## Similarity Estimation

Hu Fu @SHUFE, 2023.

## Similarity Between Data Points

## Similarity Between Data Points

- Similarity estimation arises in many big data applications


## Similarity Between Data Points

- Similarity estimation arises in many big data applications
- Find near-duplicate documents/webpages to remove redundancy


## Similarity Between Data Points

- Similarity estimation arises in many big data applications
- Find near-duplicate documents/webpages to remove redundancy
- Detect pirated files


## Similarity Between Data Points

- Similarity estimation arises in many big data applications
- Find near-duplicate documents/webpages to remove redundancy
- Detect pirated files
- How do we define and compute/estimate similarity?


## Jaccard Similarity

## Jaccard Similarity

- An article may be represented by the set of words it contains


## Jaccard Similarity

- An article may be represented by the set of words it contains
- Such a representation is high-dimensional but sparse


## Jaccard Similarity

- An article may be represented by the set of words it contains
- Such a representation is high-dimensional but sparse
- Def. The Jaccard similarity between two sets $S$ and $T$ is $\frac{|S \cap T|}{|S \cup T|}$, denoted as $\operatorname{SIM}(S, T)$.


## Jaccard Similarity

- An article may be represented by the set of words it contains
- Such a representation is high-dimensional but sparse
- Def. The Jaccard similarity between two sets $S$ and $T$ is $\frac{|S \cap T|}{|S \cup T|}$, denoted as $\operatorname{SIM}(S, T)$.
- We consider $S, T$ very similar if $\operatorname{SIM}(S, T) \geq \alpha$ for some threshold $\alpha$.


## Jaccard Similarity

- An article may be represented by the set of words it contains
- Such a representation is high-dimensional but sparse
- Def. The Jaccard similarity between two sets $S$ and $T$ is $\frac{|S \cap T|}{|S \cup T|}$, denoted as $\operatorname{SIM}(S, T)$.
- We consider $S, T$ very similar if $\operatorname{SIM}(S, T) \geq \alpha$ for some threshold $\alpha$.
- Is there a quick way to estimate $\operatorname{SIM}(S, T)$ ?

Min Hashing

## Min Hashing

- Let the vocabulary be $[n]:=\{1, \ldots, n\}$.


## Min Hashing

- Let the vocabulary be $[n]:=\{1, \ldots, n\}$.
- For a permutation $\sigma$ on $[n]$ and $S \subseteq[n]$, define $\sigma_{\min }(S):=\min _{i \in S} \sigma(i)$


## Min Hashing

- Let the vocabulary be $[n]:=\{1, \ldots, n\}$.
- For a permutation $\sigma$ on $[n]$ and $S \subseteq[n]$, define $\sigma_{\min }(S):=\min _{i \in S} \sigma(i)$

Lemma. For $S, T \subseteq[n]$, if $\sigma$ is a random permutation of $[n]$, then $\mathbb{P}\left[\sigma_{\min }(S)=\sigma_{\min }(T)\right]=\frac{|S \cap T|}{|S \cup T|}=\operatorname{SIM}(S, T)$

## Min Hashing

- Let the vocabulary be $[n]:=\{1, \ldots, n\}$.
- For a permutation $\sigma$ on $[n]$ and $S \subseteq[n]$, define $\sigma_{\min }(S):=\min _{i \in S} \sigma(i)$

Lemma. For $S, T \subseteq[n]$, if $\sigma$ is a random permutation of $[n]$, then $\mathbb{P}\left[\sigma_{\min }(S)=\sigma_{\min }(T)\right]=\frac{|S \cap T|}{|S \cup T|}=\operatorname{SIM}(S, T)$

- A data structure that estimates Jaccard similarity:


## Min Hashing

- Let the vocabulary be $[n]:=\{1, \ldots, n\}$.
- For a permutation $\sigma$ on $[n]$ and $S \subseteq[n]$, define $\sigma_{\min }(S):=\min _{i \in S} \sigma(i)$

Lemma. For $S, T \subseteq[n]$, if $\sigma$ is a random permutation of $[n]$, then $\mathbb{P}\left[\sigma_{\min }(S)=\sigma_{\min }(T)\right]=\frac{|S \cap T|}{|S \cup T|}=\operatorname{SIM}(S, T)$

- A data structure that estimates Jaccard similarity:
- Take $\ell$ random permutations $\sigma^{1}, \ldots, \sigma^{\ell}$ of $[n]$


