Learning Goals

- State the condition Markov inequality
- Understand distributions for which Markov inequality is tight
- Define perfect hashing
- Implementation and proof of perfect hashing
- Understand the method of amplification by independent trials

Concentration Inqualities

- Often it is not enough to estimate the expectation of a random variable, but to say that with good probability its value is not far from the expectation.

Concentration Inqualities

- Often it is not enough to estimate the expectation of a random variable, but to say that with good probability its value is not far from the expectation.
- Such a phenomenon is called concentration.

Concentration Inqualities

- Often it is not enough to estimate the expectation of a random variable, but to say that with good probability its value is not far from the expectation.
- Such a phenomenon is called concentration.
- Tools that upper bound the probability with which a random variable deviates far from its expectation are known as concentration inequalities or tail bounds.

Markov Inequality

Theorem (Markov Inequality)

If X is a random variable that takes nonnegative value with probability 1 , then for any $\alpha>1$,

$$
\operatorname{Pr}[X \geq \alpha \mathbf{E}[X]] \leq \frac{1}{\alpha}
$$

Markov Inequality

Theorem (Markov Inequality)

If X is a random variable that takes nonnegative value with probability 1 , then for any $\alpha>1$,

$$
\operatorname{Pr}[X \geq \alpha \mathbf{E}[X]] \leq \frac{1}{\alpha}
$$

Proof.

Let Y be the indicator variable for $X \geq \alpha \mathbf{E}[X]$.

Markov Inequality

Theorem (Markov Inequality)

If X is a random variable that takes nonnegative value with probability 1 , then for any $\alpha>1$,

$$
\operatorname{Pr}[X \geq \alpha \mathbf{E}[X]] \leq \frac{1}{\alpha}
$$

Proof.

Let Y be the indicator variable for $X \geq \alpha \mathbf{E}[X]$. Then

$$
\operatorname{Pr}[X \geq \mathbf{E}[X]]=\operatorname{Pr}[Y=1]=\mathbf{E}[Y] \leq \mathbf{E}\left[\frac{X}{\alpha \mathbf{E}[X]}\right]=\frac{1}{\alpha} .
$$

Remarks

- Markov inequality can be understood as: a nonnegative random variable deviates from its expectation by a constant factor with at most constant probability.

Remarks

- Markov inequality can be understood as: a nonnegative random variable deviates from its expectation by a constant factor with at most constant probability.
- Equivalently, the theorem can be stated as $\operatorname{Pr}[X \geq a] \leq \frac{\mathrm{E}[X]}{a}$ for any $a>0$.

Remarks

- Markov inequality can be understood as: a nonnegative random variable deviates from its expectation by a constant factor with at most constant probability.
- Equivalently, the theorem can be stated as $\operatorname{Pr}[X \geq a] \leq \frac{\mathrm{E}[X]}{a}$ for any $a>0$.
- Stated this way, the inequality has bite only for $a>\mathbf{E}[X]$.

Remarks

- Markov inequality can be understood as: a nonnegative random variable deviates from its expectation by a constant factor with at most constant probability.
- Equivalently, the theorem can be stated as $\operatorname{Pr}[X \geq a] \leq \frac{\mathrm{E}[X]}{a}$ for any $a>0$.
- Stated this way, the inequality has bite only for $a>\mathbf{E}[X]$.
- Note the condition that X must be a nonnegative random variable.

Essence of Markov Inequality

- Essence of the proof: among distributions having the same $\operatorname{Pr}[X>a]$, which one minimizes $\mathbf{E}[X]$?

Essence of Markov Inequality

- Essence of the proof: among distributions having the same $\operatorname{Pr}[X>a]$, which one minimizes $\mathbf{E}[X]$?
- Answer: when $X<a, X$ should be 0 ; when $X \geq a, X$ should be a.

Essence of Markov Inequality

- Essence of the proof: among distributions having the same $\operatorname{Pr}[X>a]$, which one minimizes $\mathbf{E}[X]$?
- Answer: when $X<a, X$ should be 0 ; when $X \geq a, X$ should be a.
- The distribution for which Markov inequality tight is a two-point distribution.

