
Hu Fu @SHUFE, 2023.

Similarity Estimation

Similarity Between Data Points

Similarity Between Data Points

• Similarity estimation arises in many big data applications

Similarity Between Data Points

• Similarity estimation arises in many big data applications

• Find near-duplicate documents/webpages to remove redundancy

Similarity Between Data Points

• Similarity estimation arises in many big data applications

• Find near-duplicate documents/webpages to remove redundancy

• Detect pirated files

Similarity Between Data Points

• Similarity estimation arises in many big data applications

• Find near-duplicate documents/webpages to remove redundancy

• Detect pirated files

• How do we define and compute/estimate similarity?

Jaccard Similarity

Jaccard Similarity

• An article may be represented by the set of words it contains

Jaccard Similarity

• An article may be represented by the set of words it contains

• Such a representation is high-dimensional but sparse

Jaccard Similarity

• An article may be represented by the set of words it contains

• Such a representation is high-dimensional but sparse

• Def. The Jaccard similarity between two sets and is , denoted

as .

S T
|S ∩ T |
|S ∪ T |

SIM(S, T)

Jaccard Similarity

• An article may be represented by the set of words it contains

• Such a representation is high-dimensional but sparse

• Def. The Jaccard similarity between two sets and is , denoted

as .

S T
|S ∩ T |
|S ∪ T |

SIM(S, T)

• We consider very similar if for some threshold .S, T SIM(S, T) ≥ α α

Jaccard Similarity

• An article may be represented by the set of words it contains

• Such a representation is high-dimensional but sparse

• Def. The Jaccard similarity between two sets and is , denoted

as .

S T
|S ∩ T |
|S ∪ T |

SIM(S, T)

• We consider very similar if for some threshold .S, T SIM(S, T) ≥ α α

• Is there a quick way to estimate ?SIM(S, T)

Min Hashing

Min Hashing

• Let the vocabulary be .[n] := {1,…, n}

Min Hashing

• Let the vocabulary be .[n] := {1,…, n}

• For a permutation on and , define σ [n] S ⊆ [n] σmin(S) := min
i∈S

σ(i)

Min Hashing

• Let the vocabulary be .[n] := {1,…, n}

• For a permutation on and , define σ [n] S ⊆ [n] σmin(S) := min
i∈S

σ(i)

Lemma. For , if is a random permutation of , then S, T ⊆ [n] σ [n] ℙ[σmin(S) = σmin(T)] =
|S ∩ T |
|S ∪ T |

= SIM(S, T)

Min Hashing

• Let the vocabulary be .[n] := {1,…, n}

• For a permutation on and , define σ [n] S ⊆ [n] σmin(S) := min
i∈S

σ(i)

Lemma. For , if is a random permutation of , then S, T ⊆ [n] σ [n] ℙ[σmin(S) = σmin(T)] =
|S ∩ T |
|S ∪ T |

= SIM(S, T)

• A data structure that estimates Jaccard similarity:

Min Hashing

• Let the vocabulary be .[n] := {1,…, n}

• For a permutation on and , define σ [n] S ⊆ [n] σmin(S) := min
i∈S

σ(i)

Lemma. For , if is a random permutation of , then S, T ⊆ [n] σ [n] ℙ[σmin(S) = σmin(T)] =
|S ∩ T |
|S ∪ T |

= SIM(S, T)

• A data structure that estimates Jaccard similarity:

• Take random permutations of ℓ σ1, …, σℓ [n]

Min Hashing

• Let the vocabulary be .[n] := {1,…, n}

• For a permutation on and , define σ [n] S ⊆ [n] σmin(S) := min
i∈S

σ(i)

Lemma. For , if is a random permutation of , then S, T ⊆ [n] σ [n] ℙ[σmin(S) = σmin(T)] =
|S ∩ T |
|S ∪ T |

= SIM(S, T)

• A data structure that estimates Jaccard similarity:

• Take random permutations of ℓ σ1, …, σℓ [n]

• For each record , store S ⊆ [n] (σ1
min(S), ⋯, σℓ

min(S))

Min Hashing

• Let the vocabulary be .[n] := {1,…, n}

• For a permutation on and , define σ [n] S ⊆ [n] σmin(S) := min
i∈S

σ(i)

