Learning Goals

- Concept of dimensenality reduction
- Correctly state the procedure and guarantee of Johnson-Lindenstrauss transform
- Proof idea of JL-transform

• Data points can often live in very high dimensions

э

- Data points can often live in very high dimensions
 - Images

3

<ロ> (日) (日) (日) (日) (日)

- Data points can often live in very high dimensions
 - Images
 - Vector representation of articles

- Data points can often live in very high dimensions
 - Images
 - Vector representation of articles
 - Vector representation of words

э

- Data points can often live in very high dimensions
 - Images
 - Vector representation of articles
 - Vector representation of words
- Many algorithms are very slow when run on high dimensional input
 - Curse of dimensionality

- Data points can often live in very high dimensions
 - Images
 - Vector representation of articles
 - Vector representation of words
- Many algorithms are very slow when run on high dimensional input
 - Curse of dimensionality
- *Dimensionality reduction*: Transform data to lower dimensions while preserving information useful for analysis/application

Johnson-Lindenstrauss

• Distances between data points are often meaningful

イロト イポト イヨト イヨト

3

Johnson-Lindenstrauss

- Distances between data points are often meaningful
- For $x \in \mathbb{R}^d$, the ℓ_2 *norm* of x is

$$||\mathbf{x}|| = \left(\sum_{i=1}^d x_i^2\right)^{1/2}$$

For $x, y \in \mathbb{R}^d$, ||x - y|| is their ℓ_2 -distance, or *Euclidean distance*.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Johnson-Lindenstrauss

- Distances between data points are often meaningful
- For $x \in \mathbb{R}^d$, the ℓ_2 *norm* of x is

$$||x|| = \left(\sum_{i=1}^{d} x_i^2\right)^{1/2}$$

For $x, y \in \mathbb{R}^d$, ||x - y|| is their ℓ_2 -distance, or *Euclidean distance*.

• The Johnson-Lindenstrauss transform is a randomized dimensionality reduction algorithm that approximately preserves Euclidean distances.

JL Statement

Theorem (Johnson-Lindenstrauss)

For arbitrary $x_1, \ldots, x_n \in \mathbb{R}^d$, and any $\epsilon \in (0, 1)$, there is $t = O(\log n/\epsilon^2)$ such that there are $y_1, \ldots, y_n \in \mathbb{R}^t$ with

$$(1-\epsilon)||x_j|| \le ||y_j|| \le (1+\epsilon)||x_j||, \quad orall j \ (1-\epsilon)||x_j-x_{j'}|| \le ||y_j-y_{j'}|| \le (1+\epsilon)||x_j-x_{j'}||, \quad orall j,j'.$$

Moreover, y_1, \ldots, y_n can be computed in polynomial time.

Lemma

Distributional JL For any $\epsilon, \delta \in (0, 1]$, there is a $t = O(\log(1/\delta)/\epsilon^2)$ and a random linear map $f : \mathbb{R}^d \to \mathbb{R}^t$, such that, for any $v \in \mathbb{R}^d$ with ||v|| = 1,

$$\Pr\left[1-\epsilon \leq \frac{||f(v)||}{\sqrt{t}} \leq 1+\epsilon\right] \geq 1-2\delta.$$

Lemma

Distributional JL For any $\epsilon, \delta \in (0, 1]$, there is a $t = O(\log(1/\delta)/\epsilon^2)$ and a random linear map $f : \mathbb{R}^d \to \mathbb{R}^t$, such that, for any $v \in \mathbb{R}^d$ with ||v|| = 1,

$$\Pr\left[1-\epsilon \leq \frac{||f(v)||}{\sqrt{t}} \leq 1+\epsilon\right] \geq 1-2\delta.$$

Consider
$$W = \{x_1, ..., x_n\} \cup \{x_i - x_j : i < j\}.$$

Lemma

Distributional JL For any $\epsilon, \delta \in (0, 1]$, there is a $t = O(\log(1/\delta)/\epsilon^2)$ and a random linear map $f : \mathbb{R}^d \to \mathbb{R}^t$, such that, for any $v \in \mathbb{R}^d$ with ||v|| = 1,

$$\Pr\left[1-\epsilon \leq \frac{||f(v)||}{\sqrt{t}} \leq 1+\epsilon\right] \geq 1-2\delta.$$

Consider
$$W = \{x_1, ..., x_n\} \cup \{x_i - x_j : i < j\}$$
. Note $|W| \le n^2$. Take $\delta = 1/n^3$.

