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Distinct Elements

@ We are back to our basic streaming model:
iy...,ip€[d={1,---,d}.

o The frequency vector x € Z9: x; = | {t : ir = j} |.

o Counting distinct elements: estimate ||x||o := [j : x; > 0] up to
(14 €)-factor approximation.

e Again, we must use space O(log d, 1).
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An ldeal Algorithm

If we can make the distribution of {/;} uniform, then it is easier to
estimate its size.

E.g., if we can have an ideal hash function h from [d] to [0, 1], let X be
the minimum h(i¢), then § seems a reasonable estimate.

Indeed, suppose we have i.i.d. X3, - - -, Xy uniformly distributed on
[0, 1], let the smallest be X).
o Xy < Xp) <+ < X are called order statistics.
o The distribution of X(y) is a so-called Beta distribution B(1, £). We have
E[X)] = 75

Therefore, + — 1is an unbiased estimator of ||x]|o.

> X

— 14 1
Var[X(;)] = e S Ty
We can apply the Chebyshev bound, although the variance is a bit too
large for our purpose.
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An Algorithm Assuming Ideal Hash

Maintain k independent, ideal hash functions.

For each hash function h;, store Z; = min{h;(i;)}, the smallest address
used throughout the stream.

o Take the median of Z;, - - - , Z;. Use it to estimate ||x||o. (See reading
material for details.)

This algorithm assumes we have access to ideal hash functions.

o l|deas for improvement:
o Use real hash functions. Discretize the range. Possibly use k-wise
independent hash family for appropriate k.
o The minimum of A(i;) tends to be voltaile: a single bad event ruins the

estimate.
o To make the estimate more stable, we may keep track of more than one

smallest hash values.



stinct Elements

KMV

The following KMV (k minimum values) algorithm is due to Bar-Yossef,
Jayram, Kumar, Sivakumar and Trevisan (2002).



Streaming Algorithm: Distinct Elements

KMV

The following KMV (k minimum values) algorithm is due to Bar-Yossef,
Jayram, Kumar, Sivakumar and Trevisan (2002).

e Sample a hash function h from a pairwise independent hash family
mapping [d] to [D], for D € [d®, 2d°] that is a power of 2.

4/8



Streaming Algorithm: Distinct Elements

KMV

The following KMV (k minimum values) algorithm is due to Bar-Yossef,
Jayram, Kumar, Sivakumar and Trevisan (2002).

e Sample a hash function h from a pairwise independent hash family
mapping [d] to [D], for D € [d®, 2d°] that is a power of 2.

o Initialize S to (0. Set t = 12/4€2.

4/8



Streaming Algorithm: Distinct Elements

KMV

The following KMV (k minimum values) algorithm is due to Bar-Yossef,
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The following KMV (k minimum values) algorithm is due to Bar-Yossef,
Jayram, Kumar, Sivakumar and Trevisan (2002).

e Sample a hash function h from a pairwise independent hash family
mapping [d] to [D], for D € [d®, 2d°] that is a power of 2.
o Initialize S to (0. Set t = 12/4€2.
@ When jj arrives,
o If |S| < t, then add h(jj) to S;
o Otherwise, only if h(i;) < y,Vy € S, add h(j;) to S and remove the
largest element of S.
o For output at the end:
o If|S| < t, return |S|.

o Otherwise, let X be the largest element in S, return %.
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This happens only if more than t of the £ elements are hashed to
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W.l.o.g let the ¢ elements be 1,--- , £, and let Z; be the indicator
variable for the event h(i) < %.
Then E[Z]] = (1 —€/2)t/L.

The bad event is Z = Zf:1 Z >t
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Analysis: The interesting case

@ The interesting case: |S| > t.

o Recall: X is the largest element in S. We’ll bound Pr[|%2 — ¢| > €/].
o Consider the event 22 > (1+ €)(.

@ This happens only if more than t of the ¢ elements are hashed to

tD (1—¢/2)tD
Tl S0

@ W.lo.glet the { elements be 1,--- , £, and let Z; be the indicator
variable for the event h(i) < %.

e Then E[Z]] = (1 —¢/2)t/L.

@ The bad event is Z := Zf:1 Z >t

o Var[Z] < Pr[Z] = (1 §)t/L.

@ By pairwise independence we have Var[Z] = ), Var[Z] < t.

addresses smaller than X < (
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o Let Z; be the indicator variable for the event h(i) < 2

t t 1T_(+et 1 _ (1+¢/2)t
(1—e)} D ¢ D~ ¢
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@ The optimal algorithm uses space O(log d + ¢~2)!
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