Lemma. For , if is a random permutation of , then S, T ⊆ [n] σ [n] ℙ[σmin(S) = σmin(T)] =
|S ∩ T |
|S ∪ T |

= SIM(S, T)

• A data structure that estimates Jaccard similarity:

• Take random permutations of ℓ σ1, …, σℓ [n]

• For each record , store S ⊆ [n] (σ1
min(S), ⋯, σℓ

min(S))

To estimate , output SIM(S, T)
|{i : σi

min(S) = σi
min(T)} |

ℓ

Min Hashing

• Let the vocabulary be .[n] := {1,…, n}

• For a permutation on and , define σ [n] S ⊆ [n] σmin(S) := min
i∈S

σ(i)

Lemma. For , if is a random permutation of , then S, T ⊆ [n] σ [n] ℙ[σmin(S) = σmin(T)] =
|S ∩ T |
|S ∪ T |

= SIM(S, T)

• A data structure that estimates Jaccard similarity:

• Take random permutations of ℓ σ1, …, σℓ [n]

• For each record , store S ⊆ [n] (σ1
min(S), ⋯, σℓ

min(S))

To estimate , output SIM(S, T)
|{i : σi

min(S) = σi
min(T)} |

ℓ

How large should be for
-approximation w.p. ?

ℓ (1 ± ϵ)
1 − δ

Minwise Independent Permutations

Minwise Independent Permutations

• Storing random permutations and computing is expensiveσmin(S)

Minwise Independent Permutations

• Storing random permutations and computing is expensiveσmin(S)

• Recurring idea: use pseudo-randomness (e.g. from hash families)

Minwise Independent Permutations

• Storing random permutations and computing is expensiveσmin(S)

• Recurring idea: use pseudo-randomness (e.g. from hash families)

• Let be the set of permutations of . Sn [n]

Minwise Independent Permutations

• Storing random permutations and computing is expensiveσmin(S)

• Recurring idea: use pseudo-randomness (e.g. from hash families)

• Let be the set of permutations of . Sn [n]

• Think of the definition of -wise independent hash familiesk

Minwise Independent Permutations

• Storing random permutations and computing is expensiveσmin(S)

• Recurring idea: use pseudo-randomness (e.g. from hash families)

• Let be the set of permutations of . Sn [n]

• Think of the definition of -wise independent hash familiesk

Def. [Broder, Charikar, Frieze, Mitzenmacher] A family is a minwise independent family of permutations

if for every and any , for sampled uniformly from , .

ℱ ⊆ Sn

S ⊆ [n] a ∈ S σ ℱ ℙ[σmin(S) = σ(a)] =
1

|S |

Minwise Independent Permutations

• Storing random permutations and computing is expensiveσmin(S)

• Recurring idea: use pseudo-randomness (e.g. from hash families)

• Let be the set of permutations of . Sn [n]

• Think of the definition of -wise independent hash familiesk

Def. [Broder, Charikar, Frieze, Mitzenmacher] A family is a minwise independent family of permutations

if for every and any , for sampled uniformly from , .

ℱ ⊆ Sn

S ⊆ [n] a ∈ S σ ℱ ℙ[σmin(S) = σ(a)] =
1

|S |

Minwise independent families suffice for estimation of Jaccard similarity.

Minwise Independent Permutations

• Storing random permutations and computing is expensiveσmin(S)

• Recurring idea: use pseudo-randomness (e.g. from hash families)

• Let be the set of permutations of . Sn [n]

• Think of the definition of -wise independent hash familiesk

Def. [Broder, Charikar, Frieze, Mitzenmacher] A family is a minwise independent family of permutations

if for every and any , for sampled uniformly from , .

ℱ ⊆ Sn

S ⊆ [n] a ∈ S σ ℱ ℙ[σmin(S) = σ(a)] =
1

|S |

Minwise independent families suffice for estimation of Jaccard similarity.

Minwise independent families of size exist ()4n ≪ |Sn | = n!

Minwise Independent Permutations

• Storing random permutations and computing is expensiveσmin(S)

• Recurring idea: use pseudo-randomness (e.g. from hash families)

• Let be the set of permutations of . Sn [n]

• Think of the definition of -wise independent hash familiesk

Def. [Broder, Charikar, Frieze, Mitzenmacher] A family is a minwise independent family of permutations

if for every and any , for sampled uniformly from , .

