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• Similarity estimation arises in many big data applications

• Find near-duplicate documents/webpages to remove redundancy

• Detect pirated files

• How do we define and compute/estimate similarity?
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• An article may be represented by the set of words it contains

• Such a representation is high-dimensional but sparse

• Def.  The Jaccard similarity between two sets  and  is , denoted 

as .

S T
|S ∩ T |
|S ∪ T |

SIM(S, T)

• We consider  very similar if  for some threshold .S, T SIM(S, T) ≥ α α

• Is there a quick way to estimate ?SIM(S, T)
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• Let the vocabulary be .[n] := {1,…, n}

• For a permutation  on  and , define σ [n] S ⊆ [n] σmin(S) := min
i∈S

σ(i)

Lemma.  For , if  is a random permutation of , then S, T ⊆ [n] σ [n] ℙ[σmin(S) = σmin(T)] =
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|S ∪ T |

= SIM(S, T)

• A data structure that estimates Jaccard similarity:

• Take  random permutations  of ℓ σ1, …, σℓ [n]

• For each record , store S ⊆ [n] (σ1
min(S), ⋯, σℓ

min(S))

To estimate , output SIM(S, T)
|{i : σi

min(S) = σi
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How large should  be for 
-approximation w.p. ?

ℓ (1 ± ϵ)
1 − δ
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• Storing random permutations and computing  is expensiveσmin(S)

• Recurring idea: use pseudo-randomness (e.g. from hash families)

• Let  be the set of permutations of .  Sn [n]

• Think of the definition of -wise independent hash familiesk

Def. [Broder, Charikar, Frieze, Mitzenmacher] A family  is a minwise independent family of permutations 

if for every  and any , for  sampled uniformly from , .

ℱ ⊆ Sn

S ⊆ [n] a ∈ S σ ℱ ℙ[σmin(S) = σ(a)] =
1

|S |

Minwise independent families suffice for estimation of Jaccard similarity. 

Minwise independent families of size  exist (  )4n ≪ |Sn | = n!

Any minwise independent 
family has size e(1−o(1))n
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if for every  and any , for  sampled uniformly from , .

ℱ ⊆ Sn

S ⊆ [n] a ∈ S σ ℱ ℙ[σmin(S) = σ(a)] =
1
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Thm. [Indyk] Let  be a -wise independent hash family from  to , with , then  is a  

minwise independent family of permutations for .

ℋ t [n] [n] t = Ω(log
1
ϵ

) ℋ (ϵ, k)

k = O(ϵn)

How do you use minwise independent family to sample near-uniformly from the distinct elements in a 
streaming input?
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Angular Distance

• Two vectors in  may be considered similar if they point roughly the same 
direction

ℝd

• For , let , where  is the angle between  

and 

u, v ∈ ℝd dist(u, v) :=
θ(u, v)

π
θ(u, v) u

v

• If  are unit vectors, then u, v cos(θ(u, v)) = u ⋅ v

• Similarity between  is u, v 1 − dist(u, v)
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• Can we estimate the similarity without computing the full inner product?

• Say we have a data set v1, … . , vn ∈ ℝd

• Idea [Charikar]: use random projection!

• Pick random direction (unit vector) r ∈ ℝd

• For each , let vi hr(vi) := sign(r ⋅ vi)

Lemma.  For ,  u, v ∈ ℝd ℙ[hr(u) = hr(v)] =
θ(u, v)

π
Proof: The projection of  onto the plane spanned 
by  is again a random direction.

r
u, v

• SimHash: a data structure that estimates angular similarity:

• Take  random directions ℓ r1, …, rℓ ∈ ℝd

• For each record , store the -tuple vi ℓ (hr1
(vi), ⋯, hrℓ

(vi))

Recall: how do we sample 
a random direction in ?ℝd



SimHash was showcased in this popular book by Jun Wu


