Distinct Elements

- We are back to our basic streaming model:
$i_{1}, \ldots, i_{n} \in[d]=\{1, \cdots, d\}$.
- The frequency vector $x \in \mathbb{Z}^{d}: x_{j}=\left|\left\{t: i_{t}=j\right\}\right|$.

Distinct Elements

- We are back to our basic streaming model:

$$
i_{1}, \ldots, i_{n} \in[d]=\{1, \cdots, d\} .
$$

- The frequency vector $x \in \mathbb{Z}^{d}: x_{j}=\left|\left\{t: i_{t}=j\right\}\right|$.
- Counting distinct elements: estimate $\|x\|_{0}:=\left|j: x_{j}>0\right|$ up to $(1+\epsilon)$-factor approximation.

Distinct Elements

- We are back to our basic streaming model:
$i_{1}, \ldots, i_{n} \in[d]=\{1, \cdots, d\}$.
- The frequency vector $x \in \mathbb{Z}^{d}: x_{j}=\left|\left\{t: i_{t}=j\right\}\right|$.
- Counting distinct elements: estimate $\|x\|_{0}:=\left|j: x_{j}>0\right|$ up to $(1+\epsilon)$-factor approximation.
- Again, we must use space $O\left(\log d, \frac{1}{\epsilon}\right)$.

An Ideal Algorithm

- If we can make the distribution of $\left\{i_{t}\right\}$ uniform, then it is easier to estimate its size.

An Ideal Algorithm

- If we can make the distribution of $\left\{i_{t}\right\}$ uniform, then it is easier to estimate its size.
- E.g., if we can have an ideal hash function h from [d] to [0, 1], let X be the minimum $h\left(i_{t}\right)$, then $\frac{1}{X}$ seems a reasonable estimate.

An Ideal Algorithm

- If we can make the distribution of $\left\{i_{t}\right\}$ uniform, then it is easier to estimate its size.
- E.g., if we can have an ideal hash function h from [d] to [0, 1], let X be the minimum $h\left(i_{t}\right)$, then $\frac{1}{X}$ seems a reasonable estimate.
- Indeed, suppose we have i.i.d. X_{1}, \cdots, X_{ℓ} uniformly distributed on $[0,1]$, let the smallest be $X_{(1)}$.

An Ideal Algorithm

- If we can make the distribution of $\left\{i_{t}\right\}$ uniform, then it is easier to estimate its size.
- E.g., if we can have an ideal hash function h from [d] to [0, 1], let X be the minimum $h\left(i_{t}\right)$, then $\frac{1}{X}$ seems a reasonable estimate.
- Indeed, suppose we have i.i.d. X_{1}, \cdots, X_{ℓ} uniformly distributed on $[0,1]$, let the smallest be $X_{(1)}$.
- $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(\ell)}$ are called order statistics.

An Ideal Algorithm

- If we can make the distribution of $\left\{i_{t}\right\}$ uniform, then it is easier to estimate its size.
- E.g., if we can have an ideal hash function h from [d] to [0, 1], let X be the minimum $h\left(i_{t}\right)$, then $\frac{1}{X}$ seems a reasonable estimate.
- Indeed, suppose we have i.i.d. X_{1}, \cdots, X_{ℓ} uniformly distributed on $[0,1]$, let the smallest be $X_{(1)}$.
- $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(\ell)}$ are called order statistics.
- The distribution of $X_{(1)}$ is a so-called Beta distribution $B(1, \ell)$. We have $\mathbf{E}\left[X_{(1)}\right]=\frac{1}{\ell+1}$.

An Ideal Algorithm

- If we can make the distribution of $\left\{i_{t}\right\}$ uniform, then it is easier to estimate its size.
- E.g., if we can have an ideal hash function h from [d] to [0, 1], let X be the minimum $h\left(i_{t}\right)$, then $\frac{1}{X}$ seems a reasonable estimate.
- Indeed, suppose we have i.i.d. X_{1}, \cdots, X_{ℓ} uniformly distributed on $[0,1]$, let the smallest be $X_{(1)}$.
- $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(\ell)}$ are called order statistics.
- The distribution of $X_{(1)}$ is a so-called Beta distribution $B(1, \ell)$. We have $\mathbf{E}\left[X_{(1)}\right]=\frac{1}{\ell+1}$.
- Therefore, $\frac{1}{X}-1$ is an unbiased estimator of $\|x\|_{0}$.

