Distinct Elements

- We are back to our basic streaming model: $i_1, \ldots, i_n \in [d] = \{1, \cdots, d\}.$
- The frequency vector $x \in \mathbb{Z}^d$: $x_j = |\{t : i_t = j\}|$.

Distinct Elements

- We are back to our basic streaming model: $i_1, \ldots, i_n \in [d] = \{1, \cdots, d\}.$
- The frequency vector $x \in \mathbb{Z}^d$: $x_j = |\{t : i_t = j\}|$.
- Counting distinct elements: estimate ||x||₀ := |j : x_j > 0| up to (1 + ε)-factor approximation.

< ロ > < 四 > < 回 > < 回 > 、

Distinct Elements

- We are back to our basic streaming model: $i_1, \ldots, i_n \in [d] = \{1, \cdots, d\}.$
- The frequency vector $x \in \mathbb{Z}^d$: $x_j = |\{t : i_t = j\}|$.
- Counting distinct elements: estimate ||x||₀ := |j : x_j > 0| up to (1 + ε)-factor approximation.
- Again, we must use space $O(\log d, \frac{1}{\epsilon})$.

ヘロト 人間 とくほとく ほとう

• If we can make the distribution of {*i*_{*t*}} uniform, then it is easier to estimate its size.

<ロ> (日) (日) (日) (日) (日)

- If we can make the distribution of {*i*_{*t*}} uniform, then it is easier to estimate its size.
- E.g., if we can have an ideal hash function *h* from [*d*] to [0, 1], let *X* be the minimum $h(i_t)$, then $\frac{1}{X}$ seems a reasonable estimate.

(日)

- If we can make the distribution of {*i*_{*t*}} uniform, then it is easier to estimate its size.
- E.g., if we can have an ideal hash function *h* from [*d*] to [0, 1], let *X* be the minimum $h(i_t)$, then $\frac{1}{X}$ seems a reasonable estimate.
- Indeed, suppose we have i.i.d. X_1, \dots, X_ℓ uniformly distributed on [0, 1], let the smallest be $X_{(1)}$.

イロト 人間 とくほ とくほ とう

- If we can make the distribution of {*i*_{*t*}} uniform, then it is easier to estimate its size.
- E.g., if we can have an ideal hash function *h* from [*d*] to [0, 1], let *X* be the minimum $h(i_t)$, then $\frac{1}{x}$ seems a reasonable estimate.
- Indeed, suppose we have i.i.d. X_1, \dots, X_ℓ uniformly distributed on [0, 1], let the smallest be $X_{(1)}$.
 - $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(\ell)}$ are called *order statistics*.

・ロト ・ ア・ ・ ア・ ・ ア・ ア

- If we can make the distribution of {*i*_t} uniform, then it is easier to estimate its size.
- E.g., if we can have an ideal hash function *h* from [*d*] to [0, 1], let *X* be the minimum $h(i_t)$, then $\frac{1}{X}$ seems a reasonable estimate.
- Indeed, suppose we have i.i.d. X_1, \dots, X_ℓ uniformly distributed on [0, 1], let the smallest be $X_{(1)}$.
 - $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(\ell)}$ are called *order statistics*.
 - The distribution of $X_{(1)}$ is a so-called *Beta distribution B*(1, ℓ). We have $\mathbf{E}[X_{(1)}] = \frac{1}{\ell+1}$.

- If we can make the distribution of {*i*_t} uniform, then it is easier to estimate its size.
- E.g., if we can have an ideal hash function *h* from [*d*] to [0, 1], let *X* be the minimum $h(i_t)$, then $\frac{1}{x}$ seems a reasonable estimate.
- Indeed, suppose we have i.i.d. X_1, \dots, X_ℓ uniformly distributed on [0, 1], let the smallest be $X_{(1)}$.
 - $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(\ell)}$ are called *order statistics*.
 - The distribution of $X_{(1)}$ is a so-called *Beta distribution B*(1, ℓ). We have $\mathbf{E}[X_{(1)}] = \frac{1}{\ell+1}$.
- Therefore, $\frac{1}{X} 1$ is an unbiased estimator of $||x||_0$.