ℱ ⊆ Sn

S ⊆ [n] a ∈ S σ ℱ ℙ[σmin(S) = σ(a)] =
1

|S |

Minwise independent families suffice for estimation of Jaccard similarity.

Minwise independent families of size exist ()4n ≪ |Sn | = n!

Any minwise independent
family has size e(1−o(1))n

Relaxation

Def. [Broder, Charikar, Frieze, Mitzenmacher] A family is a minwise independent family of
permutations if for every with and any , for sampled uniformly from ,

.

ℱ ⊆ Sn (ϵ, k)
S ⊆ [n] |S | ≤ k a ∈ S σ ℱ

1 − ϵ
|S |

≤ ℙ[σmin(S) = σ(a)] ≤
1 + ϵ
|S |

Def. [Broder, Charikar, Frieze, Mitzenmacher] A family is a minwise independent family of permutations

if for every and any , for sampled uniformly from , .

ℱ ⊆ Sn

S ⊆ [n] a ∈ S σ ℱ ℙ[σmin(S) = σ(a)] =
1

|S |

Relaxation

Def. [Broder, Charikar, Frieze, Mitzenmacher] A family is a minwise independent family of
permutations if for every with and any , for sampled uniformly from ,

.

ℱ ⊆ Sn (ϵ, k)
S ⊆ [n] |S | ≤ k a ∈ S σ ℱ

1 − ϵ
|S |

≤ ℙ[σmin(S) = σ(a)] ≤
1 + ϵ
|S |

Def. [Broder, Charikar, Frieze, Mitzenmacher] A family is a minwise independent family of permutations

if for every and any , for sampled uniformly from , .

ℱ ⊆ Sn

S ⊆ [n] a ∈ S σ ℱ ℙ[σmin(S) = σ(a)] =
1

|S |

Thm. [Indyk] Let be a -wise independent hash family from to , with , then is a

minwise independent family of permutations for .

ℋ t [n] [n] t = Ω(log
1
ϵ

) ℋ (ϵ, k)

k = O(ϵn)

Relaxation

Def. [Broder, Charikar, Frieze, Mitzenmacher] A family is a minwise independent family of
permutations if for every with and any , for sampled uniformly from ,

.

ℱ ⊆ Sn (ϵ, k)
S ⊆ [n] |S | ≤ k a ∈ S σ ℱ

1 − ϵ
|S |

≤ ℙ[σmin(S) = σ(a)] ≤
1 + ϵ
|S |

Def. [Broder, Charikar, Frieze, Mitzenmacher] A family is a minwise independent family of permutations

if for every and any , for sampled uniformly from , .

ℱ ⊆ Sn

S ⊆ [n] a ∈ S σ ℱ ℙ[σmin(S) = σ(a)] =
1

|S |

Thm. [Indyk] Let be a -wise independent hash family from to , with , then is a

minwise independent family of permutations for .

ℋ t [n] [n] t = Ω(log
1
ϵ

) ℋ (ϵ, k)

k = O(ϵn)

How do you use minwise independent family to sample near-uniformly from the distinct elements in a
streaming input?

Angular Distance

Angular Distance

• Two vectors in may be considered similar if they point roughly the same
direction

ℝd

Angular Distance

• Two vectors in may be considered similar if they point roughly the same
direction

ℝd

• For , let , where is the angle between

and

u, v ∈ ℝd dist(u, v) :=
θ(u, v)

π
θ(u, v) u

v

Angular Distance

• Two vectors in may be considered similar if they point roughly the same
direction

ℝd

• For , let , where is the angle between

and

u, v ∈ ℝd dist(u, v) :=
θ(u, v)

π
θ(u, v) u

v

• If are unit vectors, then u, v cos(θ(u, v)) = u ⋅ v

Angular Distance

• Two vectors in may be considered similar if they point roughly the same
direction

ℝd

• For , let , where is the angle between

and

u, v ∈ ℝd dist(u, v) :=
θ(u, v)

π
θ(u, v) u

v

• If are unit vectors, then u, v cos(θ(u, v)) = u ⋅ v

• Similarity between is u, v 1 − dist(u, v)

Sim Hash

Sim Hash

• Can we estimate the similarity without computing the full inner product?

Sim Hash

• Can we estimate the similarity without computing the full inner product?

