Learning Goals

- State the condition Markov inequality
- Understand distributions for which Markov inequality is tight
- Define perfect hashing
- Implementation and proof of perfect hashing
- Understand the method of amplification by independent trials

Concentration Inqualities

• Often it is not enough to estimate the expectation of a random variable, but to say that with good probability its value is not far from the expectation.

• • • • • • • • • • • • •

Concentration Inqualities

- Often it is not enough to estimate the expectation of a random variable, but to say that with good probability its value is not far from the expectation.
- Such a phenomenon is called *concentration*.

Concentration Inqualities

- Often it is not enough to estimate the expectation of a random variable, but to say that with good probability its value is not far from the expectation.
- Such a phenomenon is called *concentration*.
- Tools that upper bound the probability with which a random variable deviates far from its expectation are known as *concentration inequalities* or *tail bounds*.

Markov Inequality

Theorem (Markov Inequality)

If X is a random variable that takes nonnegative value with probability 1, then for any $\alpha > 1$,

$$\Pr\left[X \ge \alpha \operatorname{\mathsf{E}}\left[X\right]\right] \le \frac{1}{\alpha}.$$

イロト イロト イヨト イ

Markov Inequality

Theorem (Markov Inequality)

If X is a random variable that takes nonnegative value with probability 1, then for any $\alpha > 1$,

$$\Pr\left[X \ge \alpha \operatorname{\mathsf{E}}\left[X\right]\right] \le \frac{1}{\alpha}.$$

Proof.

Let *Y* be the indicator variable for $X \ge \alpha \mathbf{E}[X]$.

• □ ▶ • • □ ▶ • • □ ▶

Markov Inequality

Theorem (Markov Inequality)

If X is a random variable that takes nonnegative value with probability 1, then for any $\alpha > 1$,

 $\Pr\left[X \ge \alpha \operatorname{\mathsf{E}}\left[X\right]\right] \le \frac{1}{\alpha}.$

Proof.

Let *Y* be the indicator variable for $X \ge \alpha \mathbf{E}[X]$. Then

$$\Pr\left[X \ge \mathbf{E}\left[X\right]\right] = \Pr\left[Y = 1\right] = \mathbf{E}\left[Y\right] \le \mathbf{E}\left[\frac{X}{\alpha \mathbf{E}[X]}\right] = \frac{1}{\alpha}$$

イロト イヨト イヨト イ

• Markov inequality can be understood as: a nonnegative random variable deviates from its expectation by a constant factor with at most constant probability.

< □ > < □ > < □ > < □ > <

- Markov inequality can be understood as: a nonnegative random variable deviates from its expectation by a constant factor with at most constant probability.
- Equivalently, the theorem can be stated as $\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$ for any a > 0.

- Markov inequality can be understood as: a nonnegative random variable deviates from its expectation by a constant factor with at most constant probability.
- Equivalently, the theorem can be stated as $\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$ for any a > 0.
 - Stated this way, the inequality has bite only for $a > \mathbf{E}[X]$.

- Markov inequality can be understood as: a nonnegative random variable deviates from its expectation by a constant factor with at most constant probability.
- Equivalently, the theorem can be stated as $\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$ for any a > 0.
 - Stated this way, the inequality has bite only for $a > \mathbf{E}[X]$.
- Note the condition that *X* must be a nonnegative random variable.

• Essence of the proof: among distributions having the same **Pr**[*X* > *a*], which one minimizes **E**[*X*]?

- Essence of the proof: among distributions having the same $\Pr[X > a]$, which one minimizes $\mathbb{E}[X]$?
- Answer: when X < a, X should be 0; when $X \ge a$, X should be a.

- Essence of the proof: among distributions having the same $\Pr[X > a]$, which one minimizes $\mathbb{E}[X]$?
- Answer: when X < a, X should be 0; when $X \ge a$, X should be a.
- The distribution for which Markov inequality tight is a two-point distribution.