- If we can make the distribution of {*i*_t} uniform, then it is easier to estimate its size.
- E.g., if we can have an ideal hash function *h* from [*d*] to [0, 1], let *X* be the minimum $h(i_t)$, then $\frac{1}{X}$ seems a reasonable estimate.
- Indeed, suppose we have i.i.d. X_1, \dots, X_ℓ uniformly distributed on [0, 1], let the smallest be $X_{(1)}$.
 - $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(\ell)}$ are called *order statistics*.
 - The distribution of $X_{(1)}$ is a so-called *Beta distribution B*(1, ℓ). We have $\mathbf{E}[X_{(1)}] = \frac{1}{\ell+1}$.
- Therefore, $\frac{1}{X} 1$ is an unbiased estimator of $||x||_0$.

• Var
$$[X_{(1)}] = \frac{\ell}{(\ell+1)^2(\ell+2)} \le \frac{1}{(\ell+1)^2}.$$

- If we can make the distribution of {*i*_t} uniform, then it is easier to estimate its size.
- E.g., if we can have an ideal hash function *h* from [*d*] to [0, 1], let *X* be the minimum $h(i_t)$, then $\frac{1}{X}$ seems a reasonable estimate.
- Indeed, suppose we have i.i.d. X_1, \dots, X_ℓ uniformly distributed on [0, 1], let the smallest be $X_{(1)}$.
 - $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(\ell)}$ are called *order statistics*.
 - The distribution of $X_{(1)}$ is a so-called *Beta distribution B*(1, ℓ). We have $\mathbf{E}[X_{(1)}] = \frac{1}{\ell+1}$.
- Therefore, $\frac{1}{X} 1$ is an unbiased estimator of $||x||_0$.
- $\operatorname{Var}[X_{(1)}] = \frac{\ell}{(\ell+1)^2(\ell+2)} \le \frac{1}{(\ell+1)^2}.$
- We can apply the Chebyshev bound, although the variance is a bit too large for our purpose.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

• Maintain *k* independent, ideal hash functions.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

- Maintain k independent, ideal hash functions.
- For each hash function h_i , store $Z_i = \min_t \{h_i(i_t)\}$, the smallest address used throughout the stream.

ヘロト ヘロト ヘビト ヘビト

- Maintain k independent, ideal hash functions.
- For each hash function h_i , store $Z_i = \min_t \{h_i(i_t)\}$, the smallest address used throughout the stream.
- Take the median of Z_1, \dots, Z_k . Use it to estimate $||x||_0$. (See reading material for details.)
- This algorithm assumes we have access to ideal hash functions.

- Maintain k independent, ideal hash functions.
- For each hash function h_i , store $Z_i = \min_t \{h_i(i_t)\}$, the smallest address used throughout the stream.
- Take the median of Z_1, \dots, Z_k . Use it to estimate $||x||_0$. (See reading material for details.)
- This algorithm assumes we have access to ideal hash functions.
- Ideas for improvement:
 - Use real hash functions. Discretize the range. Possibly use *k*-wise independent hash family for appropriate *k*.

- Maintain k independent, ideal hash functions.
- For each hash function h_i , store $Z_i = \min_t \{h_i(i_t)\}$, the smallest address used throughout the stream.
- Take the median of Z_1, \dots, Z_k . Use it to estimate $||x||_0$. (See reading material for details.)
- This algorithm assumes we have access to ideal hash functions.
- Ideas for improvement:
 - Use real hash functions. Discretize the range. Possibly use *k*-wise independent hash family for appropriate *k*.
 - The minimum of $h(i_t)$ tends to be voltaile: a single bad event ruins the estimate.