Lemma

Distributional JL For any $\epsilon, \delta \in (0, 1]$, there is a $t = O(\log(1/\delta)/\epsilon^2)$ and a random linear map $f : \mathbb{R}^d \to \mathbb{R}^t$, such that, for any $v \in \mathbb{R}^d$ with ||v|| = 1,

$$\Pr\left[1-\epsilon \leq \frac{||f(v)||}{\sqrt{t}} \leq 1+\epsilon\right] \geq 1-2\delta.$$

Consider
$$W = \{x_1, \ldots, x_n\} \cup \{x_i - x_j : i < j\}$$
. Note $|W| \le n^2$. Take $\delta = 1/n^3$. For each $w \in W$, consider $v = \frac{w}{||w||}$.

Lemma

Distributional JL For any $\epsilon, \delta \in (0, 1]$, there is a $t = O(\log(1/\delta)/\epsilon^2)$ and a random linear map $f : \mathbb{R}^d \to \mathbb{R}^t$, such that, for any $v \in \mathbb{R}^d$ with ||v|| = 1,

$$\Pr\left[1-\epsilon \leq \frac{||f(v)||}{\sqrt{t}} \leq 1+\epsilon\right] \geq 1-2\delta.$$

Consider
$$W = \{x_1, ..., x_n\} \cup \{x_i - x_j : i < j\}$$
. Note $|W| \le n^2$. Take $\delta = 1/n^3$. For each $w \in W$, consider $v = \frac{w}{||w||}$. Consider the event

$$\mathcal{E}_w \coloneqq \left\{ \frac{||f(w)||}{\sqrt{t}} \notin [1-\epsilon, 1+\epsilon] \cdot ||w|| \right\} = \left\{ \frac{||f(v)||}{\sqrt{t}} \notin [1-\epsilon, 1+\epsilon] \right\}.$$

Lemma

Distributional JL For any $\epsilon, \delta \in (0, 1]$, there is a $t = O(\log(1/\delta)/\epsilon^2)$ and a random linear map $f : \mathbb{R}^d \to \mathbb{R}^t$, such that, for any $v \in \mathbb{R}^d$ with ||v|| = 1,

$$\Pr\left[1-\epsilon \leq \frac{||f(v)||}{\sqrt{t}} \leq 1+\epsilon\right] \geq 1-2\delta.$$

Proof of Theorem using Lemma.

Consider
$$W = \{x_1, ..., x_n\} \cup \{x_i - x_j : i < j\}$$
. Note $|W| \le n^2$. Take $\delta = 1/n^3$. For each $w \in W$, consider $v = \frac{w}{||w||}$. Consider the event

$$\mathcal{E}_w \coloneqq \left\{ rac{||f(w)||}{\sqrt{t}}
otin [1-\epsilon,1+\epsilon] \cdot ||w||
ight\} = \left\{ rac{||f(v)||}{\sqrt{t}}
otin [1-\epsilon,1+\epsilon]
ight\}.$$

Each such event occurs w.p. $\leq 2\delta$. By the union bound, the probability that none of these happen is $\geq 1|W| \cdot 2\delta \geq 1 - \frac{2}{n}$.

• For a random variable X, its *cumulative distribution function* (CDF) is $F_X(x) \coloneqq \Pr[X \le x]$.