An Ideal Algorithm

- If we can make the distribution of $\left\{i_{t}\right\}$ uniform, then it is easier to estimate its size.
- E.g., if we can have an ideal hash function h from [d] to [0, 1], let X be the minimum $h\left(i_{t}\right)$, then $\frac{1}{X}$ seems a reasonable estimate.
- Indeed, suppose we have i.i.d. X_{1}, \cdots, X_{ℓ} uniformly distributed on $[0,1]$, let the smallest be $X_{(1)}$.
- $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(\ell)}$ are called order statistics.
- The distribution of $X_{(1)}$ is a so-called Beta distribution $B(1, \ell)$. We have $\mathbf{E}\left[X_{(1)}\right]=\frac{1}{\ell+1}$.
- Therefore, $\frac{1}{X}-1$ is an unbiased estimator of $\|x\|_{0}$.
- $\operatorname{Var}\left[X_{(1)}\right]=\frac{\ell}{(\ell+1)^{2}(\ell+2)} \leq \frac{1}{(\ell+1)^{2}}$.

An Ideal Algorithm

- If we can make the distribution of $\left\{i_{t}\right\}$ uniform, then it is easier to estimate its size.
- E.g., if we can have an ideal hash function h from [d] to [0, 1], let X be the minimum $h\left(i_{t}\right)$, then $\frac{1}{X}$ seems a reasonable estimate.
- Indeed, suppose we have i.i.d. X_{1}, \cdots, X_{ℓ} uniformly distributed on [0,1$]$, let the smallest be $X_{(1)}$.
- $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(\ell)}$ are called order statistics.
- The distribution of $X_{(1)}$ is a so-called Beta distribution $B(1, \ell)$. We have $\mathbf{E}\left[X_{(1)}\right]=\frac{1}{\ell+1}$.
- Therefore, $\frac{1}{X}-1$ is an unbiased estimator of $\|x\|_{0}$.
- $\operatorname{Var}\left[X_{(1)}\right]=\frac{\ell}{(\ell+1)^{2}(\ell+2)} \leq \frac{1}{(\ell+1)^{2}}$.
- We can apply the Chebyshev bound, although the variance is a bit too large for our purpose.

An Algorithm Assuming Ideal Hash

- Maintain k independent, ideal hash functions.

An Algorithm Assuming Ideal Hash

- Maintain k independent, ideal hash functions.
- For each hash function h_{i}, store $Z_{i}=\min _{t}\left\{h_{i}\left(i_{t}\right)\right\}$, the smallest address used throughout the stream.

An Algorithm Assuming Ideal Hash

- Maintain k independent, ideal hash functions.
- For each hash function h_{i}, store $Z_{i}=\min _{t}\left\{h_{i}\left(i_{t}\right)\right\}$, the smallest address used throughout the stream.
- Take the median of Z_{1}, \cdots, Z_{k}. Use it to estimate $\|x\|_{0}$. (See reading material for details.)
- This algorithm assumes we have access to ideal hash functions.

An Algorithm Assuming Ideal Hash

- Maintain k independent, ideal hash functions.
- For each hash function h_{i}, store $Z_{i}=\min _{t}\left\{h_{i}\left(i_{t}\right)\right\}$, the smallest address used throughout the stream.
- Take the median of Z_{1}, \cdots, Z_{k}. Use it to estimate $\|x\|_{0}$. (See reading material for details.)
- This algorithm assumes we have access to ideal hash functions.
- Ideas for improvement:
- Use real hash functions. Discretize the range. Possibly use k-wise independent hash family for appropriate k.

An Algorithm Assuming Ideal Hash

- Maintain k independent, ideal hash functions.
- For each hash function h_{i}, store $Z_{i}=\min _{t}\left\{h_{i}\left(i_{t}\right)\right\}$, the smallest address used throughout the stream.
- Take the median of Z_{1}, \cdots, Z_{k}. Use it to estimate $\|x\|_{0}$. (See reading material for details.)
- This algorithm assumes we have access to ideal hash functions.
- Ideas for improvement:
- Use real hash functions. Discretize the range. Possibly use k-wise independent hash family for appropriate k.
- The minimum of $h\left(i_{t}\right)$ tends to be voltaile: a single bad event ruins the estimate.

