Markov Inequality

Learning Goals

State the condition Markov inequality

Understand distributions for which Markov inequality is tight

Define perfect hashing
@ Implementation and proof of perfect hashing

@ Understand the method of amplification by independent trials
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Concentration Inqualities

e Often it is not enough to estimate the expectation of a random
variable, but to say that with good probability its value is not far from
the expectation.

@ Such a phenomenon is called concentration.

@ Tools that upper bound the probability with which a random variable
deviates far from its expectation are known as concentration
inequalities or tail bounds.
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Theorem (Markov Inequality)

If X is a random variable that takes nonnegative value with probability 1, then
forany a > 1,

PrX > aE[X]] < é

Proof.

Let Y be the indicator variable for X > a E[X].
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Markov Inequality

Theorem (Markov Inequality)

If X is a random variable that takes nonnegative value with probability 1, then
forany a > 1,

PrX > aE[X]] < é

Proof.

Let Y be the indicator variable for X > « E[X]. Then

Pr[X2E[X]]=Pr[Y=1]=E[Y]§E[ X ]: !

oE[X]| o

O]
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Remarks

@ Markov inequality can be understood as: a nonnegative random
variable deviates from its expectation by a constant factor with at most
constant probability.

e Equivalently, the theorem can be stated as Pr[X > q] <k ] for any
a>o0.
o Stated this way, the inequality has bite only for a > E[X].

o Note the condition that X must be a nonnegative random variable.
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Essence of Markov Inequality

@ Essence of the proof: among distributions having the same Pr[X > d],
which one minimizes E[X]?

@ Answer: when X < a, X should be 0; when X > a, X should be a.

@ The distribution for which Markov inequality tight is a two-point
distribution.

e With this intuition, it is not difficult to prove the following corollary:

Corollary (Reverse Markov Inequality)
If X is a random variable that is never larger than a, then for any b < a,

a— E[X]

Pr[X < b] <
rix<h <=
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Application: Perfect Hashing

Definition

A hash function h: U — {0,...,m — 1} is perfect on S C U if FiND(x) for
every x € S takes O(1) time.

@ Recall: to store a dataset of n entries, if we sample from a universal
hash family, it suffices to have a hash table of size m = ©(n), so that
each element has O(1) collisions in expectation.

o It does not follow immediately that there exists an h € H under which
every element has only O(1) collisions.

o In fact, with an “ideal hash”, i.e., that sends every element in U
uniformly at random to {0, ..., m — 1}, for m = n, w.h.p. the worst
bucket has ©(log n/ log log n) collisions.
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Low Collision with More Space

o First let’s relax the problem: with how much space (not necessarily
O(n)) do we know how to hash with low collision?

Let H be a universal hash family from U to {0, ..., m}, then forany S C U
with |S| = n < \/m, for a random h from H, with probability at least %,
there is no collision under h.

Proof.

| N\

By definition of universal hashing, for every x # y in S,
Prylh(x) = h(y)] < L.
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Low Collision with More Space

o First let’s relax the problem: with how much space (not necessarily
O(n)) do we know how to hash with low collision?

Let H be a universal hash family from U to {0, ..., m}, then forany S C U
with |S| = n < \/m, for a random h from H, with probability at least %,
there is no collision under h.

By definition of universal hashing, for every x # y in S,

Prinlh(x) = h(y)] < 7.
By the union bound, the probability that any collision happens is at most

1 1
Dtyesm < T m< 3 0

”
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Perfect Hashing in O(n) Space

e Is it possible to have perfect hashing with m = O(n)?

@ This is not an easy question, and remained open for many years. We
present the first solution, given by Fredman, Komlés and Szemerédi
(1982).

@ Main idea: use two levels of hashing.

o Let A[-] be the array for the first level hash, and h be a hash function
from Uto {0,...,n— 1}.

e Foreachi=0,...,n— 1, let n; be the number of collisions in that
bucket. Set up a hash table B; of size n?, and a perfect hash function
mapping U to {0,...,n* — 1}.

e When looking up x, we first find its position in the first level. Let j be
h(x). Then we look up B;[h;(x)].
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[llustration: Perfect Hashing

Keys First Level Hash h Second Level Hash h;
8 L]
www.paidu.com 1 )

. www.fuhuthu.com 2
www.taobao.com

www.bilibili.com

(

www.wechat.com
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Space Calculation

@ The resulting hash function is obviously perfect. The remaining
question is whether we satisfy the space constraint.

e We need h to satisfy >_.n? = O(n).

Let h be sampled uniformly at random from a universal hash function family
mapping U to {0, ..., n— 1}. Let n; be |h~'(i)|, the number of elements
mapped to i by h. Then Pr[y_,; n? < 4n] > 1.

Game plan: we first show that E[Y. n?] is no more than 2n. Then the
conclusion follows from Markov inequality.
For x # y in S, let C, be the indicator variable for the event that x clashes

with y under h, then E[C,,] < 1 by universality.
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Proof of Lemma (Cont.)

Key observation: 35, mf = n+ 3, cs3° e () Cxy-
To see this, let S; be h™'(i), then 3 ¢ zye s\(x) G = ni(ni = 1).
= Z Zy;éx Xy — Z ZXES Zy;éx Xy — ini(ni = 1)
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Proof of Lemma (Cont.)

Key observation: )", n 2 =n—+ ers zyes\{x} Cyy-

To see this, let S; be h™ 1(l) then - 6. > es\ix} Gy = ni(mi — 1)
=D x Zy;éx Xy = Di 2oxes; Zy;éx Xy = é ni(nj — 1).

Now we can bound

Z Z Cyy < n(n—1)-

XxES yeS\{x}

S|=

Therefore E[Y_; n?] < 2n. O
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Amplification by Repeated Trial

How do we make use of the lemma?

Each time we sample an h, we satisfy the space requirement with
probability at least %

@ We can check if we succeed in polynomial time. If not, we simply try
again.
o After k trials, we succeed with probability 1 — zik
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