Johnson-Lindenstrauss Transform

Learning Goals

@ Concept of dimensenality reduction

o Correctly state the procedure and guarantee of Johnson-Lindenstrauss
transform

@ Proof idea of JL-transform
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Dimensionality Reduction

e Data points can often live in very high dimensions

e Images
e Vector representation of articles
e Vector representation of words

@ Many algorithms are very slow when run on high dimensional input
o Curse of dimensionality

e Dimensionality reduction: Transform data to lower dimensions while
preserving information useful for analysis/application
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Johnson-Lindenstrauss

o Distances between data points are often meaningful

e For x € RY, the ¢, norm of x is

1/2

d
Ixll = | D%
i=1

For x,y € R, ||x — y|| is their £,-distance, or Euclidean distance.

@ The Johnson-Lindenstrauss transform is a randomized dimensionality
reduction algorithm that approximately preserves Euclidean distances.
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JL Statement

Theorem (Johnson-Lindenstrauss)

For arbitrary x1, .. ., x, € RY, and any € € (0, 1), there is t = O(log n/€?)
such that there are y1, . . ., y, € R! with
(1=l < llyll < (T +llxll,
(=9l = xpll < lly; =yl < O+l = xill, Vi J-

Moreover, y1, . .., yn can be computed in polynomial time.




Johnson-Lindenstrauss Transform

Main Lemma

Distributional JL For any €, 6 € (0, 1], there is a t = O(log(1/8)/€*) and a
random linear map f : RY — R, such that, for any v € R with ||v|| = 1,
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Main Lemma

Lemma

Distributional JL For any €, 6 € (0, 1], there is a t = O(log(1/8)/€*) and a
random linear map f : RY — R, such that, for any v € R with ||v|| = 1,

I
Vit

Pr[1—e§ §1+6]Z1—25.

Proof of Theorem using Lemma.

Consider W = {x1,..., x5} U{xi — x; : i < j}. Note |W| < n*. Take
§ = 1/n’. For each w € W, consider v = ﬁ Consider the event

o= {00 v} = {0 ¢ ).

Each such event occurs w.p. < 24. By the union bound, the probability that
none of these happen is > 1|W/|-2§ > 1— 2. O
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Gaussian Distribution

e For a random variable X, its cumulative distribution function (CDF) is
Fx(x) = Pr[X < x].
o Example: For X uniformly distributed on [0, 1], F(x) = x, for x € [0, 1].
@ For a continuous random variable, the probability density function
(PDF) is fx(x) == & Fx(x).
o For X uniformly distributed on [0, 1], f(x) = 1 for x € [0, 1].
@ A random variable is drawn from Gaussian distribution (or Normal
distribution) N'(u, o) if its PDF is

_0 2T

o In particular, the standard normal distribution has PDF ¢(x) =
o If X ~N(0,1), then o X + p ~ N(u, 0?).
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Properties of Gaussian Distribution

Linear combinations of independent Gaussian variables are still Gaussian.

AX]

Fact: The moment generating function E[e*"] of a random variable X

uniquely determines its CDF.

Proof of Theorem.

We show only the zero mean case. For X ~ A(0, 0?),

o0 -I X2
E [e)‘x} :/ exp ( —=—= + Ax | dx
0o OV 2T 202

2y2
ea)\/z 0

1 2 22
e 20N dx = %7 .

oVv2T J_so

So for independent X ~ N(0,0%), Y ~ N(0,03),
E[c*X+Y)] = E[eMX] - E[e}Y] = eloi1oD)X/2, O
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Idea of JL

o For x € R? with ||x|| = 1, let G, - - - , Gq be i.i.d. from A/(0, 1), then
22 Gixi ~ N0, [|x]]?) = G(0,1).
e Y . G;x; is obviously zero mean.
o ltsvariance is: E[(3; Gix;)?] = E[>_, x?] = ||x||* = 1.
e By sampling (3, Gix;)? multiple times, with good probability the
average should be around the mean.
o If we multiply x by a t x d matrix A, whose entries are i.i.d. standard
Gaussian variables
o The resulting random vector Ax € R! has each coordinate drawn from

N(0,1).
o The expectation of ||Ax||? is t.
o Let A = LA then E[||A'x||?] = 1.

t
@ We just need to show that the empirical average converges to the

expectation fast enough with ¢.
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Proof of Lemma

@ Foreachi=1,...,t, let Y; be the it" coordinate of AX.
@ Then Y; is Gaussian from N(0, 1).
o Let Y be ) Y then E[Y] =t.

> (1 —I—e)} =Pr [Y > (1+¢€)t]

=Pr[Y>(1+¢)E[Y]].

Let’s bound Pr[Y > o] for any a. For any A > 0, we have

Pr[Y>a]=Pr {e” > e’\o‘}

E[¢"] _ IIE[e"]
< = .
— e)\a e/\a
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Moment Generating Function of x2-distributions

If X1, -, Xy are independent standard normal random variables, then
Q = >, X; is said to be distributed according to the x?-distribution with k
degrees of freedom.

If X NN(O, 1),then E[CAXZ] = ]/\/] — 2\, for—oc0o < A < %

] September 28,2023 10/12



Johnson-Lindenstrauss Transform

Moment Generating Function of x2-distributions

If X1, -, Xy are independent standard normal random variables, then
Q= ZiX; is said to be distributed according to the x2-distribution with k
degrees of freedom.

If X ~ N(0, 1), then E[e*X"] = 1/1/T— 2, for —00 < A < 1.

Proof of Claim.

E [ ,\xz] 1 [ ey
e = — e X
V2T )

V2T /1 =2 V1 =2\
where we substituted y = /1 — 2\x. Ol
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Finishing Proof of Lemma

E[eMY7
Pr[Y >a] < % = (1—2\)"2e e,
e

Now minimize the RHS by setting A = 7(1 — %), we obtain
Pr[Y > o] < elt=0)/2(t/a)~1/2,
Now let a be (1 + €)?t, we get

PrY > (1+¢€)’t] <exp <—t(e+ 622 —In(1+ e))) .
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Finishing Proof of Lemma

Hi E[e”"2

Priy > o] < = l_ (1—2))" 2,

Now minimize the RHS by setting A = 7(1 — %), we obtain

Pr[Y > o] < elt=0)/2(t/a)~1/2,
Now let a be (1 + €)?t, we get

PrY > (1+¢€)’t] <exp <—t(e+ 622 —In(1+ e))) .

Using basic calculus, we can show In(1+¢€) < e — % for e € [0, 1], so we
have

Priy>(1+¢)t] < e 19,
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High-Dimensional
Probability

Roman Vershynin
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