An Algorithm Assuming Ideal Hash

- Maintain k independent, ideal hash functions.
- For each hash function h_{i}, store $Z_{i}=\min _{t}\left\{h_{i}\left(i_{t}\right)\right\}$, the smallest address used throughout the stream.
- Take the median of Z_{1}, \cdots, Z_{k}. Use it to estimate $\|x\|_{0}$. (See reading material for details.)
- This algorithm assumes we have access to ideal hash functions.
- Ideas for improvement:
- Use real hash functions. Discretize the range. Possibly use k-wise independent hash family for appropriate k.
- The minimum of $h\left(i_{t}\right)$ tends to be voltaile: a single bad event ruins the estimate.
- To make the estimate more stable, we may keep track of more than one smallest hash values.

KMV

The following KMV (k minimum values) algorithm is due to Bar-Yossef, Jayram, Kumar, Sivakumar and Trevisan (2002).

KMV

The following KMV (k minimum values) algorithm is due to Bar-Yossef, Jayram, Kumar, Sivakumar and Trevisan (2002).

- Sample a hash function h from a pairwise independent hash family mapping [d] to $[D]$, for $D \in\left[d^{3}, 2 d^{3}\right]$ that is a power of 2 .

KMV

The following KMV (k minimum values) algorithm is due to Bar-Yossef, Jayram, Kumar, Sivakumar and Trevisan (2002).

- Sample a hash function h from a pairwise independent hash family mapping [d] to $[D]$, for $D \in\left[d^{3}, 2 d^{3}\right]$ that is a power of 2 .
- Initialize S to \emptyset. Set $t=12 / \delta \epsilon^{2}$.

KMV

The following KMV (k minimum values) algorithm is due to Bar-Yossef, Jayram, Kumar, Sivakumar and Trevisan (2002).

- Sample a hash function h from a pairwise independent hash family mapping [d] to $[D]$, for $D \in\left[d^{3}, 2 d^{3}\right]$ that is a power of 2 .
- Initialize S to \emptyset. Set $t=12 / \delta \epsilon^{2}$.
- When i_{j} arrives,
- If $|S|<t$, then add $h\left(i_{j}\right)$ to S;
- Otherwise, only if $h\left(i_{j}\right)<y, \forall y \in S$, add $h\left(i_{j}\right)$ to S and remove the largest element of S.

KMV

The following KMV (k minimum values) algorithm is due to Bar-Yossef, Jayram, Kumar, Sivakumar and Trevisan (2002).

- Sample a hash function h from a pairwise independent hash family mapping [d] to $[D]$, for $D \in\left[d^{3}, 2 d^{3}\right]$ that is a power of 2 .
- Initialize S to \emptyset. Set $t=12 / \delta \epsilon^{2}$.
- When i_{j} arrives,
- If $|S|<t$, then add $h\left(i_{j}\right)$ to S;
- Otherwise, only if $h\left(i_{j}\right)<y, \forall y \in S$, add $h\left(i_{j}\right)$ to S and remove the largest element of S.
- For output at the end:
- If $|S|<t$, return $|S|$.

KMV

The following KMV (k minimum values) algorithm is due to Bar-Yossef, Jayram, Kumar, Sivakumar and Trevisan (2002).

- Sample a hash function h from a pairwise independent hash family mapping [d] to $[D]$, for $D \in\left[d^{3}, 2 d^{3}\right]$ that is a power of 2 .
- Initialize S to \emptyset. Set $t=12 / \delta \epsilon^{2}$.
- When i_{j} arrives,
- If $|S|<t$, then add $h\left(i_{j}\right)$ to S;
- Otherwise, only if $h\left(i_{j}\right)<y, \forall y \in S$, add $h\left(i_{j}\right)$ to S and remove the largest element of S.
- For output at the end:
- If $|S|<t$, return $|S|$.
- Otherwise, let X be the largest element in S, return $\frac{t D}{X}$.

Analysis of KMV

Proposition

If Y is a Bernoulli random variable, then $\operatorname{Var}[Y] \leq \operatorname{Pr}[Y=1]$.

Analysis of KMV

Proposition

If Y is a Bernoulli random variable, then $\operatorname{Var}[Y] \leq \operatorname{Pr}[Y=1]$.

Proof.

$\operatorname{Var}[Y]=\mathbf{E}\left[Y^{2}\right]-\mathbf{E}[Y]^{2} \leq \mathbf{E}\left[Y^{2}\right]=\operatorname{Pr}[Y=1]$.