Essence of Markov Inequality

- Essence of the proof: among distributions having the same $\operatorname{Pr}[X>a]$, which one minimizes $\mathbf{E}[X]$?
- Answer: when $X<a, X$ should be 0 ; when $X \geq a, X$ should be a.
- The distribution for which Markov inequality tight is a two-point distribution.
- With this intuition, it is not difficult to prove the following corollary:

Corollary (Reverse Markov Inequality)

If X is a random variable that is never larger than a, then for any $b<a$,

$$
\operatorname{Pr}[X \leq b] \leq \frac{a-\mathbf{E}[X]}{a-b}
$$

Application: Perfect Hashing

Definition

A hash function $h: U \rightarrow\{0, \ldots, m-1\}$ is perfect on $S \subseteq U$ if $\operatorname{Find}(x)$ for every $x \in S$ takes $O(1)$ time.

Application: Perfect Hashing

Definition

A hash function $h: U \rightarrow\{0, \ldots, m-1\}$ is perfect on $S \subseteq U$ if $\operatorname{Find}(x)$ for every $x \in S$ takes $O(1)$ time.

- Recall: to store a dataset of n entries, if we sample from a universal hash family, it suffices to have a hash table of size $m=\Theta(n)$, so that each element has $O(1)$ collisions in expectation.

Application: Perfect Hashing

Definition

A hash function $h: U \rightarrow\{0, \ldots, m-1\}$ is perfect on $S \subseteq U$ if $\operatorname{Find}(x)$ for every $x \in S$ takes $O(1)$ time.

- Recall: to store a dataset of n entries, if we sample from a universal hash family, it suffices to have a hash table of size $m=\Theta(n)$, so that each element has $O(1)$ collisions in expectation.
- It does not follow immediately that there exists an $h \in H$ under which every element has only $O(1)$ collisions.

Application: Perfect Hashing

Definition

A hash function $h: U \rightarrow\{0, \ldots, m-1\}$ is perfect on $S \subseteq U$ if $\operatorname{Find}(x)$ for every $x \in S$ takes $O(1)$ time.

- Recall: to store a dataset of n entries, if we sample from a universal hash family, it suffices to have a hash table of size $m=\Theta(n)$, so that each element has $O(1)$ collisions in expectation.
- It does not follow immediately that there exists an $h \in H$ under which every element has only $O(1)$ collisions.
- In fact, with an "ideal hash", i.e., that sends every element in U uniformly at random to $\{0, \ldots, m-1\}$, for $m=n$, w.h.p. the worst bucket has $\Theta(\log n / \log \log n)$ collisions.

Low Collision with More Space

- First let's relax the problem: with how much space (not necessarily $O(n)$) do we know how to hash with low collision?

Low Collision with More Space

- First let's relax the problem: with how much space (not necessarily $O(n)$) do we know how to hash with low collision?

Claim

Let H be a universal hash family from U to $\{0, \ldots, m\}$, then for any $S \subseteq U$ with $|S|=n \leq \sqrt{m}$, for a random h from H, with probability at least $\frac{1}{2}$, there is no collision under h.

Low Collision with More Space

- First let's relax the problem: with how much space (not necessarily $O(n)$) do we know how to hash with low collision?

Claim

Let H be a universal hash family from U to $\{0, \ldots, m\}$, then for any $S \subseteq U$ with $|S|=n \leq \sqrt{m}$, for a random h from H, with probability at least $\frac{1}{2}$, there is no collision under h.

Proof.

By definition of universal hashing, for every $x \neq y$ in S, $\operatorname{Pr}_{h \sim H}[h(x)=h(y)] \leq \frac{1}{m}$.

Low Collision with More Space

- First let's relax the problem: with how much space (not necessarily $O(n)$) do we know how to hash with low collision?

Claim

Let H be a universal hash family from U to $\{0, \ldots, m\}$, then for any $S \subseteq U$ with $|S|=n \leq \sqrt{m}$, for a random h from H, with probability at least $\frac{1}{2}$, there is no collision under h.

Proof.

By definition of universal hashing, for every $x \neq y$ in S,
$\operatorname{Pr}_{h \sim H}[h(x)=h(y)] \leq \frac{1}{m}$.
By the union bound, the probability that any collision happens is at most $\sum_{x \neq y \in S} \frac{1}{m}<\frac{n^{2}}{2} \cdot \frac{1}{m} \leq \frac{1}{2}$.

Perfect Hashing in $O(n)$ Space

- Is it possible to have perfect hashing with $m=O(n)$?

Perfect Hashing in $O(n)$ Space

- Is it possible to have perfect hashing with $m=O(n)$?
- This is not an easy question, and remained open for many years. We present the first solution, given by Fredman, Komlós and Szemerédi (1982).