・ロト ・ ア・ ・ ア・ ・ ア・ ア

- Maintain k independent, ideal hash functions.
- For each hash function h_i , store $Z_i = \min_t \{h_i(i_t)\}$, the smallest address used throughout the stream.
- Take the median of Z_1, \dots, Z_k . Use it to estimate $||x||_0$. (See reading material for details.)
- This algorithm assumes we have access to ideal hash functions.
- Ideas for improvement:
 - Use real hash functions. Discretize the range. Possibly use *k*-wise independent hash family for appropriate *k*.
 - The minimum of *h*(*i*_t) tends to be voltaile: a single bad event ruins the estimate.
 - To make the estimate more stable, we may keep track of more than one smallest hash values.

The following KMV (*k* minimum values) algorithm is due to Bar-Yossef, Jayram, Kumar, Sivakumar and Trevisan (2002).

<ロ> (日) (日) (日) (日) (日)

The following KMV (*k* minimum values) algorithm is due to Bar-Yossef, Jayram, Kumar, Sivakumar and Trevisan (2002).

• Sample a hash function *h* from a pairwise independent hash family mapping [d] to [D], for $D \in [d^3, 2d^3]$ that is a power of 2.

イロト イポト イヨト イヨト

The following KMV (*k* minimum values) algorithm is due to Bar-Yossef, Jayram, Kumar, Sivakumar and Trevisan (2002).

- Sample a hash function *h* from a pairwise independent hash family mapping [d] to [D], for $D \in [d^3, 2d^3]$ that is a power of 2.
- Initialize *S* to \emptyset . Set $t = 12/\delta\epsilon^2$.

イロト イポト イヨト イヨト

The following KMV (*k* minimum values) algorithm is due to Bar-Yossef, Jayram, Kumar, Sivakumar and Trevisan (2002).

- Sample a hash function *h* from a pairwise independent hash family mapping [d] to [D], for $D \in [d^3, 2d^3]$ that is a power of 2.
- Initialize *S* to \emptyset . Set $t = 12/\delta \epsilon^2$.
- When *i_j* arrives,
 - If |S| < t, then add $h(i_j)$ to S;
 - Otherwise, only if h(i_j) < y, ∀y ∈ S, add h(i_j) to S and remove the largest element of S.

イロト 人間 とくほ とくほ とう

The following KMV (*k* minimum values) algorithm is due to Bar-Yossef, Jayram, Kumar, Sivakumar and Trevisan (2002).

- Sample a hash function *h* from a pairwise independent hash family mapping [d] to [D], for $D \in [d^3, 2d^3]$ that is a power of 2.
- Initialize *S* to \emptyset . Set $t = 12/\delta \epsilon^2$.
- When *i_j* arrives,
 - If |S| < t, then add $h(i_j)$ to S;
 - Otherwise, only if h(i_j) < y, ∀y ∈ S, add h(i_j) to S and remove the largest element of S.
- For output at the end:
 - If |S| < t, return |S|.

イロト 人間 とくほ とくほ とう

The following KMV (*k* minimum values) algorithm is due to Bar-Yossef, Jayram, Kumar, Sivakumar and Trevisan (2002).

- Sample a hash function *h* from a pairwise independent hash family mapping [d] to [D], for $D \in [d^3, 2d^3]$ that is a power of 2.
- Initialize *S* to \emptyset . Set $t = 12/\delta \epsilon^2$.
- When *i_j* arrives,
 - If |S| < t, then add $h(i_j)$ to S;
 - Otherwise, only if h(i_j) < y, ∀y ∈ S, add h(i_j) to S and remove the largest element of S.
- For output at the end:
 - If |S| < t, return |S|.
 - Otherwise, let X be the largest element in S, return $\frac{tD}{X}$.

Proposition

If *Y* is a Bernoulli random variable, then $Var[Y] \leq Pr[Y = 1]$.

E ▶ 《 E ▶ E ∽ Q ○

 October 15, 2023
 5/8

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Proposition

If *Y* is a Bernoulli random variable, then $Var[Y] \leq Pr[Y = 1]$.

Proof.

$$\operatorname{Var}[Y] = \mathbf{E}[Y^2] - \mathbf{E}[Y]^2 \le \mathbf{E}[Y^2] = \mathbf{Pr}[Y=1].$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Proposition

If *Y* is a Bernoulli random variable, then $Var[Y] \leq Pr[Y = 1]$.