Analysis of KMV

Proposition

If Y is a Bernoulli random variable, then $\operatorname{Var}[Y] \leq \operatorname{Pr}[Y=1]$.

Proof.

$\operatorname{Var}[Y]=\mathbf{E}\left[Y^{2}\right]-\mathbf{E}[Y]^{2} \leq \mathbf{E}\left[Y^{2}\right]=\operatorname{Pr}[Y=1]$.

- Let's denote $\ell:=\|x\|_{0}$, assume $\epsilon<\frac{1}{2}$, and $d>\frac{2}{\epsilon^{2} \delta}$.
- First case of output: if $|S|<t$, what's the chance that $\|x\|_{0}>|S|$?

Analysis of KMV

Proposition

If Y is a Bernoulli random variable, then $\operatorname{Var}[Y] \leq \operatorname{Pr}[Y=1]$.

Proof.

$$
\operatorname{Var}[Y]=\mathbf{E}\left[Y^{2}\right]-\mathbf{E}[Y]^{2} \leq \mathbf{E}\left[Y^{2}\right]=\operatorname{Pr}[Y=1] .
$$

- Let's denote $\ell:=\|x\|_{0}$, assume $\epsilon<\frac{1}{2}$, and $d>\frac{2}{\epsilon^{2} \delta}$.
- First case of output: if $|S|<t$, what's the chance that $\|x\|_{0}>|S|$?
- For any pair of indices, they are mapped to the same address with probability $\frac{1}{D}$.

Analysis of KMV

Proposition

If Y is a Bernoulli random variable, then $\operatorname{Var}[Y] \leq \operatorname{Pr}[Y=1]$.

Proof.

$\operatorname{Var}[Y]=\mathbf{E}\left[Y^{2}\right]-\mathbf{E}[Y]^{2} \leq \mathbf{E}\left[Y^{2}\right]=\operatorname{Pr}[Y=1]$.

- Let's denote $\ell:=\|x\|_{0}$, assume $\epsilon<\frac{1}{2}$, and $d>\frac{2}{\epsilon^{2} \delta}$.
- First case of output: if $|S|<t$, what's the chance that $\|x\|_{0}>|S|$?
- For any pair of indices, they are mapped to the same address with probability $\frac{1}{D}$.
- There are $\binom{\ell}{2}$ pairs, so the probability that any clash happens is $\leq\binom{\ell}{2} \cdot \frac{1}{D} \leq \frac{1}{d}$. (Recall $D \geq d^{3}$.)

Analysis of KMV

Proposition

If Y is a Bernoulli random variable, then $\operatorname{Var}[Y] \leq \operatorname{Pr}[Y=1]$.

Proof.

$\operatorname{Var}[Y]=\mathbf{E}\left[Y^{2}\right]-\mathbf{E}[Y]^{2} \leq \mathbf{E}\left[Y^{2}\right]=\operatorname{Pr}[Y=1]$.

- Let's denote $\ell:=\|x\|_{0}$, assume $\epsilon<\frac{1}{2}$, and $d>\frac{2}{\epsilon^{2} \delta}$.
- First case of output: if $|S|<t$, what's the chance that $\|x\|_{0}>|S|$?
- For any pair of indices, they are mapped to the same address with probability $\frac{1}{D}$.
- There are $\binom{\ell}{2}$ pairs, so the probability that any clash happens is $\leq\binom{\ell}{2} \cdot \frac{1}{D} \leq \frac{1}{d}$. (Recall $D \geq d^{3}$.)
- So the output is exactly correct w.p. $1-\frac{1}{d}$.

Analysis of KMV

Proposition

If Y is a Bernoulli random variable, then $\operatorname{Var}[Y] \leq \operatorname{Pr}[Y=1]$.

Proof.

$\operatorname{Var}[Y]=\mathbf{E}\left[Y^{2}\right]-\mathbf{E}[Y]^{2} \leq \mathbf{E}\left[Y^{2}\right]=\operatorname{Pr}[Y=1]$.