- For a random variable X, its *cumulative distribution function* (CDF) is $F_X(x) := \Pr[X \le x]$.
 - Example: For X uniformly distributed on [0, 1], F(x) = x, for $x \in [0, 1]$.

- For a random variable X, its *cumulative distribution function* (CDF) is $F_X(x) := \Pr[X \le x].$
 - Example: For X uniformly distributed on [0, 1], F(x) = x, for $x \in [0, 1]$.
- For a continuous random variable, the *probability density function* (PDF) is $f_X(x) \coloneqq \frac{d}{dx} F_X(x)$.

- For a random variable X, its *cumulative distribution function* (CDF) is $F_X(x) := \Pr[X \le x].$
 - Example: For X uniformly distributed on [0, 1], F(x) = x, for $x \in [0, 1]$.
- For a continuous random variable, the *probability density function* (PDF) is $f_X(x) \coloneqq \frac{d}{dx} F_X(x)$.
 - For X uniformly distributed on [0, 1], f(x) = 1 for $x \in [0, 1]$.

- For a random variable X, its *cumulative distribution function* (CDF) is $F_X(x) := \Pr[X \le x]$.
 - Example: For X uniformly distributed on [0, 1], F(x) = x, for $x \in [0, 1]$.
- For a continuous random variable, the *probability density function* (PDF) is $f_X(x) := \frac{d}{dx} F_X(x)$.
 - For X uniformly distributed on [0, 1], f(x) = 1 for $x \in [0, 1]$.
- A random variable is drawn from *Gaussian distribution* (or *Normal distribution*) N(μ, σ²) if its PDF is

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\cdot\left(\frac{x-\mu}{\sigma}\right)^2}.$$

- For a random variable X, its *cumulative distribution function* (CDF) is $F_X(x) := \Pr[X \le x]$.
 - Example: For X uniformly distributed on [0, 1], F(x) = x, for $x \in [0, 1]$.
- For a continuous random variable, the *probability density function* (PDF) is $f_X(x) \coloneqq \frac{d}{dx} F_X(x)$.
 - For X uniformly distributed on [0, 1], f(x) = 1 for $x \in [0, 1]$.
- A random variable is drawn from *Gaussian distribution* (or *Normal distribution*) N(μ, σ²) if its PDF is

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\cdot\left(\frac{x-\mu}{\sigma}\right)^2}.$$

• In particular, the standard normal distribution has PDF $\varphi(x) = \frac{e^{-x^2/2}}{\sqrt{2\pi}}$.

イロン イボン イヨン イヨン 三日

- For a random variable X, its *cumulative distribution function* (CDF) is $F_X(x) := \Pr[X \le x]$.
 - Example: For X uniformly distributed on [0, 1], F(x) = x, for $x \in [0, 1]$.
- For a continuous random variable, the *probability density function* (PDF) is $f_X(x) \coloneqq \frac{d}{dx} F_X(x)$.
 - For X uniformly distributed on [0, 1], f(x) = 1 for $x \in [0, 1]$.
- A random variable is drawn from *Gaussian distribution* (or *Normal distribution*) N(μ, σ²) if its PDF is

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\cdot\left(\frac{x-\mu}{\sigma}\right)^2}.$$

- In particular, the *standard normal distribution* has PDF $\varphi(x) = \frac{e^{-x^2/2}}{\sqrt{2\pi}}$.
- If $X \sim \mathcal{N}(0, 1)$, then $\sigma X + \mu \sim \mathcal{N}(\mu, \sigma^2)$.

イロン イボン イヨン イヨン 三日

Properties of Gaussian Distribution

Theorem

Linear combinations of independent Gaussian variables are still Gaussian.

Properties of Gaussian Distribution

Theorem

Linear combinations of independent Gaussian variables are still Gaussian.

Fact: The moment generating function $\mathbf{E}[e^{\lambda X}]$ of a random variable *X* uniquely determines its CDF.

Properties of Gaussian Distribution

Theorem

Linear combinations of independent Gaussian variables are still Gaussian.