Proof.

$$\operatorname{Var}[Y] = \mathbf{E}[Y^2] - \mathbf{E}[Y]^2 \le \mathbf{E}[Y^2] = \mathbf{Pr}[Y=1].$$

- Let's denote $\ell \coloneqq ||x||_0$, assume $\epsilon < \frac{1}{2}$, and $d > \frac{2}{\epsilon^2 \delta}$.
- First case of output: if |S| < t, what's the chance that $||x||_0 > |S|$?

イロト イポト イヨト イヨト

Proposition

If *Y* is a Bernoulli random variable, then $Var[Y] \leq Pr[Y = 1]$.

Proof.

$$\operatorname{Var}[Y] = \mathbf{E}[Y^2] - \mathbf{E}[Y]^2 \le \mathbf{E}[Y^2] = \mathbf{Pr}[Y=1].$$

- Let's denote $\ell \coloneqq ||x||_0$, assume $\epsilon < \frac{1}{2}$, and $d > \frac{2}{\epsilon^2 \delta}$.
- First case of output: if |S| < t, what's the chance that $||x||_0 > |S|$?
 - For any pair of indices, they are mapped to the same address with probability $\frac{1}{D}$.

イロト イポト イヨト イヨト

Proposition

If *Y* is a Bernoulli random variable, then $Var[Y] \leq Pr[Y = 1]$.

Proof.

$$\operatorname{Var}[Y] = \mathbf{E}[Y^2] - \mathbf{E}[Y]^2 \le \mathbf{E}[Y^2] = \mathbf{Pr}[Y=1].$$

- Let's denote $\ell \coloneqq ||x||_0$, assume $\epsilon < \frac{1}{2}$, and $d > \frac{2}{\epsilon^2 \delta}$.
- First case of output: if |S| < t, what's the chance that $||x||_0 > |S|$?
 - For any pair of indices, they are mapped to the same address with probability $\frac{1}{D}$.
 - There are $\binom{\ell}{2}$ pairs, so the probability that any clash happens is $\leq \binom{\ell}{2} \cdot \frac{1}{D} \leq \frac{1}{d}$. (Recall $D \geq d^3$.)

ヘロン 人間 とくほ とくほ とう

Proposition

If *Y* is a Bernoulli random variable, then $Var[Y] \leq Pr[Y = 1]$.

Proof.

$$\operatorname{Var}[Y] = \mathbf{E}[Y^2] - \mathbf{E}[Y]^2 \le \mathbf{E}[Y^2] = \mathbf{Pr}[Y=1].$$

- Let's denote $\ell \coloneqq ||x||_0$, assume $\epsilon < \frac{1}{2}$, and $d > \frac{2}{\epsilon^2 \delta}$.
- First case of output: if |S| < t, what's the chance that $||x||_0 > |S|$?
 - For any pair of indices, they are mapped to the same address with probability $\frac{1}{D}$.
 - There are $\binom{\ell}{2}$ pairs, so the probability that any clash happens is $\leq \binom{\ell}{2} \cdot \frac{1}{D} \leq \frac{1}{d}$. (Recall $D \geq d^3$.)
 - So the output is exactly correct w.p. $1 \frac{1}{d}$.

(日) (同) (E) (E) (E)

Proposition

If *Y* is a Bernoulli random variable, then $Var[Y] \leq Pr[Y = 1]$.

Proof.

$$\operatorname{Var}[Y] = \mathbf{E}[Y^2] - \mathbf{E}[Y]^2 \le \mathbf{E}[Y^2] = \mathbf{Pr}[Y=1].$$

- Let's denote $\ell \coloneqq ||x||_0$, assume $\epsilon < \frac{1}{2}$, and $d > \frac{2}{\epsilon^2 \delta}$.
- First case of output: if |S| < t, what's the chance that $||x||_0 > |S|$?
 - For any pair of indices, they are mapped to the same address with probability $\frac{1}{D}$.
 - There are $\binom{\ell}{2}$ pairs, so the probability that any clash happens is $\leq \binom{\ell}{2} \cdot \frac{1}{D} \leq \frac{1}{d}$. (Recall $D \geq d^3$.)
 - So the output is exactly correct w.p. $1 \frac{1}{d}$.