- Let's denote $\ell:=\|x\|_{0}$, assume $\epsilon<\frac{1}{2}$, and $d>\frac{2}{\epsilon^{2} \delta}$.
- First case of output: if $|S|<t$, what's the chance that $\|x\|_{0}>|S|$?
- For any pair of indices, they are mapped to the same address with probability $\frac{1}{D}$.
- There are $\binom{\ell}{2}$ pairs, so the probability that any clash happens is $\leq\binom{\ell}{2} \cdot \frac{1}{D} \leq \frac{1}{d}$. (Recall $D \geq d^{3}$.)
- So the output is exactly correct w.p. $1-\frac{1}{d}$.

Analysis: The interesting case

- The interesting case: $|S| \geq t$.

Analysis: The interesting case

- The interesting case: $|S| \geq t$.
- Recall: X is the largest element in S. We'll bound $\operatorname{Pr}\left[\left|\frac{t D}{X}-\ell\right|>\epsilon \ell\right]$.

Analysis: The interesting case

- The interesting case: $|S| \geq t$.
- Recall: X is the largest element in S. We'll bound $\operatorname{Pr}\left[\left|\frac{t D}{X}-\ell\right|>\epsilon \ell\right]$.
- Consider the event $\frac{t D}{X}>(1+\epsilon) \ell$.

Analysis: The interesting case

- The interesting case: $|S| \geq t$.
- Recall: X is the largest element in S. We'll bound $\operatorname{Pr}\left[\left|\frac{t D}{X}-\ell\right|>\epsilon \ell\right]$.
- Consider the event $\frac{t D}{X}>(1+\epsilon) \ell$.
- This happens only if more than t of the ℓ elements are hashed to addresses smaller than $X<\frac{t D}{(1+\epsilon) \ell} \leq \frac{(1-\epsilon / 2) t D}{\ell}$.

Analysis: The interesting case

- The interesting case: $|S| \geq t$.
- Recall: X is the largest element in S. We'll bound $\operatorname{Pr}\left[\left|\frac{t D}{X}-\ell\right|>\epsilon \ell\right]$.
- Consider the event $\frac{t D}{X}>(1+\epsilon) \ell$.
- This happens only if more than t of the ℓ elements are hashed to addresses smaller than $X<\frac{t D}{(1+\epsilon) \ell} \leq \frac{(1-\epsilon / 2) t D}{\ell}$.
- W.l.o.g let the ℓ elements be $1, \cdots, \ell$, and let Z_{i} be the indicator variable for the event $h(i)<\frac{(1-\epsilon / 2) t D}{\ell}$.

Analysis: The interesting case

- The interesting case: $|S| \geq t$.
- Recall: X is the largest element in S. We'll bound $\operatorname{Pr}\left[\left|\frac{t D}{X}-\ell\right|>\epsilon \ell\right]$.
- Consider the event $\frac{t D}{X}>(1+\epsilon) \ell$.
- This happens only if more than t of the ℓ elements are hashed to addresses smaller than $X<\frac{t D}{(1+\epsilon) \ell} \leq \frac{(1-\epsilon / 2) t D}{\ell}$.
- W.l.o.g let the ℓ elements be $1, \cdots, \ell$, and let Z_{i} be the indicator variable for the event $h(i)<\frac{(1-\epsilon / 2) t D}{\ell}$.
- Then $\mathbf{E}\left[Z_{i}\right]=(1-\epsilon / 2) t / \ell$.

Analysis: The interesting case

- The interesting case: $|S| \geq t$.
- Recall: X is the largest element in S. We'll bound $\operatorname{Pr}\left[\left|\frac{t D}{X}-\ell\right|>\epsilon \ell\right]$.
- Consider the event $\frac{t D}{X}>(1+\epsilon) \ell$.
- This happens only if more than t of the ℓ elements are hashed to addresses smaller than $X<\frac{t D}{(1+\epsilon) \ell} \leq \frac{(1-\epsilon / 2) t D}{\ell}$.
- W.l.o.g let the ℓ elements be $1, \cdots, \ell$, and let Z_{i} be the indicator variable for the event $h(i)<\frac{(1-\epsilon / 2) t D}{\ell}$.
- Then $\mathbf{E}\left[Z_{i}\right]=(1-\epsilon / 2) t / \ell$.
- The bad event is $Z:=\sum_{i=1}^{\ell} Z_{i} \geq t$.