Fact: The moment generating function $\mathbf{E}[e^{\lambda X}]$ of a random variable *X* uniquely determines its CDF.

Proof of Theorem.

We show only the zero mean case. For $X \sim \mathcal{N}(0, \sigma^2)$,

$$\mathbf{E}\left[e^{\lambda X}\right] = \int_{-\infty}^{\infty} \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2} + \lambda x\right) \, \mathrm{d}x$$
$$= \frac{e^{\sigma^2 \lambda^2/2}}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(\frac{x}{\sigma} - \sigma\lambda)^2} \, \mathrm{d}x = e^{\frac{\sigma^2 \lambda^2}{2}}.$$

So for independent $X \sim \mathcal{N}(0, \sigma_1^2), Y \sim \mathcal{N}(0, \sigma_2^2)$, $\mathbf{E}[e^{\lambda(X+Y)}] = \mathbf{E}[e^{\lambda X}] \cdot \mathbf{E}[e^{\lambda Y}] = e^{(\sigma_1^2 + \sigma_2^2)\lambda^2/2}$.

• For $x \in \mathbb{R}^d$ with ||x|| = 1, let G_1, \dots, G_d be i.i.d. from $\mathcal{N}(0, 1)$, then $\sum_i G_i x_i \sim \mathcal{N}(0, ||x||^2) = \mathcal{G}(0, 1)$.

-

- For $x \in \mathbb{R}^d$ with ||x|| = 1, let G_1, \dots, G_d be i.i.d. from $\mathcal{N}(0, 1)$, then $\sum_i G_i x_i \sim \mathcal{N}(0, ||x||^2) = \mathcal{G}(0, 1)$.
 - $\sum_{i} G_i x_i$ is obviously zero mean.

- For $x \in \mathbb{R}^d$ with ||x|| = 1, let G_1, \dots, G_d be i.i.d. from $\mathcal{N}(0, 1)$, then $\sum_i G_i x_i \sim \mathcal{N}(0, ||x||^2) = \mathcal{G}(0, 1)$.
 - $\sum_{i} G_i x_i$ is obviously zero mean.
 - Its variance is: $\mathbf{E}[(\sum_{i} G_i x_i)^2] = \mathbf{E}[\sum_{i} x_i^2] = ||\mathbf{x}||^2 = 1.$

- For $x \in \mathbb{R}^d$ with ||x|| = 1, let G_1, \dots, G_d be i.i.d. from $\mathcal{N}(0, 1)$, then $\sum_i G_i x_i \sim \mathcal{N}(0, ||x||^2) = \mathcal{G}(0, 1)$.
 - $\sum_{i} G_i x_i$ is obviously zero mean.
 - Its variance is: $\mathbf{E}[(\sum_{i} G_i x_i)^2] = \mathbf{E}[\sum_{i} x_i^2] = ||\mathbf{x}||^2 = 1.$
- By sampling $(\sum_i G_i x_i)^2$ multiple times, with good probability the average should be around the mean.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

- For $x \in \mathbb{R}^d$ with ||x|| = 1, let G_1, \dots, G_d be i.i.d. from $\mathcal{N}(0, 1)$, then $\sum_i G_i x_i \sim \mathcal{N}(0, ||x||^2) = \mathcal{G}(0, 1)$.
 - $\sum_{i} G_i x_i$ is obviously zero mean.
 - Its variance is: $\mathbf{E}[(\sum_{i} G_i x_i)^2] = \mathbf{E}[\sum_{i} x_i^2] = ||x||^2 = 1.$
- By sampling $(\sum_i G_i x_i)^2$ multiple times, with good probability the average should be around the mean.
- If we multiply x by a $t \times d$ matrix A, whose entries are i.i.d. standard Gaussian variables