## Min Hashing

- Let the vocabulary be $[n]:=\{1, \ldots, n\}$.
- For a permutation $\sigma$ on $[n]$ and $S \subseteq[n]$, define $\sigma_{\min }(S):=\min _{i \in S} \sigma(i)$

Lemma. For $S, T \subseteq[n]$, if $\sigma$ is a random permutation of $[n]$, then $\mathbb{P}\left[\sigma_{\min }(S)=\sigma_{\min }(T)\right]=\frac{|S \cap T|}{|S \cup T|}=\operatorname{SIM}(S, T)$

- A data structure that estimates Jaccard similarity:
- Take $\ell$ random permutations $\sigma^{1}, \ldots, \sigma^{\ell}$ of $[n]$
- For each record $S \subseteq[n]$, store $\left(\sigma_{\text {min }}^{1}(S), \cdots, \sigma_{\min }^{\ell}(S)\right)$


## Min Hashing

- Let the vocabulary be $[n]:=\{1, \ldots, n\}$.
- For a permutation $\sigma$ on $[n]$ and $S \subseteq[n]$, define $\sigma_{\min }(S):=\min _{i \in S} \sigma(i)$

Lemma. For $S, T \subseteq[n]$, if $\sigma$ is a random permutation of $[n]$, then $\mathbb{P}\left[\sigma_{\min }(S)=\sigma_{\min }(T)\right]=\frac{|S \cap T|}{|S \cup T|}=\operatorname{SIM}(S, T)$

- A data structure that estimates Jaccard similarity:
- Take $\ell$ random permutations $\sigma^{1}, \ldots, \sigma^{\ell}$ of $[n]$

To estimate $\operatorname{SIM}(S, T)$, output $\frac{\left|\left\{i: \sigma_{\min }^{i}(S)=\sigma_{\min }^{i}(T)\right\}\right|}{\ell}$

- For each record $S \subseteq[n]$, store $\left(\sigma_{\text {min }}^{1}(S), \cdots, \sigma_{\min }^{\ell}(S)\right)$


## Min Hashing

- Let the vocabulary be $[n]:=\{1, \ldots, n\}$.
- For a permutation $\sigma$ on $[n]$ and $S \subseteq[n]$, define $\sigma_{\min }(S):=\min _{i \in S} \sigma(i)$

Lemma. For $S, T \subseteq[n]$, if $\sigma$ is a random permutation of $[n]$, then $\mathbb{P}\left[\sigma_{\min }(S)=\sigma_{\min }(T)\right]=\frac{|S \cap T|}{|S \cup T|}=\operatorname{SIM}(S, T)$

- A data structure that estimates Jaccard similarity:
- Take $\ell$ random permutations $\sigma^{1}, \ldots, \sigma^{\ell}$ of $[n]$
- For each record $S \subseteq[n]$, store $\left(\sigma_{\text {min }}^{1}(S), \cdots, \sigma_{\text {min }}^{\ell}(S)\right)$

To estimate $\operatorname{SIM}(S, T)$, output $\frac{\left|\left\{i: \sigma_{\min }^{i}(S)=\sigma_{\min }^{i}(T)\right\}\right|}{\ell}$

## Minwise Independent Permutations

## Minwise Independent Permutations

- Storing random permutations and computing $\sigma_{\min }(S)$ is expensive


## Minwise Independent Permutations

- Storing random permutations and computing $\sigma_{\min }(S)$ is expensive
- Recurring idea: use pseudo-randomness (e.g. from hash families)


## Minwise Independent Permutations

- Storing random permutations and computing $\sigma_{\min }(S)$ is expensive
- Recurring idea: use pseudo-randomness (e.g. from hash families)
- Let $S_{n}$ be the set of permutations of [ $n$ ].


## Minwise Independent Permutations

- Storing random permutations and computing $\sigma_{\min }(S)$ is expensive
- Recurring idea: use pseudo-randomness (e.g. from hash families)
- Let $S_{n}$ be the set of permutations of [ $n$ ].
- Think of the definition of $k$-wise independent hash families


## Minwise Independent Permutations

- Storing random permutations and computing $\sigma_{\min }(S)$ is expensive
- Recurring idea: use pseudo-randomness (e.g. from hash families)
- Let $S_{n}$ be the set of permutations of [ $n$ ].
- Think of the definition of $k$-wise independent hash families

Def. [Broder, Charikar, Frieze, Mitzenmacher] A family $\mathscr{F} \subseteq S_{n}$ is a minwise independent family of permutations if for every $S \subseteq[n]$ and any $a \in S$, for $\sigma$ sampled uniformly from $\mathscr{F}, \mathbb{P}\left[\sigma_{\min }(S)=\sigma(a)\right]=\frac{1}{|S|}$.