- Essence of the proof: among distributions having the same $\Pr[X > a]$, which one minimizes $\mathbb{E}[X]$?
- Answer: when X < a, X should be 0; when $X \ge a$, X should be a.
- The distribution for which Markov inequality tight is a two-point distribution.
- With this intuition, it is not difficult to prove the following corollary:

Corollary (Reverse Markov Inequality)

If X is a random variable that is never larger than a, then for any b < a,

$$\Pr\left[X \le b\right] \le \frac{a - \mathsf{E}[X]}{a - b}.$$

Definition

A hash function $h: U \to \{0, ..., m-1\}$ is *perfect* on $S \subseteq U$ if FIND(x) for every $x \in S$ takes O(1) time.

Definition

A hash function $h: U \to \{0, ..., m-1\}$ is *perfect* on $S \subseteq U$ if FIND(x) for every $x \in S$ takes O(1) time.

• Recall: to store a dataset of *n* entries, if we sample from a universal hash family, it suffices to have a hash table of size $m = \Theta(n)$, so that each element has O(1) collisions in expectation.

イロト イヨト イヨト イヨト

Definition

A hash function $h: U \to \{0, ..., m-1\}$ is *perfect* on $S \subseteq U$ if FIND(x) for every $x \in S$ takes O(1) time.

- Recall: to store a dataset of *n* entries, if we sample from a universal hash family, it suffices to have a hash table of size $m = \Theta(n)$, so that each element has O(1) collisions in expectation.
- It does not follow immediately that there exists an $h \in H$ under which every element has only O(1) collisions.

イロト イヨト イヨト イヨト

Definition

A hash function $h: U \to \{0, ..., m-1\}$ is *perfect* on $S \subseteq U$ if FIND(x) for every $x \in S$ takes O(1) time.

- Recall: to store a dataset of *n* entries, if we sample from a universal hash family, it suffices to have a hash table of size $m = \Theta(n)$, so that each element has O(1) collisions in expectation.
- It does not follow immediately that there exists an $h \in H$ under which every element has only O(1) collisions.
 - In fact, with an "ideal hash", i.e., that sends every element in U uniformly at random to {0,..., m − 1}, for m = n, w.h.p. the worst bucket has Θ(log n/ log log n) collisions.

・ロト ・ ア・ ・ ア・ ・ ア・ ア

• First let's relax the problem: with how much space (not necessarily O(n)) do we know how to hash with low collision?

< ロ > < 同 > < 臣 > < 臣

• First let's relax the problem: with how much space (not necessarily O(n)) do we know how to hash with low collision?

Claim

Let *H* be a universal hash family from *U* to $\{0, ..., m\}$, then for any $S \subseteq U$ with $|S| = n \leq \sqrt{m}$, for a random *h* from *H*, with probability at least $\frac{1}{2}$, there is no collision under *h*.

• First let's relax the problem: with how much space (not necessarily O(n)) do we know how to hash with low collision?

Claim

Let *H* be a universal hash family from *U* to $\{0, ..., m\}$, then for any $S \subseteq U$ with $|S| = n \le \sqrt{m}$, for a random *h* from *H*, with probability at least $\frac{1}{2}$, there is no collision under *h*.

Proof.

By definition of universal hashing, for every $x \neq y$ in *S*, $\Pr_{h \sim H}[h(x) = h(y)] \leq \frac{1}{m}$.

イロト イロト イヨト イヨト

• First let's relax the problem: with how much space (not necessarily O(n)) do we know how to hash with low collision?

Claim

Let *H* be a universal hash family from *U* to $\{0, ..., m\}$, then for any $S \subseteq U$ with $|S| = n \le \sqrt{m}$, for a random *h* from *H*, with probability at least $\frac{1}{2}$, there is no collision under *h*.

Proof.

By definition of universal hashing, for every $x \neq y$ in *S*, $\mathbf{Pr}_{h \sim H}[h(x) = h(y)] \leq \frac{1}{m}$. By the union bound, the probability that any collision happens is at most $\sum_{x \neq y \in S} \frac{1}{m} < \frac{n^2}{2} \cdot \frac{1}{m} \leq \frac{1}{2}$.

◆□▶ ◆圖▶ ◆厘▶ ◆厘≯

• Is it possible to have perfect hashing with m = O(n)?

- Is it possible to have perfect hashing with m = O(n)?
- This is not an easy question, and remained open for many years. We present the first solution, given by Fredman, Komlós and Szemerédi (1982).