• Say we have a data set v1, … . , vn ∈ ℝd

Sim Hash

• Can we estimate the similarity without computing the full inner product?

• Say we have a data set v1, … . , vn ∈ ℝd

• Idea [Charikar]: use random projection!

Sim Hash

• Can we estimate the similarity without computing the full inner product?

• Say we have a data set v1, … . , vn ∈ ℝd

• Idea [Charikar]: use random projection!

• Pick random direction (unit vector) r ∈ ℝd

Sim Hash

• Can we estimate the similarity without computing the full inner product?

• Say we have a data set v1, … . , vn ∈ ℝd

• Idea [Charikar]: use random projection!

• Pick random direction (unit vector) r ∈ ℝd

• For each , let vi hr(vi) := sign(r ⋅ vi)

Sim Hash

• Can we estimate the similarity without computing the full inner product?

• Say we have a data set v1, … . , vn ∈ ℝd

• Idea [Charikar]: use random projection!

• Pick random direction (unit vector) r ∈ ℝd

• For each , let vi hr(vi) := sign(r ⋅ vi)

Recall: how do we sample
a random direction in ?ℝd

Sim Hash

• Can we estimate the similarity without computing the full inner product?

• Say we have a data set v1, … . , vn ∈ ℝd

• Idea [Charikar]: use random projection!

• Pick random direction (unit vector) r ∈ ℝd

• For each , let vi hr(vi) := sign(r ⋅ vi)

Lemma. For , u, v ∈ ℝd ℙ[hr(u) = hr(v)] =
θ(u, v)

π

Recall: how do we sample
a random direction in ?ℝd

Sim Hash

• Can we estimate the similarity without computing the full inner product?

• Say we have a data set v1, … . , vn ∈ ℝd

• Idea [Charikar]: use random projection!

• Pick random direction (unit vector) r ∈ ℝd

• For each , let vi hr(vi) := sign(r ⋅ vi)

Lemma. For , u, v ∈ ℝd ℙ[hr(u) = hr(v)] =
θ(u, v)

π
Proof: The projection of onto the plane spanned
by is again a random direction.

r
u, v

Recall: how do we sample
a random direction in ?ℝd

Sim Hash

• Can we estimate the similarity without computing the full inner product?

• Say we have a data set v1, … . , vn ∈ ℝd

• Idea [Charikar]: use random projection!

• Pick random direction (unit vector) r ∈ ℝd

• For each , let vi hr(vi) := sign(r ⋅ vi)

Lemma. For , u, v ∈ ℝd ℙ[hr(u) = hr(v)] =
θ(u, v)

π
Proof: The projection of onto the plane spanned
by is again a random direction.

r
u, v

• SimHash: a data structure that estimates angular similarity:

Recall: how do we sample
a random direction in ?ℝd

Sim Hash

• Can we estimate the similarity without computing the full inner product?

• Say we have a data set v1, … . , vn ∈ ℝd

• Idea [Charikar]: use random projection!

• Pick random direction (unit vector) r ∈ ℝd

• For each , let vi hr(vi) := sign(r ⋅ vi)

Lemma. For , u, v ∈ ℝd ℙ[hr(u) = hr(v)] =
θ(u, v)

π
Proof: The projection of onto the plane spanned
by is again a random direction.

r
u, v

• SimHash: a data structure that estimates angular similarity:

• Take random directions ℓ r1, …, rℓ ∈ ℝd

Recall: how do we sample
a random direction in ?ℝd

Sim Hash

• Can we estimate the similarity without computing the full inner product?

• Say we have a data set v1, … . , vn ∈ ℝd

• Idea [Charikar]: use random projection!

• Pick random direction (unit vector) r ∈ ℝd

• For each , let vi hr(vi) := sign(r ⋅ vi)

Lemma. For , u, v ∈ ℝd ℙ[hr(u) = hr(v)] =
θ(u, v)

π
Proof: The projection of onto the plane spanned
by is again a random direction.

r
u, v

• SimHash: a data structure that estimates angular similarity:

• Take random directions ℓ r1, …, rℓ ∈ ℝd

• For each record , store the -tuple vi ℓ (hr1
(vi), ⋯, hrℓ

(vi))

Recall: how do we sample
a random direction in ?ℝd

SimHash was showcased in this popular book by Jun Wu