## Minwise Independent Permutations

- Storing random permutations and computing $\sigma_{\text {min }}(S)$ is expensive
- Recurring idea: use pseudo-randomness (e.g. from hash families)
- Let $S_{n}$ be the set of permutations of [ $n$ ].
- Think of the definition of $k$-wise independent hash families

Def. [Broder, Charikar, Frieze, Mitzenmacher] A family $\mathscr{F} \subseteq S_{n}$ is a minwise independent family of permutations
if for every $S \subseteq[n]$ and any $a \in S$, for $\sigma$ sampled uniformly from $\mathscr{F}, \mathbb{P}\left[\sigma_{\min }(S)=\sigma(a)\right]=\frac{1}{|S|}$.

## Minwise Independent Permutations

- Storing random permutations and computing $\sigma_{\text {min }}(S)$ is expensive
- Recurring idea: use pseudo-randomness (e.g. from hash families)
- Let $S_{n}$ be the set of permutations of [ $n$ ].
- Think of the definition of $k$-wise independent hash families

Def. [Broder, Charikar, Frieze, Mitzenmacher] A family $\mathscr{F} \subseteq S_{n}$ is a minwise independent family of permutations
if for every $S \subseteq[n]$ and any $a \in S$, for $\sigma$ sampled uniformly from $\mathscr{F}, \mathbb{P}\left[\sigma_{\min }(S)=\sigma(a)\right]=\frac{1}{|S|}$.
Minwise independent families suffice for estimation of Jaccard similarity.
Minwise independent families of size $4^{n}$ exist ( $\ll\left|S_{n}\right|=n$ !)

## Minwise Independent Permutations

- Storing random permutations and computing $\sigma_{\text {min }}(S)$ is expensive
- Recurring idea: use pseudo-randomness (e.g. from hash families)
- Let $S_{n}$ be the set of permutations of $[n]$.
- Think of the definition of $k$-wise independent hash families

Def. [Broder, Charikar, Frieze, Mitzenmacher] A family $\mathscr{F} \subseteq S_{n}$ is a minwise independent family of permutations if for every $S \subseteq[n]$ and any $a \in S$, for $\sigma$ sampled uniformly from $\mathscr{F}, \mathbb{P}\left[\sigma_{\min }(S)=\sigma(a)\right]=\frac{1}{|S|}$.

Minwise independent families suffice for estimation of Jaccard similarity.
Any minwise independent
Minwise independent families of size $4^{n}$ exist $\left(\ll\left|S_{n}\right|=n!\right.$ )

## Relaxation

Def. [Broder, Charikar, Frieze, Mitzenmacher] A family $\mathscr{F} \subseteq S_{n}$ is a minwise independent family of permutations if for every $S \subseteq[n]$ and any $a \in S$, for $\sigma$ sampled uniformly from $\mathscr{F}, \mathbb{P}\left[\sigma_{\min }(S)=\sigma(a)\right]=\frac{1}{|S|}$.

Def. [Broder, Charikar, Frieze, Mitzenmacher] A family $\mathscr{F} \subseteq S_{n}$ is a $(\epsilon, k)$ minwise independent family of permutations if for every $S \subseteq[n]$ with $|S| \leq k$ and any $a \in S$, for $\sigma$ sampled uniformly from $\mathscr{F}$,
$\frac{1-\epsilon}{|S|} \leq \mathbb{P}\left[\sigma_{\min }(S)=\sigma(a)\right] \leq \frac{1+\epsilon}{|S|}$.

## Relaxation

Def. [Broder, Charikar, Frieze, Mitzenmacher] A family $\mathscr{F} \subseteq S_{n}$ is a minwise independent family of permutations if for every $S \subseteq[n]$ and any $a \in S$, for $\sigma$ sampled uniformly from $\mathscr{F}, \mathbb{P}\left[\sigma_{\min }(S)=\sigma(a)\right]=\frac{1}{|S|}$.

$$
\begin{aligned}
& \text { Def. [Broder, Charikar, Frieze, Mitzenmacher] A family } \mathscr{F} \subseteq S_{n} \text { is a }(\epsilon, k) \text { minwise independent family of } \\
& \text { permutations if for every } S \subseteq[n] \text { with }|S| \leq k \text { and any } a \in S \text {, for } \sigma \text { sampled uniformly from } \mathscr{F} \text {, } \\
& \frac{1-\epsilon}{|S|} \leq \mathbb{P}\left[\sigma_{\min }(S)=\sigma(a)\right] \leq \frac{1+\epsilon}{|S|}
\end{aligned}
$$

[^0]
## Relaxation

Def. [Broder, Charikar, Frieze, Mitzenmacher] A family $\mathscr{F} \subseteq S_{n}$ is a minwise independent family of permutations if for every $S \subseteq[n]$ and any $a \in S$, for $\sigma$ sampled uniformly from $\mathscr{F}, \mathbb{P}\left[\sigma_{\min }(S)=\sigma(a)\right]=\frac{1}{|S|}$.