(日) (同) (E) (E) (E)

• The interesting case: $|S| \ge t$.

イロト 人間 とくほとく

- The interesting case: $|S| \ge t$.
- Recall: *X* is the largest element in *S*. We'll bound $\Pr[|\frac{tD}{X} \ell| > \epsilon \ell]$.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

- The interesting case: $|S| \ge t$.
- Recall: *X* is the largest element in *S*. We'll bound $\Pr[|\frac{tD}{X} \ell| > \epsilon \ell]$.
- Consider the event $\frac{tD}{X} > (1 + \epsilon)\ell$.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

- The interesting case: $|S| \ge t$.
- Recall: *X* is the largest element in *S*. We'll bound $\Pr[|\frac{tD}{X} \ell| > \epsilon \ell]$.
- Consider the event $\frac{tD}{X} > (1 + \epsilon)\ell$.
- This happens only if more than *t* of the ℓ elements are hashed to addresses smaller than $X < \frac{tD}{(1+\epsilon)\ell} \leq \frac{(1-\epsilon/2)tD}{\ell}$.

<ロ> <四> <四> <四> <三</td>

- The interesting case: $|S| \ge t$.
- Recall: *X* is the largest element in *S*. We'll bound $\Pr[|\frac{tD}{X} \ell| > \epsilon \ell]$.
- Consider the event $\frac{tD}{X} > (1 + \epsilon)\ell$.
- This happens only if more than *t* of the ℓ elements are hashed to addresses smaller than $X < \frac{tD}{(1+\epsilon)\ell} \leq \frac{(1-\epsilon/2)tD}{\ell}$.
- W.l.o.g let the ℓ elements be $1, \dots, \ell$, and let Z_i be the indicator variable for the event $h(i) < \frac{(1-\epsilon/2)tD}{\ell}$.

<ロ> <四> <四> <四> <三</td>

- The interesting case: $|S| \ge t$.
- Recall: *X* is the largest element in *S*. We'll bound $\Pr[|\frac{tD}{X} \ell| > \epsilon \ell]$.
- Consider the event $\frac{tD}{X} > (1 + \epsilon)\ell$.
- This happens only if more than *t* of the ℓ elements are hashed to addresses smaller than $X < \frac{tD}{(1+\epsilon)\ell} \leq \frac{(1-\epsilon/2)tD}{\ell}$.
- W.l.o.g let the ℓ elements be $1, \dots, \ell$, and let Z_i be the indicator variable for the event $h(i) < \frac{(1-\epsilon/2)tD}{\ell}$.
- Then $\mathbf{E}[Z_i] = (1 \epsilon/2)t/\ell$.

イロト イポト イヨト イヨト 一日

Analysis: The interesting case

- The interesting case: $|S| \ge t$.
- Recall: *X* is the largest element in *S*. We'll bound $\Pr[|\frac{tD}{X} \ell| > \epsilon \ell]$.
- Consider the event $\frac{tD}{X} > (1 + \epsilon)\ell$.
- This happens only if more than *t* of the ℓ elements are hashed to addresses smaller than $X < \frac{tD}{(1+\epsilon)\ell} \leq \frac{(1-\epsilon/2)tD}{\ell}$.
- W.l.o.g let the ℓ elements be $1, \dots, \ell$, and let Z_i be the indicator variable for the event $h(i) < \frac{(1-\epsilon/2)tD}{\ell}$.
- Then $E[Z_i] = (1 \epsilon/2)t/\ell$.
- The bad event is $Z \coloneqq \sum_{i=1}^{\ell} Z_i \ge t$.