イロン イボン イヨン イヨン 三日

- For $x \in \mathbb{R}^d$ with ||x|| = 1, let G_1, \dots, G_d be i.i.d. from $\mathcal{N}(0, 1)$, then $\sum_i G_i x_i \sim \mathcal{N}(0, ||x||^2) = \mathcal{G}(0, 1)$.
 - $\sum_{i} G_i x_i$ is obviously zero mean.
 - Its variance is: $\mathbf{E}[(\sum_{i} G_i x_i)^2] = \mathbf{E}[\sum_{i} x_i^2] = ||\mathbf{x}||^2 = 1.$
- By sampling $(\sum_i G_i x_i)^2$ multiple times, with good probability the average should be around the mean.
- If we multiply x by a $t \times d$ matrix A, whose entries are i.i.d. standard Gaussian variables
 - The resulting random vector $Ax \in \mathbb{R}^t$ has each coordinate drawn from $\mathcal{N}(0, 1)$.

イロン イボン イヨン イヨン 三日

- For $x \in \mathbb{R}^d$ with ||x|| = 1, let G_1, \dots, G_d be i.i.d. from $\mathcal{N}(0, 1)$, then $\sum_i G_i x_i \sim \mathcal{N}(0, ||x||^2) = \mathcal{G}(0, 1)$.
 - $\sum_{i} G_i x_i$ is obviously zero mean.
 - Its variance is: $\mathbf{E}[(\sum_{i} G_i x_i)^2] = \mathbf{E}[\sum_{i} x_i^2] = ||x||^2 = 1.$
- By sampling $(\sum_i G_i x_i)^2$ multiple times, with good probability the average should be around the mean.
- If we multiply x by a $t \times d$ matrix A, whose entries are i.i.d. standard Gaussian variables
 - The resulting random vector $Ax \in \mathbb{R}^t$ has each coordinate drawn from $\mathcal{N}(0, 1)$.
 - The expectation of $||Ax||^2$ is *t*.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

- For $x \in \mathbb{R}^d$ with ||x|| = 1, let G_1, \dots, G_d be i.i.d. from $\mathcal{N}(0, 1)$, then $\sum_i G_i x_i \sim \mathcal{N}(0, ||x||^2) = \mathcal{G}(0, 1)$.
 - $\sum_{i} G_i x_i$ is obviously zero mean.
 - Its variance is: $\mathbf{E}[(\sum_{i} G_i x_i)^2] = \mathbf{E}[\sum_{i} x_i^2] = ||x||^2 = 1.$
- By sampling $(\sum_i G_i x_i)^2$ multiple times, with good probability the average should be around the mean.
- If we multiply x by a $t \times d$ matrix A, whose entries are i.i.d. standard Gaussian variables
 - The resulting random vector $Ax \in \mathbb{R}^t$ has each coordinate drawn from $\mathcal{N}(0, 1)$.
 - The expectation of $||Ax||^2$ is *t*.
 - Let $A' = \frac{1}{\sqrt{t}}A$, then $\mathbf{E}[||A'x||^2] = 1$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

- For $x \in \mathbb{R}^d$ with ||x|| = 1, let G_1, \dots, G_d be i.i.d. from $\mathcal{N}(0, 1)$, then $\sum_i G_i x_i \sim \mathcal{N}(0, ||x||^2) = \mathcal{G}(0, 1)$.
 - $\sum_{i} G_i x_i$ is obviously zero mean.
 - Its variance is: $\mathbf{E}[(\sum_{i} G_i x_i)^2] = \mathbf{E}[\sum_{i} x_i^2] = ||\mathbf{x}||^2 = 1.$
- By sampling $(\sum_i G_i x_i)^2$ multiple times, with good probability the average should be around the mean.
- If we multiply x by a $t \times d$ matrix A, whose entries are i.i.d. standard Gaussian variables
 - The resulting random vector $Ax \in \mathbb{R}^t$ has each coordinate drawn from $\mathcal{N}(0, 1)$.
 - The expectation of $||Ax||^2$ is *t*.
 - Let $A' = \frac{1}{\sqrt{t}}A$, then $\mathbf{E}[||A'x||^2] = 1$.
- We just need to show that the empirical average converges to the expectation fast enough with *t*.