Analysis: The interesting case

- The interesting case: $|S| \geq t$.
- Recall: X is the largest element in S. We'll bound $\operatorname{Pr}\left[\left|\frac{t D}{X}-\ell\right|>\epsilon \ell\right]$.
- Consider the event $\frac{t D}{X}>(1+\epsilon) \ell$.
- This happens only if more than t of the ℓ elements are hashed to addresses smaller than $X<\frac{t D}{(1+\epsilon) \ell} \leq \frac{(1-\epsilon / 2) t D}{\ell}$.
- W.l.o.g let the ℓ elements be $1, \cdots, \ell$, and let Z_{i} be the indicator variable for the event $h(i)<\frac{(1-\epsilon / 2) t D}{\ell}$.
- Then $\mathbf{E}\left[Z_{i}\right]=(1-\epsilon / 2) t / \ell$.
- The bad event is $Z:=\sum_{i=1}^{\ell} Z_{i} \geq t$.
- $\operatorname{Var}\left[Z_{i}\right] \leq \operatorname{Pr}\left[Z_{i}\right]=\left(1-\frac{\epsilon}{2}\right) t / \ell$.

Analysis: The interesting case

- The interesting case: $|S| \geq t$.
- Recall: X is the largest element in S. We'll bound $\operatorname{Pr}\left[\left|\frac{t D}{X}-\ell\right|>\epsilon \ell\right]$.
- Consider the event $\frac{t D}{X}>(1+\epsilon) \ell$.
- This happens only if more than t of the ℓ elements are hashed to addresses smaller than $X<\frac{t D}{(1+\epsilon) \ell} \leq \frac{(1-\epsilon / 2) t D}{\ell}$.
- W.I.o.g let the ℓ elements be $1, \cdots, \ell$, and let Z_{i} be the indicator variable for the event $h(i)<\frac{(1-\epsilon / 2) t D}{\ell}$.
- Then $\mathbf{E}\left[Z_{i}\right]=(1-\epsilon / 2) t / \ell$.
- The bad event is $Z:=\sum_{i=1}^{\ell} Z_{i} \geq t$.
- $\operatorname{Var}\left[Z_{i}\right] \leq \operatorname{Pr}\left[Z_{i}\right]=\left(1-\frac{\epsilon}{2}\right) t / \ell$.
- By pairwise independence we have $\operatorname{Var}[Z]=\sum_{i} \operatorname{Var}\left[Z_{i}\right] \leq t$.

Analysis of KMV (Cont.)

- We have so far $\left\{\frac{t D}{X}>(1+\epsilon) \ell\right\} \Rightarrow\{Z \geq t\}, \mathbf{E}[Z] \leq\left(1-\frac{\epsilon}{2}\right) t$, and $\operatorname{Var}[Z] \leq t$.

Analysis of KMV (Cont.)

- We have so far $\left\{\frac{t D}{X}>(1+\epsilon) \ell\right\} \Rightarrow\{Z \geq t\}, \mathbf{E}[Z] \leq\left(1-\frac{\epsilon}{2}\right) t$, and $\operatorname{Var}[Z] \leq t$.
- By Chebysheve inequality, we have

$$
\operatorname{Pr}\left[\frac{t D}{X}>(1+\epsilon) \ell\right] \leq \operatorname{Pr}[Z \geq t] \leq \frac{\operatorname{Var}[Z]}{(\epsilon t / 2)^{2}} \leq \frac{4}{\epsilon^{2} t} \leq \frac{\delta}{3}
$$

Analysis of KMV (Cont.)

- We have so far $\left\{\frac{t D}{X}>(1+\epsilon) \ell\right\} \Rightarrow\{Z \geq t\}, \mathbf{E}[Z] \leq\left(1-\frac{\epsilon}{2}\right) t$, and $\operatorname{Var}[Z] \leq t$.
- By Chebysheve inequality, we have

$$
\operatorname{Pr}\left[\frac{t D}{X}>(1+\epsilon) \ell\right] \leq \operatorname{Pr}[Z \geq t] \leq \frac{\operatorname{Var}[Z]}{(\epsilon t / 2)^{2}} \leq \frac{4}{\epsilon^{2} t} \leq \frac{\delta}{3}
$$

- Almost symmetrically, the event $\left\{\frac{t D}{X}<(1-\epsilon) \ell\right\}$ happens only if fewer than t of the ℓ elements are hashed to addresses smaller than $X>\frac{t D}{(1-\epsilon) \ell}$.

Analysis of KMV (Cont.)