Def. [Broder, Charikar, Frieze, Mitzenmacher] A family $\mathscr{F} \subseteq S_{n}$ is a $(\epsilon, k)$ minwise independent family of permutations if for every $S \subseteq[n]$ with $|S| \leq k$ and any $a \in S$, for $\sigma$ sampled uniformly from $\mathscr{F}$,
$\frac{1-\epsilon}{|S|} \leq \mathbb{P}\left[\sigma_{\min }(S)=\sigma(a)\right] \leq \frac{1+\epsilon}{|S|}$
Thm. [Indyk] Let $\mathscr{H}$ be a $t$-wise independent hash family from [ $n$ ] to [ $n$ ], with $t=\Omega\left(\log \frac{1}{\epsilon}\right)$, then $\mathscr{H}$ is a $(\epsilon, k)$
minwise independent family of permutations for $k=O(\epsilon n)$.
How do you use minwise independent family to sample near-uniformly from the distinct elements in a streaming input?

Angular Distance

## Angular Distance

- Two vectors in $\mathbb{R}^{d}$ may be considered similar if they point roughly the same direction


## Angular Distance

- Two vectors in $\mathbb{R}^{d}$ may be considered similar if they point roughly the same direction
- For $u, v \in \mathbb{R}^{d}$, let $\operatorname{dist}(u, v):=\frac{\theta(u, v)}{\pi}$, where $\theta(u, v)$ is the angle between $u$ and $v$


## Angular Distance

- Two vectors in $\mathbb{R}^{d}$ may be considered similar if they point roughly the same direction
- For $u, v \in \mathbb{R}^{d}$, let $\operatorname{dist}(u, v):=\frac{\theta(u, v)}{\pi}$, where $\theta(u, v)$ is the angle between $u$ and $v$
- If $u, v$ are unit vectors, then $\cos (\theta(u, v))=u \cdot v$


## Angular Distance

- Two vectors in $\mathbb{R}^{d}$ may be considered similar if they point roughly the same direction
- For $u, v \in \mathbb{R}^{d}$, let $\operatorname{dist}(u, v):=\frac{\theta(u, v)}{\pi}$, where $\theta(u, v)$ is the angle between $u$ and $v$
- If $u, v$ are unit vectors, then $\cos (\theta(u, v))=u \cdot v$
- Similarity between $u, v$ is $1-\operatorname{dist}(u, v)$


## Sim Hash

## Sim Hash

- Can we estimate the similarity without computing the full inner product?


## Sim Hash

- Can we estimate the similarity without computing the full inner product?
- Say we have a data set $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d}$


## Sim Hash

- Can we estimate the similarity without computing the full inner product?
- Say we have a data set $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d}$
- Idea [Charikar]: use random projection!


## Sim Hash

- Can we estimate the similarity without computing the full inner product?
- Say we have a data set $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d}$
- Idea [Charikar]: use random projection!
- Pick random direction (unit vector) $r \in \mathbb{R}^{d}$


## Sim Hash

- Can we estimate the similarity without computing the full inner product?
- Say we have a data set $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d}$
- Idea [Charikar]: use random projection!
- Pick random direction (unit vector) $r \in \mathbb{R}^{d}$
- For each $v_{i}$, let $h_{r}\left(v_{i}\right):=\operatorname{sign}\left(r \cdot v_{i}\right)$


## Sim Hash

- Can we estimate the similarity without computing the full inner product?
- Say we have a data set $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d}$
- Idea [Charikar]: use random projection!
- Pick random direction (unit vector) $r \in \mathbb{R}^{d}$

Recall: how do we sample a random direction in $\mathbb{R}^{d}$ ?