イロン イボン イヨン イヨン 三日

• For each i = 1, ..., t, let Y_i be the i^{th} coordinate of AX.

- For each i = 1, ..., t, let Y_i be the i^{th} coordinate of AX.
- Then Y_i is Gaussian from $\mathcal{N}(0, 1)$.

- For each i = 1, ..., t, let Y_i be the i^{th} coordinate of AX.
- Then Y_i is Gaussian from $\mathcal{N}(0, 1)$.
- Let Y be $\sum_i Y_i^2$, then $\mathbf{E}[Y] = t$.

- 3

- For each i = 1, ..., t, let Y_i be the i^{th} coordinate of AX.
- Then Y_i is Gaussian from $\mathcal{N}(0, 1)$.
- Let Y be $\sum_i Y_i^2$, then $\mathbf{E}[Y] = t$.

$$\Pr\left[\frac{||Ax||}{\sqrt{t}} \ge (1+\epsilon)\right] = \Pr\left[Y \ge (1+\epsilon)^2 t\right]$$
$$= \Pr\left[Y \ge (1+\epsilon)^2 \operatorname{\mathsf{E}}[Y]\right].$$

- For each i = 1, ..., t, let Y_i be the i^{th} coordinate of AX.
- Then Y_i is Gaussian from $\mathcal{N}(0, 1)$.
- Let Y be $\sum_i Y_i^2$, then $\mathbf{E}[Y] = t$.

$$\Pr\left[\frac{||Ax||}{\sqrt{t}} \ge (1+\epsilon)\right] = \Pr\left[Y \ge (1+\epsilon)^2 t\right]$$
$$= \Pr\left[Y \ge (1+\epsilon)^2 \operatorname{\mathsf{E}}[Y]\right].$$

Let's bound $\Pr[Y > \alpha]$ for any α . For any $\lambda > 0$, we have

$$\begin{aligned} \Pr\left[Y \ge \alpha\right] &= \Pr\left[e^{\lambda Y} \ge e^{\lambda \alpha}\right] \\ &\leq \frac{\mathsf{E}[e^{\lambda Y}]}{e^{\lambda \alpha}} = \frac{\prod_i \mathsf{E}[e^{\lambda Y_i^2}]}{e^{\lambda \alpha}}. \end{aligned}$$

-

イロト イヨト イヨト

Moment Generating Function of χ^2 -distributions

If X_1, \cdot, X_k are independent standard normal random variables, then $Q = \sum_i X_i$ is said to be distributed according to the χ^2 -distribution with k degrees of freedom.

イロン 不良 とくほう 不良 とうほう

Moment Generating Function of χ^2 -distributions

If X_1, \cdot, X_k are independent standard normal random variables, then $Q = \sum_i X_i$ is said to be distributed according to the χ^2 -distribution with kdegrees of freedom.

Claim

If
$$X \sim \mathcal{N}(0, 1)$$
, then $\mathbf{E}[e^{\lambda \lambda^2}] = 1/\sqrt{1-2\lambda}$, for $-\infty < \lambda < \frac{1}{2}$.

イロン イボン イヨン イヨン 三日

Moment Generating Function of χ^2 -distributions

If X_1, \cdot, X_k are independent standard normal random variables, then $Q = \sum_i X_i$ is said to be distributed according to the χ^2 -distribution with k degrees of freedom.

Claim

If
$$X \sim \mathcal{N}(0, 1)$$
, then $\mathbf{E}[e^{\lambda \lambda^2}] = 1/\sqrt{1-2\lambda}$, for $-\infty < \lambda < \frac{1}{2}$.

