ||x||0 := |j : xj > 0| up to
(1+ ε)-factor approximation.

Again, we must use space O(log d, 1ε ).
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Streaming Algorithm: Distinct Elements

An Ideal Algorithm

If we can make the distribution of {it} uniform, then it is easier to
estimate its size.

E.g., if we can have an ideal hash function h from [d] to [0, 1], let X be
the minimum h(it), then 1

X seems a reasonable estimate.

Indeed, suppose we have i.i.d. X1, · · · ,X` uniformly distributed on
[0, 1], let the smallest be X(1).

X(1) ≤ X(2) ≤ · · · ≤ X(`) are called order statistics.
The distribution of X(1) is a so-called Beta distribution B(1, `). We have
E[X(1)] =

1
`+1 .

Therefore, 1
X − 1 is an unbiased estimator of ||x||0.

Var[X(1)] = `
(`+1)2(`+2) ≤

1
(`+1)2 .

We can apply the Chebyshev bound, although the variance is a bit too
large for our purpose.
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Streaming Algorithm: Distinct Elements

An Algorithm Assuming Ideal Hash

Maintain k independent, ideal hash functions.

For each hash function hi , store Zi = mint{hi(it)}, the smallest address
used throughout the stream.

Take the median of Z1, · · · ,Zk . Use it to estimate ||x||0. (See reading
material for details.)

This algorithm assumes we have access to ideal hash functions.
Ideas for improvement:

Use real hash functions. Discretize the range. Possibly use k-wise
independent hash family for appropriate k.
The minimum of h(it) tends to be voltaile: a single bad event ruins the
estimate.
To make the estimate more stable, we may keep track of more than one
smallest hash values.
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Streaming Algorithm: Distinct Elements

KMV

The following KMV (k minimum values) algorithm is due to Bar-Yossef,
Jayram, Kumar, Sivakumar and Trevisan (2002).

Sample a hash function h from a pairwise independent hash family
mapping [d] to [D], for D ∈ [d3, 2d3] that is a power of 2.

Initialize S to ∅. Set t = 12/δε2.
When ij arrives,

If |S| < t , then add h(ij) to S;
Otherwise, only if h(ij) < y,∀y ∈ S, add h(ij) to S and remove the
largest element of S.

For output at the end:
If |S| < t , return |S|.
Otherwise, let X be the largest element in S, return tD

X .
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Streaming Algorithm: Distinct Elements

Analysis of KMV

Proposition

If Y is a Bernoulli random variable, then Var[Y ] ≤ Pr[Y = 1].

Proof.

Var[Y ] = E[Y 2]− E[Y ]2 ≤ E[Y 2] = Pr[Y = 1].

Let’s denote ` := ||x||0, assume ε < 1
2 , and d > 2

ε2δ .

First case of output: if |S| < t , what’s the chance that ||x||0 > |S|?
For any pair of indices, they are mapped to the same address with
probability 1

D .
There are

(
`
2

)
pairs, so the probability that any clash happens is

≤
(
`
2

)
· 1
D ≤

1
d . (Recall D ≥ d3.)

So the output is exactly correct w.p. 1− 1
d .
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Streaming Algorithm: Distinct Elements

Analysis: The interesting case

The interesting case: |S| ≥ t .

Recall: X is the largest element in S. We’ll bound Pr[| tDX − `| > ε`].

Consider the event tD
X > (1+ ε)`.

This happens only if more than t of the ` elements are hashed to
addresses smaller than X < tD

(1+ε)` ≤
(1−ε/2)tD

` .

W.l.o.g let the ` elements be 1, · · · , `, and let Zi be the indicator
variable for the event h(i) < (1−ε/2)tD

` .

Then E[Zi] = (1− ε/2)t/`.
The bad event is Z :=

∑`
i=1 Zi ≥ t .

Var[Zi] ≤ Pr[Zi] = (1− ε
2)t/`.

By pairwise independence we have Var[Z ] =
∑

i Var[Zi] ≤ t .
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Analysis of KMV (Cont.)

We have so far { tDX > (1+ ε)`} ⇒ {Z ≥ t}, E[Z ] ≤ (1− ε
2)t , and

Var[Z ] ≤ t .

By Chebysheve inequality, we have

Pr
[
tD
X
> (1+ ε)`

]
≤ Pr [Z ≥ t] ≤ Var[Z ]

(εt/2)2
≤ 4
ε2t
≤ δ

3
.

Almost symmetrically, the event { tDX < (1− ε)`} happens only if fewer
than t of the ` elements are hashed to addresses smaller than
X > tD

(1−ε)` .

Let Zi be the indicator variable for the event h(i) < tD
(1−ε)` .

t
(1− ε)`

≥ E [Zi] ≥
t

(1− ε)`
− 1

D
≥ (1+ ε)t

`
− 1

D
≥ (1+ ε/2)t

`
.
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Streaming Algorithm: Distinct Elements

Analysis of KMV

Var [Zi] ≤ E [Zi] ≤
t

(1− ε)`
≤ 2t

`
.

Let Z be
∑`

i=1 Zi , then E[Z ] ≥ (1+ ε
2)t , Var[Z ] ≤ 2t .

By Chebyshev inequality,

Pr
[
tD
X
< (1− ε)`

]
≤ Pr [Z < t] ≤ Var[Z ]

(εt/2)2
≤ 8
ε2t
≤ 2δ

3
.

Combining everything, we have that with probability at least 1− δ,
| tDX − `| ≤ ε`.
Space usage:

Storing the hash takes space O(logD) = O(log d).

Storing S takes space tO(logD) = O( log dε2δ ).

The optimal algorithm uses space O(log d + ε−2)!
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