< ロト < 同ト < ヨト < ヨ

- Is it possible to have perfect hashing with m = O(n)?
- This is not an easy question, and remained open for many years. We present the first solution, given by Fredman, Komlós and Szemerédi (1982).
- Main idea: use two levels of hashing.

• □ ▶ • • • • • • • • •

- Is it possible to have perfect hashing with m = O(n)?
- This is not an easy question, and remained open for many years. We present the first solution, given by Fredman, Komlós and Szemerédi (1982).
- Main idea: use two levels of hashing.
 - Let $A[\cdot]$ be the array for the first level hash, and h be a hash function from U to $\{0, \ldots, n-1\}$.

- Is it possible to have perfect hashing with m = O(n)?
- This is not an easy question, and remained open for many years. We present the first solution, given by Fredman, Komlós and Szemerédi (1982).
- Main idea: use two levels of hashing.
 - Let $A[\cdot]$ be the array for the first level hash, and *h* be a hash function from *U* to $\{0, \ldots, n-1\}$.
 - For each *i* = 0,..., *n* − 1, let *n_i* be the number of collisions in that bucket. Set up a hash table *B_i* of size *n_i²*, and a *perfect* hash function mapping *U* to {0,..., *n_i²* − 1}.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

- Is it possible to have perfect hashing with m = O(n)?
- This is not an easy question, and remained open for many years. We present the first solution, given by Fredman, Komlós and Szemerédi (1982).
- Main idea: use two levels of hashing.
 - Let A[·] be the array for the first level hash, and h be a hash function from U to {0,..., n − 1}.
 - For each *i* = 0,..., *n* − 1, let *n_i* be the number of collisions in that bucket. Set up a hash table *B_i* of size *n_i²*, and a *perfect* hash function mapping *U* to {0,..., *n_i²* − 1}.
 - When looking up x, we first find its position in the first level. Let j be h(x). Then we look up $B_j[h_j(x)]$.

<ロ> (四) (四) (三) (三) (三)

Illustration: Perfect Hashing

ъ

・ロト ・ 日 ・ ・ ヨ ・

• The resulting hash function is obviously perfect. The remaining question is whether we satisfy the space constraint.

イロト イロト イヨト イヨト

- The resulting hash function is obviously perfect. The remaining question is whether we satisfy the space constraint.
- We need *h* to satisfy $\sum_{i} n_i^2 = O(n)$.

• The resulting hash function is obviously perfect. The remaining question is whether we satisfy the space constraint.

• We need *h* to satisfy
$$\sum_i n_i^2 = O(n)$$
.

Lemma

Let *h* be sampled uniformly at random from a universal hash function family mapping U to $\{0, ..., n-1\}$. Let n_i be $|h^{-1}(i)|$, the number of elements mapped to *i* by *h*. Then $\Pr[\sum_i n_i^2 \le 4n] \ge \frac{1}{2}$.

• The resulting hash function is obviously perfect. The remaining question is whether we satisfy the space constraint.

• We need *h* to satisfy
$$\sum_i n_i^2 = O(n)$$
.

Lemma

Let h be sampled uniformly at random from a universal hash function family mapping U to $\{0, ..., n-1\}$. Let n_i be $|h^{-1}(i)|$, the number of elements mapped to i by h. Then $\Pr[\sum_i n_i^2 \le 4n] \ge \frac{1}{2}$.

Proof.

Game plan: we first show that $\mathbf{E}[\sum_{i} n_{i}^{2}]$ is no more than 2*n*. Then the conclusion follows from Markov inequality.

• □ ▶ • 60 ▶ • 3 ≥ ▶

• The resulting hash function is obviously perfect. The remaining question is whether we satisfy the space constraint.

• We need *h* to satisfy
$$\sum_i n_i^2 = O(n)$$
.

Lemma

Let *h* be sampled uniformly at random from a universal hash function family mapping U to $\{0, ..., n-1\}$. Let n_i be $|h^{-1}(i)|$, the number of elements mapped to *i* by *h*. Then $\Pr[\sum_i n_i^2 \le 4n] \ge \frac{1}{2}$.

Proof.