Perfect Hashing in $O(n)$ Space

- Is it possible to have perfect hashing with $m=O(n)$?
- This is not an easy question, and remained open for many years. We present the first solution, given by Fredman, Komlós and Szemerédi (1982).
- Main idea: use two levels of hashing.

Perfect Hashing in $O(n)$ Space

- Is it possible to have perfect hashing with $m=O(n)$?
- This is not an easy question, and remained open for many years. We present the first solution, given by Fredman, Komlós and Szemerédi (1982).
- Main idea: use two levels of hashing.
- Let $A[\cdot]$ be the array for the first level hash, and h be a hash function from U to $\{0, \ldots, n-1\}$.

Perfect Hashing in $O(n)$ Space

- Is it possible to have perfect hashing with $m=O(n)$?
- This is not an easy question, and remained open for many years. We present the first solution, given by Fredman, Komlós and Szemerédi (1982).
- Main idea: use two levels of hashing.
- Let $A[\cdot]$ be the array for the first level hash, and h be a hash function from U to $\{0, \ldots, n-1\}$.
- For each $i=0, \ldots, n-1$, let n_{i} be the number of collisions in that bucket. Set up a hash table B_{i} of size n_{i}^{2}, and a perfect hash function mapping U to $\left\{0, \ldots, n_{i}^{2}-1\right\}$.

Perfect Hashing in $O(n)$ Space

- Is it possible to have perfect hashing with $m=O(n)$?
- This is not an easy question, and remained open for many years. We present the first solution, given by Fredman, Komlós and Szemerédi (1982).
- Main idea: use two levels of hashing.
- Let $A[\cdot]$ be the array for the first level hash, and h be a hash function from U to $\{0, \ldots, n-1\}$.
- For each $i=0, \ldots, n-1$, let n_{i} be the number of collisions in that bucket. Set up a hash table B_{i} of size n_{i}^{2}, and a perfect hash function mapping U to $\left\{0, \ldots, n_{i}^{2}-1\right\}$.
- When looking up x, we first find its position in the first level. Let j be $h(x)$. Then we look up $B_{j}\left[h_{j}(x)\right]$.

Illustration: Perfect Hashing

Space Calculation

- The resulting hash function is obviously perfect. The remaining question is whether we satisfy the space constraint.

Space Calculation

- The resulting hash function is obviously perfect. The remaining question is whether we satisfy the space constraint.
- We need h to satisfy $\sum_{i} n_{i}^{2}=O(n)$.

Space Calculation

- The resulting hash function is obviously perfect. The remaining question is whether we satisfy the space constraint.
- We need h to satisfy $\sum_{i} n_{i}^{2}=O(n)$.

Lemma

Let h be sampled uniformly at random from a universal hash function family mapping U to $\{0, \ldots, n-1\}$. Let n_{i} be $\left|h^{-1}(i)\right|$, the number of elements mapped to i by h. Then $\operatorname{Pr}\left[\sum_{i} n_{i}^{2} \leq 4 n\right] \geq \frac{1}{2}$.

Space Calculation

- The resulting hash function is obviously perfect. The remaining question is whether we satisfy the space constraint.
- We need h to satisfy $\sum_{i} n_{i}^{2}=O(n)$.

Lemma

Let h be sampled uniformly at random from a universal hash function family mapping U to $\{0, \ldots, n-1\}$. Let n_{i} be $\left|h^{-1}(i)\right|$, the number of elements mapped to i by h. Then $\operatorname{Pr}\left[\sum_{i} n_{i}^{2} \leq 4 n\right] \geq \frac{1}{2}$.

Proof.

Game plan: we first show that $\mathbf{E}\left[\sum_{i} n_{i}^{2}\right]$ is no more than $2 n$. Then the conclusion follows from Markov inequality.

Space Calculation

- The resulting hash function is obviously perfect. The remaining question is whether we satisfy the space constraint.
- We need h to satisfy $\sum_{i} n_{i}^{2}=O(n)$.

Lemma

Let h be sampled uniformly at random from a universal hash function family mapping U to $\{0, \ldots, n-1\}$. Let n_{i} be $\left|h^{-1}(i)\right|$, the number of elements mapped to i by h. Then $\operatorname{Pr}\left[\sum_{i} n_{i}^{2} \leq 4 n\right] \geq \frac{1}{2}$.