イロト イポト イヨト イヨト 二日

Analysis: The interesting case

- The interesting case: $|S| \ge t$.
- Recall: *X* is the largest element in *S*. We'll bound $\Pr[|\frac{tD}{X} \ell| > \epsilon \ell]$.
- Consider the event $\frac{tD}{X} > (1 + \epsilon)\ell$.
- This happens only if more than *t* of the ℓ elements are hashed to addresses smaller than $X < \frac{tD}{(1+\epsilon)\ell} \leq \frac{(1-\epsilon/2)tD}{\ell}$.
- W.l.o.g let the ℓ elements be $1, \dots, \ell$, and let Z_i be the indicator variable for the event $h(i) < \frac{(1-\epsilon/2)tD}{\ell}$.
- Then $\mathbf{E}[Z_i] = (1 \epsilon/2)t/\ell$.
- The bad event is $Z \coloneqq \sum_{i=1}^{\ell} Z_i \ge t$.
- $\operatorname{Var}[Z_i] \leq \operatorname{Pr}[Z_i] = (1 \frac{\epsilon}{2})t/\ell.$

<ロ> <四> <四> <四> <三</td>

Analysis: The interesting case

- The interesting case: $|S| \ge t$.
- Recall: *X* is the largest element in *S*. We'll bound $\Pr[|\frac{tD}{X} \ell| > \epsilon \ell]$.
- Consider the event $\frac{tD}{X} > (1 + \epsilon)\ell$.
- This happens only if more than *t* of the ℓ elements are hashed to addresses smaller than $X < \frac{tD}{(1+\epsilon)\ell} \leq \frac{(1-\epsilon/2)tD}{\ell}$.
- W.l.o.g let the ℓ elements be $1, \dots, \ell$, and let Z_i be the indicator variable for the event $h(i) < \frac{(1-\epsilon/2)tD}{\ell}$.
- Then $\mathbf{E}[Z_i] = (1 \epsilon/2)t/\ell$.
- The bad event is $Z \coloneqq \sum_{i=1}^{\ell} Z_i \ge t$.
- $\operatorname{Var}[Z_i] \leq \operatorname{Pr}[Z_i] = (1 \frac{\epsilon}{2})t/\ell.$
- By pairwise independence we have $\operatorname{Var}[Z] = \sum_{i} \operatorname{Var}[Z_i] \leq t$.

・ロト ・ ア・ ・ ア・ ・ ア・ ア

• We have so far $\{\frac{tD}{X} > (1+\epsilon)\ell\} \Rightarrow \{Z \ge t\}, \mathbb{E}[Z] \le (1-\frac{\epsilon}{2})t$, and $\operatorname{Var}[Z] \le t$.

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ●

- We have so far $\{\frac{tD}{X} > (1+\epsilon)\ell\} \Rightarrow \{Z \ge t\}, \mathbb{E}[Z] \le (1-\frac{\epsilon}{2})t$, and $\operatorname{Var}[Z] \le t$.
- By Chebysheve inequality, we have

$$\Pr\left[\frac{tD}{X} > (1+\epsilon)\ell\right] \le \Pr\left[Z \ge t\right] \le \frac{\operatorname{Var}[Z]}{(\epsilon t/2)^2} \le \frac{4}{\epsilon^2 t} \le \frac{\delta}{3}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ の々で

- We have so far $\{\frac{tD}{X} > (1+\epsilon)\ell\} \Rightarrow \{Z \ge t\}, \mathbb{E}[Z] \le (1-\frac{\epsilon}{2})t$, and $\operatorname{Var}[Z] \le t$.
- By Chebysheve inequality, we have

$$\Pr\left[\frac{tD}{X} > (1+\epsilon)\ell\right] \le \Pr\left[Z \ge t\right] \le \frac{\operatorname{Var}[Z]}{(\epsilon t/2)^2} \le \frac{4}{\epsilon^2 t} \le \frac{\delta}{3}.$$

Almost symmetrically, the event { tD/X < (1 − ε)ℓ} happens only if fewer than t of the ℓ elements are hashed to addresses smaller than X > tD/((1-ε)ℓ).