Game plan: we first show that $\mathbf{E}[\sum_{i} n_{i}^{2}]$ is no more than 2*n*. Then the conclusion follows from Markov inequality. For $x \neq y$ in *S*, let C_{xy} be the indicator variable for the event that *x* clashes with *y* under *h*, then $\mathbf{E}[C_{xy}] \leq \frac{1}{n}$ by universality.

Proof.

Key observation:
$$\sum_{i} n_i^2 = n + \sum_{x \in S} \sum_{y \in S \setminus \{x\}} C_{xy}$$
.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ シ ● ○ Q ○ September 7, 2023 11/12

Proof.

Key observation:
$$\sum_{i} n_i^2 = n + \sum_{x \in S} \sum_{y \in S \setminus \{x\}} C_{xy}$$
.
To see this, let S_i be $h^{-1}(i)$, then $\sum_{x \in S_i} \sum_{y \in S \setminus \{x\}} C_{xy} = n_i(n_i - 1)$.

ъ

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

Proof.

Key observation:
$$\sum_{i} n_{i}^{2} = n + \sum_{x \in S} \sum_{y \in S \setminus \{x\}} C_{xy}$$
.
To see this, let S_{i} be $h^{-1}(i)$, then $\sum_{x \in S_{i}} \sum_{y \in S \setminus \{x\}} C_{xy} = n_{i}(n_{i} - 1)$.
 $\Rightarrow \sum_{x} \sum_{y \neq x} C_{xy} = \sum_{i} \sum_{x \in S_{i}} \sum_{y \neq x} C_{xy} = \sum_{i} n_{i}(n_{i} - 1)$.

ъ

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

Proof.

Key observation:
$$\sum_{i} n_{i}^{2} = n + \sum_{x \in S} \sum_{y \in S \setminus \{x\}} C_{xy}$$
.
To see this, let S_{i} be $h^{-1}(i)$, then $\sum_{x \in S_{i}} \sum_{y \in S \setminus \{x\}} C_{xy} = n_{i}(n_{i} - 1)$.
 $\Rightarrow \sum_{x} \sum_{y \neq x} C_{xy} = \sum_{i} \sum_{x \in S_{i}} \sum_{y \neq x} C_{xy} = \sum_{i} n_{i}(n_{i} - 1)$.
Now we can bound

$$\mathsf{E}\left[\sum_{x\in\mathcal{S}}\sum_{y\in\mathcal{S}\setminus\{x\}}\right]C_{xy}\leq n(n-1)\cdot\frac{1}{n}\leq n.$$

September 7, 2023 11 / 12

ъ

・ロト ・ 四ト ・ ヨト ・ ヨト

Proof.

Key observation:
$$\sum_{i} n_{i}^{2} = n + \sum_{x \in S} \sum_{y \in S \setminus \{x\}} C_{xy}$$
.
To see this, let S_{i} be $h^{-1}(i)$, then $\sum_{x \in S_{i}} \sum_{y \in S \setminus \{x\}} C_{xy} = n_{i}(n_{i} - 1)$.
 $\Rightarrow \sum_{x} \sum_{y \neq x} C_{xy} = \sum_{i} \sum_{x \in S_{i}} \sum_{y \neq x} C_{xy} = \sum_{i} n_{i}(n_{i} - 1)$.
Now we can bound

$$\mathbf{E}\left[\sum_{x\in S}\sum_{y\in S\setminus\{x\}}\right]C_{xy}\leq n(n-1)\cdot\frac{1}{n}\leq n.$$

Therefore $\mathbf{E}[\sum_{i} n_i^2] \leq 2n$.

<ロ> (日) (日) (日) (日) (日)

• How do we make use of the lemma?

э

(日)

- How do we make use of the lemma?
- Each time we sample an *h*, we satisfy the space requirement with probability at least $\frac{1}{2}$.

• • • • • • • • • • • • •

- How do we make use of the lemma?
- Each time we sample an *h*, we satisfy the space requirement with probability at least $\frac{1}{2}$.
- We can check if we succeed in polynomial time. If not, we simply try again.

- How do we make use of the lemma?
- Each time we sample an *h*, we satisfy the space requirement with probability at least $\frac{1}{2}$.
- We can check if we succeed in polynomial time. If not, we simply try again.
- After *k* trials, we succeed with probability $1 \frac{1}{2^k}$.