Proof of Claim.

$$\mathbf{E}\left[e^{\lambda X^2}\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\lambda x^2 - \frac{x^2}{2}} dx$$
$$= \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{1 - 2\lambda}} \int e^{-y^2/2} dy = \frac{1}{\sqrt{1 - 2\lambda}}$$

where we substituted $y = \sqrt{1 - 2\lambda}x$.

Finishing Proof of Lemma

$$\Pr\left[Y \ge \alpha\right] \le \frac{\prod_{i} \mathbb{E}[e^{\lambda Y_{i}^{2}}]}{e^{\lambda \alpha}} = (1 - 2\lambda)^{-t/2} e^{-\lambda \alpha}.$$

・ロト ・四ト ・ヨト ・ヨト

Finishing Proof of Lemma

$$\Pr\left[Y \ge \alpha\right] \le \frac{\prod_{i} \mathbb{E}[e^{\lambda Y_{i}^{2}}]}{e^{\lambda \alpha}} = (1 - 2\lambda)^{-t/2} e^{-\lambda \alpha}$$

Now minimize the RHS by setting $\lambda = \frac{1}{2}(1 - \frac{t}{\alpha})$, we obtain $\Pr[Y \ge \alpha] \le e^{(t-\alpha)/2}(t/\alpha)^{-t/2}$. Now let α be $(1 + \epsilon)^2 t$, we get

$$\Pr\left[Y \ge (1+\epsilon)^2 t\right] \le \exp\left(-t(\epsilon + \frac{\epsilon^2}{2} - \ln(1+\epsilon))\right).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Finishing Proof of Lemma

$$\Pr\left[Y \ge \alpha\right] \le \frac{\prod_{i} \mathbf{E}[e^{\lambda Y_{i}^{2}}]}{e^{\lambda \alpha}} = (1 - 2\lambda)^{-t/2} e^{-\lambda \alpha}$$

Now minimize the RHS by setting $\lambda = \frac{1}{2}(1 - \frac{t}{\alpha})$, we obtain $\Pr[Y \ge \alpha] \le e^{(t-\alpha)/2}(t/\alpha)^{-t/2}$. Now let α be $(1 + \epsilon)^2 t$, we get

$$\Pr\left[Y \ge (1+\epsilon)^2 t\right] \le \exp\left(-t(\epsilon + \frac{\epsilon^2}{2} - \ln(1+\epsilon))\right).$$

Using basic calculus, we can show $\ln(1 + \epsilon) \le \epsilon - \frac{\epsilon^2}{4}$ for $\epsilon \in [0, 1]$, so we have

$$\Pr\left[Y \ge (1+\epsilon)^2 t\right] \le e^{-\frac{3}{4}\epsilon^2 t}.$$

<ロ> <同> <同> <日> <同> <日> <同> <日> <同> <日> <同> <日> <日</p>

We performed the proof of Chernoff bound for Gaussian distributions.

- 2

We performed the proof of Chernoff bound for Gaussian distributions.

• Gaussian variables are not bounded, so Chernoff bound does not directly apply.

-

We performed the proof of Chernoff bound for Gaussian distributions.

- Gaussian variables are not bounded, so Chernoff bound does not directly apply.
- The proof we gave though is almost identical to that of Chernoff bound, except for the calculation of the expectation.

• □ ▶ • • • • • • • • •

We performed the proof of Chernoff bound for Gaussian distributions.

- Gaussian variables are not bounded, so Chernoff bound does not directly apply.
- The proof we gave though is almost identical to that of Chernoff bound, except for the calculation of the expectation.

In general, "Chernoff like" bounds hold for distributions with tails smaller than Gaussian. They are known as *sub-Gaussian distributions*.

We performed the proof of Chernoff bound for Gaussian distributions.

- Gaussian variables are not bounded, so Chernoff bound does not directly apply.
- The proof we gave though is almost identical to that of Chernoff bound, except for the calculation of the expectation.

In general, "Chernoff like" bounds hold for distributions with tails smaller than Gaussian. They are known as *sub-Gaussian distributions*.