<ロ> <同> <同> <目> <日> <同> <日> <同> <日> <日> <同> <日> <日> <同> <日</p>

- We have so far $\{\frac{tD}{X} > (1+\epsilon)\ell\} \Rightarrow \{Z \ge t\}, \mathbb{E}[Z] \le (1-\frac{\epsilon}{2})t$, and $\operatorname{Var}[Z] \le t$.
- By Chebysheve inequality, we have

$$\Pr\left[\frac{tD}{X} > (1+\epsilon)\ell\right] \le \Pr\left[Z \ge t\right] \le \frac{\operatorname{Var}[Z]}{(\epsilon t/2)^2} \le \frac{4}{\epsilon^2 t} \le \frac{\delta}{3}.$$

- Almost symmetrically, the event { tD/X < (1 − ε)ℓ} happens only if fewer than t of the ℓ elements are hashed to addresses smaller than X > tD/((1-ε)ℓ).
- Let Z_i be the indicator variable for the event $h(i) < \frac{tD}{(1-\epsilon)\ell}$.

イロト イポト イヨト イヨト 一日

- We have so far $\{\frac{tD}{X} > (1+\epsilon)\ell\} \Rightarrow \{Z \ge t\}, \mathbb{E}[Z] \le (1-\frac{\epsilon}{2})t$, and $\operatorname{Var}[Z] \le t$.
- By Chebysheve inequality, we have

$$\Pr\left[\frac{tD}{\chi} > (1+\epsilon)\ell\right] \le \Pr\left[Z \ge t\right] \le \frac{\operatorname{Var}[Z]}{(\epsilon t/2)^2} \le \frac{4}{\epsilon^2 t} \le \frac{\delta}{3}.$$

- Almost symmetrically, the event {tD/X < (1 − ε)ℓ} happens only if fewer than t of the ℓ elements are hashed to addresses smaller than X > tD/((1-ε)ℓ).
- Let Z_i be the indicator variable for the event $h(i) < \frac{tD}{(1-\epsilon)\ell}$.

$$\frac{t}{(1-\epsilon)\ell} \ge \mathbf{E}\left[Z_i\right] \ge \frac{t}{(1-\epsilon)\ell} - \frac{1}{D} \ge \frac{(1+\epsilon)t}{\ell} - \frac{1}{D} \ge \frac{(1+\epsilon/2)t}{\ell}.$$

$$\operatorname{Var}[Z_i] \leq \operatorname{\mathsf{E}}[Z_i] \leq rac{t}{(1-\epsilon)\ell} \leq rac{2t}{\ell}.$$

・ロト ・四ト ・ヨト ・ヨト

$$\operatorname{Var} [Z_i] \leq \mathbf{E} [Z_i] \leq \frac{t}{(1-\epsilon)\ell} \leq \frac{2t}{\ell}.$$

Let Z be $\sum_{i=1}^{\ell} Z_i$, then $\mathbf{E}[Z] \geq (1+\frac{\epsilon}{2})t$, $\operatorname{Var}[Z] \leq 2t$.

・ロト ・四ト ・ヨト ・ヨト

$$\operatorname{Var}[Z_i] \leq \mathbf{E}[Z_i] \leq \frac{t}{(1-\epsilon)\ell} \leq \frac{2t}{\ell}.$$

Let Z be $\sum_{i=1}^{\ell} Z_i$, then $\mathbf{E}[Z] \ge (1 + \frac{\epsilon}{2})t$, $\operatorname{Var}[Z] \le 2t$. By Chebyshev inequality,

$$\Pr\left[\frac{tD}{\chi} < (1-\epsilon)\ell\right] \le \Pr\left[Z < t\right] \le \frac{\operatorname{Var}[Z]}{(\epsilon t/2)^2} \le \frac{8}{\epsilon^2 t} \le \frac{2\delta}{3}.$$

$$\operatorname{Var}[Z_i] \leq \mathbf{E}[Z_i] \leq \frac{t}{(1-\epsilon)\ell} \leq \frac{2t}{\ell}.$$