Proof.

Game plan: we first show that $\mathbf{E}\left[\sum_{i} n_{i}^{2}\right]$ is no more than $2 n$. Then the conclusion follows from Markov inequality.
For $x \neq y$ in S, let $C_{x y}$ be the indicator variable for the event that x clashes with y under h, then $\mathbf{E}\left[C_{x y}\right] \leq \frac{1}{n}$ by universality.

Proof of Lemma (Cont.)

Proof.

Key observation: $\sum_{i} n_{i}^{2}=n+\sum_{x \in S} \sum_{y \in S \backslash\{x\}} C_{x y}$.

Proof of Lemma (Cont.)

Proof.

Key observation: $\sum_{i} n_{i}^{2}=n+\sum_{x \in S} \sum_{y \in S \backslash\{x\}} C_{x y}$.
To see this, let S_{i} be $h^{-1}(i)$, then $\sum_{x \in S_{i}} \sum_{y \in S \backslash\{x\}} C_{x y}=n_{i}\left(n_{i}-1\right)$.

Proof of Lemma (Cont.)

Proof.

Key observation: $\sum_{i} n_{i}^{2}=n+\sum_{x \in S} \sum_{y \in S \backslash\{x\}} C_{x y}$.
To see this, let S_{i} be $h^{-1}(i)$, then $\sum_{x \in S_{i}} \sum_{y \in S \backslash\{x\}} C_{x y}=n_{i}\left(n_{i}-1\right)$.
$\Rightarrow \sum_{x} \sum_{y \neq x} C_{x y}=\sum_{i} \sum_{x \in s_{i}} \sum_{y \neq x} C_{x y}=\sum_{i} n_{i}\left(n_{i}-1\right)$.

Proof of Lemma (Cont.)

Proof.

Key observation: $\sum_{i} n_{i}^{2}=n+\sum_{x \in S} \sum_{y \in S \backslash\{x\}} C_{x y}$.
To see this, let S_{i} be $h^{-1}(i)$, then $\sum_{x \in S_{i}} \sum_{y \in S \backslash\{x\}} C_{x y}=n_{i}\left(n_{i}-1\right)$.
$\Rightarrow \sum_{x} \sum_{y \neq x} C_{x y}=\sum_{i} \sum_{x \in s_{i}} \sum_{y \neq x} C_{x y}=\sum_{i} n_{i}\left(n_{i}-1\right)$.
Now we can bound

$$
\mathbf{E}\left[\sum_{x \in S} \sum_{y \in S \backslash\{x\}}\right] C_{x y} \leq n(n-1) \cdot \frac{1}{n} \leq n .
$$

Proof of Lemma (Cont.)

Proof.

Key observation: $\sum_{i} n_{i}^{2}=n+\sum_{x \in S} \sum_{y \in S \backslash\{x\}} C_{x y}$.
To see this, let S_{i} be $h^{-1}(i)$, then $\sum_{x \in S_{i}} \sum_{y \in S \backslash\{x\}} C_{x y}=n_{i}\left(n_{i}-1\right)$.
$\Rightarrow \sum_{x} \sum_{y \neq x} C_{x y}=\sum_{i} \sum_{x \in S_{i}} \sum_{y \neq x} C_{x y}=\sum_{i} n_{i}\left(n_{i}-1\right)$.
Now we can bound

$$
\mathbf{E}\left[\sum_{x \in S} \sum_{y \in S \backslash\{x\}}\right] C_{x y} \leq n(n-1) \cdot \frac{1}{n} \leq n
$$

Therefore $\mathbf{E}\left[\sum_{i} n_{i}^{2}\right] \leq 2 n$.

Amplification by Repeated Trial

- How do we make use of the lemma?

Amplification by Repeated Trial

- How do we make use of the lemma?
- Each time we sample an h, we satisfy the space requirement with probability at least $\frac{1}{2}$.

Amplification by Repeated Trial

- How do we make use of the lemma?
- Each time we sample an h, we satisfy the space requirement with probability at least $\frac{1}{2}$.
- We can check if we succeed in polynomial time. If not, we simply try again.

Amplification by Repeated Trial

- How do we make use of the lemma?
- Each time we sample an h, we satisfy the space requirement with probability at least $\frac{1}{2}$.
- We can check if we succeed in polynomial time. If not, we simply try again.
- After k trials, we succeed with probability $1-\frac{1}{2^{k}}$.