- We have so far $\left\{\frac{t D}{X}>(1+\epsilon) \ell\right\} \Rightarrow\{Z \geq t\}, \mathbf{E}[Z] \leq\left(1-\frac{\epsilon}{2}\right) t$, and $\operatorname{Var}[Z] \leq t$.
- By Chebysheve inequality, we have

$$
\operatorname{Pr}\left[\frac{t D}{X}>(1+\epsilon) \ell\right] \leq \operatorname{Pr}[Z \geq t] \leq \frac{\operatorname{Var}[Z]}{(\epsilon t / 2)^{2}} \leq \frac{4}{\epsilon^{2} t} \leq \frac{\delta}{3}
$$

- Almost symmetrically, the event $\left\{\frac{t D}{X}<(1-\epsilon) \ell\right\}$ happens only if fewer than t of the ℓ elements are hashed to addresses smaller than $X>\frac{t D}{(1-\epsilon) \ell}$.
- Let Z_{i} be the indicator variable for the event $h(i)<\frac{t D}{(1-\epsilon) \ell}$.

Analysis of KMV (Cont.)

- We have so far $\left\{\frac{t D}{X}>(1+\epsilon) \ell\right\} \Rightarrow\{Z \geq t\}, \mathbf{E}[Z] \leq\left(1-\frac{\epsilon}{2}\right) t$, and $\operatorname{Var}[Z] \leq t$.
- By Chebysheve inequality, we have

$$
\operatorname{Pr}\left[\frac{t D}{X}>(1+\epsilon) \ell\right] \leq \operatorname{Pr}[Z \geq t] \leq \frac{\operatorname{Var}[Z]}{(\epsilon t / 2)^{2}} \leq \frac{4}{\epsilon^{2} t} \leq \frac{\delta}{3}
$$

- Almost symmetrically, the event $\left\{\frac{t D}{X}<(1-\epsilon) \ell\right\}$ happens only if fewer than t of the ℓ elements are hashed to addresses smaller than $X>\frac{t D}{(1-\epsilon) \ell}$.
- Let Z_{i} be the indicator variable for the event $h(i)<\frac{t D}{(1-\epsilon) \ell}$.

$$
\frac{t}{(1-\epsilon) \ell} \geq \mathbf{E}\left[Z_{i}\right] \geq \frac{t}{(1-\epsilon) \ell}-\frac{1}{D} \geq \frac{(1+\epsilon) t}{\ell}-\frac{1}{D} \geq \frac{(1+\epsilon / 2) t}{\ell}
$$

Analysis of KMV

$$
\operatorname{Var}\left[Z_{i}\right] \leq \mathbf{E}\left[Z_{i}\right] \leq \frac{t}{(1-\epsilon) \ell} \leq \frac{2 t}{\ell}
$$

Analysis of KMV

$$
\operatorname{Var}\left[Z_{i}\right] \leq \mathbf{E}\left[Z_{i}\right] \leq \frac{t}{(1-\epsilon) \ell} \leq \frac{2 t}{\ell}
$$

Let Z be $\sum_{i=1}^{\ell} Z_{i}$, then $\mathbf{E}[Z] \geq\left(1+\frac{\epsilon}{2}\right) t, \operatorname{Var}[Z] \leq 2 t$.

Analysis of KMV

$$
\operatorname{Var}\left[Z_{i}\right] \leq \mathbf{E}\left[Z_{i}\right] \leq \frac{t}{(1-\epsilon) \ell} \leq \frac{2 t}{\ell}
$$

Let Z be $\sum_{i=1}^{\ell} Z_{i}$, then $\mathbf{E}[Z] \geq\left(1+\frac{\epsilon}{2}\right) t, \operatorname{Var}[Z] \leq 2 t$. By Chebyshev inequality,

$$
\operatorname{Pr}\left[\frac{t D}{X}<(1-\epsilon) \ell\right] \leq \operatorname{Pr}[Z<t] \leq \frac{\operatorname{Var}[Z]}{(\epsilon t / 2)^{2}} \leq \frac{8}{\epsilon^{2} t} \leq \frac{2 \delta}{3}
$$

Analysis of KMV

$$
\operatorname{Var}\left[Z_{i}\right] \leq \mathbf{E}\left[Z_{i}\right] \leq \frac{t}{(1-\epsilon) \ell} \leq \frac{2 t}{\ell}
$$