- For each $v_{i}$, let $h_{r}\left(v_{i}\right):=\operatorname{sign}\left(r \cdot v_{i}\right)$


## Sim Hash

- Can we estimate the similarity without computing the full inner product?
- Say we have a data set $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d}$
- Idea [Charikar]: use random projection!
- Pick random direction (unit vector) $r \in \mathbb{R}^{d}$

Recall: how do we sample a random direction in $\mathbb{R}^{d}$ ?

- For each $v_{i}$, let $h_{r}\left(v_{i}\right):=\operatorname{sign}\left(r \cdot v_{i}\right)$

Lemma. For $u, v \in \mathbb{R}^{d}, \mathbb{P}\left[h_{r}(u)=h_{r}(v)\right]=\frac{\theta(u, v)}{\pi}$

## Sim Hash

- Can we estimate the similarity without computing the full inner product?
- Say we have a data set $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d}$
- Idea [Charikar]: use random projection!
- Pick random direction (unit vector) $r \in \mathbb{R}^{d}$

Recall: how do we sample a random direction in $\mathbb{R}^{d}$ ?

- For each $v_{i}$, let $h_{r}\left(v_{i}\right):=\operatorname{sign}\left(r \cdot v_{i}\right)$

Lemma. For $u, v \in \mathbb{R}^{d}, \mathbb{P}\left[h_{r}(u)=h_{r}(v)\right]=\frac{\theta(u, v)}{\pi}$
Proof: The projection of $r$ onto the plane spanned by $u, v$ is again a random direction.

## Sim Hash

- Can we estimate the similarity without computing the full inner product?
- Say we have a data set $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d}$
- Idea [Charikar]: use random projection!
- Pick random direction (unit vector) $r \in \mathbb{R}^{d}$

Recall: how do we sample a random direction in $\mathbb{R}^{d}$ ?

- For each $v_{i}$, let $h_{r}\left(v_{i}\right):=\operatorname{sign}\left(r \cdot v_{i}\right)$

Lemma. For $u, v \in \mathbb{R}^{d}, \mathbb{P}\left[h_{r}(u)=h_{r}(v)\right]=\frac{\theta(u, v)}{\pi}$

Proof: The projection of $r$ onto the plane spanned by $u, v$ is again a random direction.

- SimHash: a data structure that estimates angular similarity:


## Sim Hash

- Can we estimate the similarity without computing the full inner product?
- Say we have a data set $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d}$
- Idea [Charikar]: use random projection!
- Pick random direction (unit vector) $r \in \mathbb{R}^{d}$

Recall: how do we sample a random direction in $\mathbb{R}^{d}$ ?

- For each $v_{i}$, let $h_{r}\left(v_{i}\right):=\operatorname{sign}\left(r \cdot v_{i}\right)$

Lemma. For $u, v \in \mathbb{R}^{d}, \mathbb{P}\left[h_{r}(u)=h_{r}(v)\right]=\frac{\theta(u, v)}{\pi}$

Proof: The projection of $r$ onto the plane spanned by $u, v$ is again a random direction.

- SimHash: a data structure that estimates angular similarity:
- Take $\ell$ random directions $r^{1}, \ldots, r^{\ell} \in \mathbb{R}^{d}$


## Sim Hash

- Can we estimate the similarity without computing the full inner product?
- Say we have a data set $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d}$
- Idea [Charikar]: use random projection!
- Pick random direction (unit vector) $r \in \mathbb{R}^{d}$

Recall: how do we sample a random direction in $\mathbb{R}^{d}$ ?

- For each $v_{i}$, let $h_{r}\left(v_{i}\right):=\operatorname{sign}\left(r \cdot v_{i}\right)$

Lemma. For $u, v \in \mathbb{R}^{d}, \mathbb{P}\left[h_{r}(u)=h_{r}(v)\right]=\frac{\theta(u, v)}{\pi}$

Proof: The projection of $r$ onto the plane spanned by $u, v$ is again a random direction.

- SimHash: a data structure that estimates angular similarity:
- Take $\ell$ random directions $r^{1}, \ldots, r^{\ell} \in \mathbb{R}^{d}$
- For each record $v_{i}$, store the $\ell$-tuple $\left(h_{r_{1}}\left(v_{i}\right), \cdots, h_{r_{t}}\left(v_{i}\right)\right)$

SimHash was showcased in this popular book by Jun Wu



[^0]:    Thm. [Indyk] Let $\mathscr{H}$ be a $t$-wise independent hash family from $[n]$ to $[n]$, with $t=\Omega\left(\log \frac{1}{\epsilon}\right)$, then $\mathscr{H}$ is a $(\epsilon, k)$ minwise independent family of permutations for $k=O(\epsilon n)$.