Let Z be $\sum_{i=1}^{\ell} Z_i$, then $\mathbf{E}[Z] \ge (1 + \frac{\epsilon}{2})t$, $\operatorname{Var}[Z] \le 2t$. By Chebyshev inequality,

$$\Pr\left[\frac{tD}{X} < (1-\epsilon)\ell\right] \le \Pr\left[Z < t\right] \le \frac{\operatorname{Var}[Z]}{(\epsilon t/2)^2} \le \frac{8}{\epsilon^2 t} \le \frac{2\delta}{3}.$$
Combining everything, we have that with probability at least $1-\delta$, $\left|\frac{tD}{X} - \ell\right| \le \epsilon \ell.$

イロト 人間 とくほ とくほ とう

$$\operatorname{Var}[Z_i] \leq \mathbf{E}[Z_i] \leq \frac{t}{(1-\epsilon)\ell} \leq \frac{2t}{\ell}.$$

Let Z be $\sum_{i=1}^{\ell} Z_i$, then $\mathbf{E}[Z] \ge (1 + \frac{\epsilon}{2})t$, $\operatorname{Var}[Z] \le 2t$. By Chebyshev inequality,

$$\Pr\left[\frac{tD}{\chi} < (1-\epsilon)\ell\right] \le \Pr\left[Z < t\right] \le \frac{\operatorname{Var}[Z]}{(\epsilon t/2)^2} \le \frac{8}{\epsilon^2 t} \le \frac{2\delta}{3}.$$
Combining everything, we have that with probability at least $1-\delta$, $\left|\frac{tD}{\chi} - \ell\right| \le \epsilon \ell.$ Space usage:

• Storing the hash takes space $O(\log D) = O(\log d)$.

Spac

$$\operatorname{Var}[Z_i] \leq \mathbf{E}[Z_i] \leq \frac{t}{(1-\epsilon)\ell} \leq \frac{2t}{\ell}.$$

Let Z be $\sum_{i=1}^{\ell} Z_i$, then $\mathbf{E}[Z] \ge (1 + \frac{\epsilon}{2})t$, $\operatorname{Var}[Z] \le 2t$. By Chebyshev inequality,

$$\Pr\left[\frac{tD}{\chi} < (1-\epsilon)\ell\right] \le \Pr\left[Z < t\right] \le \frac{\operatorname{Var}[Z]}{(\epsilon t/2)^2} \le \frac{8}{\epsilon^2 t} \le \frac{2\delta}{3}.$$
Combining everything, we have that with probability at least $1-\delta$, $\left|\frac{tD}{\chi} - \ell\right| \le \epsilon \ell.$ Space usage:

- Storing the hash takes space $O(\log D) = O(\log d)$.
- Storing S takes space $tO(\log D) = O(\frac{\log d}{c^{2\delta}})$.

Spac

$$\operatorname{Var}[Z_i] \leq \mathbf{E}[Z_i] \leq \frac{t}{(1-\epsilon)\ell} \leq \frac{2t}{\ell}.$$

Let Z be $\sum_{i=1}^{\ell} Z_i$, then $\mathbf{E}[Z] \ge (1 + \frac{\epsilon}{2})t$, $\operatorname{Var}[Z] \le 2t$. By Chebyshev inequality,

$$\Pr\left[\frac{tD}{X} < (1-\epsilon)\ell\right] \le \Pr\left[Z < t\right] \le \frac{\operatorname{Var}[Z]}{(\epsilon t/2)^2} \le \frac{8}{\epsilon^2 t} \le \frac{2\delta}{3}.$$
Combining everything, we have that with probability at least $1-\delta$, $\left|\frac{tD}{X} - \ell\right| \le \epsilon \ell.$ Space usage:

- Storing the hash takes space $O(\log D) = O(\log d)$.
- Storing S takes space $tO(\log D) = O(\frac{\log d}{c^{2\delta}})$.
- The optimal algorithm uses space $O(\log d + \epsilon^{-2})!$

< □ > < □ > < □ > < □ >