Let Z be $\sum_{i=1}^{\ell} Z_{i}$, then $\mathbf{E}[Z] \geq\left(1+\frac{\epsilon}{2}\right) t, \operatorname{Var}[Z] \leq 2 t$. By Chebyshev inequality,

$$
\operatorname{Pr}\left[\frac{t D}{X}<(1-\epsilon) \ell\right] \leq \operatorname{Pr}[Z<t] \leq \frac{\operatorname{Var}[Z]}{(\epsilon t / 2)^{2}} \leq \frac{8}{\epsilon^{2} t} \leq \frac{2 \delta}{3}
$$

Combining everything, we have that with probability at least $1-\delta$, $\left|\frac{t D}{X}-\ell\right| \leq \epsilon \ell$.

Analysis of KMV

$$
\operatorname{Var}\left[Z_{i}\right] \leq \mathbf{E}\left[Z_{i}\right] \leq \frac{t}{(1-\epsilon) \ell} \leq \frac{2 t}{\ell}
$$

Let Z be $\sum_{i=1}^{\ell} Z_{i}$, then $\mathbf{E}[Z] \geq\left(1+\frac{\epsilon}{2}\right) t, \operatorname{Var}[Z] \leq 2 t$. By Chebyshev inequality,

$$
\operatorname{Pr}\left[\frac{t D}{X}<(1-\epsilon) \ell\right] \leq \operatorname{Pr}[Z<t] \leq \frac{\operatorname{Var}[Z]}{(\epsilon t / 2)^{2}} \leq \frac{8}{\epsilon^{2} t} \leq \frac{2 \delta}{3}
$$

Combining everything, we have that with probability at least $1-\delta$, $\left|\frac{t D}{X}-\ell\right| \leq \epsilon \ell$.
Space usage:

- Storing the hash takes space $O(\log D)=O(\log d)$.

Analysis of KMV

$$
\operatorname{Var}\left[Z_{i}\right] \leq \mathbf{E}\left[Z_{i}\right] \leq \frac{t}{(1-\epsilon) \ell} \leq \frac{2 t}{\ell}
$$

Let Z be $\sum_{i=1}^{\ell} Z_{i}$, then $\mathbf{E}[Z] \geq\left(1+\frac{\epsilon}{2}\right) t, \operatorname{Var}[Z] \leq 2 t$. By Chebyshev inequality,

$$
\operatorname{Pr}\left[\frac{t D}{X}<(1-\epsilon) \ell\right] \leq \operatorname{Pr}[Z<t] \leq \frac{\operatorname{Var}[Z]}{(\epsilon t / 2)^{2}} \leq \frac{8}{\epsilon^{2} t} \leq \frac{2 \delta}{3}
$$

Combining everything, we have that with probability at least $1-\delta$, $\left|\frac{t D}{X}-\ell\right| \leq \epsilon \ell$.
Space usage:

- Storing the hash takes space $O(\log D)=O(\log d)$.
- Storing S takes space $t O(\log D)=O\left(\frac{\log d}{\epsilon^{2} \delta}\right)$.

Analysis of KMV

$$
\operatorname{Var}\left[Z_{i}\right] \leq \mathbf{E}\left[Z_{i}\right] \leq \frac{t}{(1-\epsilon) \ell} \leq \frac{2 t}{\ell}
$$

Let Z be $\sum_{i=1}^{\ell} Z_{i}$, then $\mathbf{E}[Z] \geq\left(1+\frac{\epsilon}{2}\right) t, \operatorname{Var}[Z] \leq 2 t$. By Chebyshev inequality,

$$
\operatorname{Pr}\left[\frac{t D}{X}<(1-\epsilon) \ell\right] \leq \operatorname{Pr}[Z<t] \leq \frac{\operatorname{Var}[Z]}{(\epsilon t / 2)^{2}} \leq \frac{8}{\epsilon^{2} t} \leq \frac{2 \delta}{3}
$$

Combining everything, we have that with probability at least $1-\delta$, $\left|\frac{t D}{X}-\ell\right| \leq \epsilon \ell$.
Space usage:

- Storing the hash takes space $O(\log D)=O(\log d)$.
- Storing S takes space $t O(\log D)=O\left(\frac{\log d}{\epsilon^{2} \delta}\right)$.
- The optimal algorithm uses space $O\left(\log d+\epsilon^{-2}\right)$!

