
Skip List

Learning Goals

Understand the design idea of skip lists

Carry out more involved probabilistic runtime analysis using Cherno�

bound and union bound

Understand the idea of SkipNet in Peer-to-Peer systems

September 24, 2023 1 / 12



Skip List

Skip List

Problem with storing ordered data with linked list: Find takes O(n)
time.

Imagine building faster links among the nodes:

At the bo�om level L0, we have the original linked list, sorted;

One level above, at L1, we have a linked list storing every other node,

also sorted, with bn/2c nodes;

One level above, at L2, we have a linked list storing every four node from

L0, or every other node from L1, also sorted, with bn/4c nodes, etc..

Each copy of a node v in Li stores pointers to v’s copies in Li−1 and Li+1

(if they exist), and also the predecessor and successor in Li .

September 24, 2023 2 / 12



Skip List

Skip List

Problem with storing ordered data with linked list: Find takes O(n)
time.

Imagine building faster links among the nodes:

At the bo�om level L0, we have the original linked list, sorted;

One level above, at L1, we have a linked list storing every other node,

also sorted, with bn/2c nodes;

One level above, at L2, we have a linked list storing every four node from

L0, or every other node from L1, also sorted, with bn/4c nodes, etc..

Each copy of a node v in Li stores pointers to v’s copies in Li−1 and Li+1

(if they exist), and also the predecessor and successor in Li .

September 24, 2023 2 / 12



Skip List

Skip List

Problem with storing ordered data with linked list: Find takes O(n)
time.

Imagine building faster links among the nodes:

At the bo�om level L0, we have the original linked list, sorted;

One level above, at L1, we have a linked list storing every other node,

also sorted, with bn/2c nodes;

One level above, at L2, we have a linked list storing every four node from

L0, or every other node from L1, also sorted, with bn/4c nodes, etc..

Each copy of a node v in Li stores pointers to v’s copies in Li−1 and Li+1

(if they exist), and also the predecessor and successor in Li .

September 24, 2023 2 / 12



Skip List

Skip List

Problem with storing ordered data with linked list: Find takes O(n)
time.

Imagine building faster links among the nodes:

At the bo�om level L0, we have the original linked list, sorted;

One level above, at L1, we have a linked list storing every other node,

also sorted, with bn/2c nodes;

One level above, at L2, we have a linked list storing every four node from

L0, or every other node from L1, also sorted, with bn/4c nodes, etc..

Each copy of a node v in Li stores pointers to v’s copies in Li−1 and Li+1

(if they exist), and also the predecessor and successor in Li .

September 24, 2023 2 / 12



Skip List

Skip List: Illustration

Image credit: Mike Lam at James Madison University

September 24, 2023 3 / 12



Skip List

Find in Skip List

Now Find takes time O(log n).
The highest level is LH , where H = dlog ne.

To find a key x , first walk in LH as far as we can, stopping at the largest

value in LH still less than x ;

Then walk down one level, and continue walking in level LH−1 until we

find again the largest key in LH−1 smaller than x ;

Repeat, until we reach the node with x in level L0.

We may keep only the keys in levels other than L0, and store the actual

content only in nodes of L0.

Problem: Insert and Delete take time O(n) if we were to keep the

structures.

September 24, 2023 4 / 12



Skip List

Find in Skip List

Now Find takes time O(log n).
The highest level is LH , where H = dlog ne.
To find a key x , first walk in LH as far as we can, stopping at the largest

value in LH still less than x ;

Then walk down one level, and continue walking in level LH−1 until we

find again the largest key in LH−1 smaller than x ;

Repeat, until we reach the node with x in level L0.

We may keep only the keys in levels other than L0, and store the actual

content only in nodes of L0.

Problem: Insert and Delete take time O(n) if we were to keep the

structures.

September 24, 2023 4 / 12



Skip List

Find in Skip List

Now Find takes time O(log n).
The highest level is LH , where H = dlog ne.
To find a key x , first walk in LH as far as we can, stopping at the largest

value in LH still less than x ;

Then walk down one level, and continue walking in level LH−1 until we

find again the largest key in LH−1 smaller than x ;

Repeat, until we reach the node with x in level L0.

We may keep only the keys in levels other than L0, and store the actual

content only in nodes of L0.

Problem: Insert and Delete take time O(n) if we were to keep the

structures.

September 24, 2023 4 / 12



Skip List

Find in Skip List

Now Find takes time O(log n).
The highest level is LH , where H = dlog ne.
To find a key x , first walk in LH as far as we can, stopping at the largest

value in LH still less than x ;

Then walk down one level, and continue walking in level LH−1 until we

find again the largest key in LH−1 smaller than x ;

Repeat, until we reach the node with x in level L0.

We may keep only the keys in levels other than L0, and store the actual

content only in nodes of L0.

Problem: Insert and Delete take time O(n) if we were to keep the

structures.

September 24, 2023 4 / 12



Skip List

Find in Skip List

Now Find takes time O(log n).
The highest level is LH , where H = dlog ne.
To find a key x , first walk in LH as far as we can, stopping at the largest

value in LH still less than x ;

Then walk down one level, and continue walking in level LH−1 until we

find again the largest key in LH−1 smaller than x ;

Repeat, until we reach the node with x in level L0.

We may keep only the keys in levels other than L0, and store the actual

content only in nodes of L0.

Problem: Insert and Delete take time O(n) if we were to keep the

structures.

September 24, 2023 4 / 12



Skip List

Skip List with Randomization

Idea: Use randomization to construct the upper levels.

When we insert a new node, a�er we find its position in L0 and inserting

it there, we toss a coin, and with probability
1

2
insert a copy in L1,

otherwise stop;

If we made a copy in L1, then toss another coin, insert with probability
1

2

a copy to level L2, etc.

The expected number of copies we insert for each node is 2.

We need to show that this randomized construction yields similar

performance for Find as the previous deterministic structure.

September 24, 2023 5 / 12



Skip List

Skip List with Randomization

Idea: Use randomization to construct the upper levels.

When we insert a new node, a�er we find its position in L0 and inserting

it there, we toss a coin, and with probability
1

2
insert a copy in L1,

otherwise stop;

If we made a copy in L1, then toss another coin, insert with probability
1

2

a copy to level L2, etc.

The expected number of copies we insert for each node is 2.

We need to show that this randomized construction yields similar

performance for Find as the previous deterministic structure.

September 24, 2023 5 / 12



Skip List

Skip List with Randomization

Idea: Use randomization to construct the upper levels.

When we insert a new node, a�er we find its position in L0 and inserting

it there, we toss a coin, and with probability
1

2
insert a copy in L1,

otherwise stop;

If we made a copy in L1, then toss another coin, insert with probability
1

2

a copy to level L2, etc.

The expected number of copies we insert for each node is 2.

We need to show that this randomized construction yields similar

performance for Find as the previous deterministic structure.

September 24, 2023 5 / 12



Skip List

Skip List with Randomization

Idea: Use randomization to construct the upper levels.

When we insert a new node, a�er we find its position in L0 and inserting

it there, we toss a coin, and with probability
1

2
insert a copy in L1,

otherwise stop;

If we made a copy in L1, then toss another coin, insert with probability
1

2

a copy to level L2, etc.

The expected number of copies we insert for each node is 2.

We need to show that this randomized construction yields similar

performance for Find as the previous deterministic structure.

September 24, 2023 5 / 12



Skip List

Skip List with Randomization

Idea: Use randomization to construct the upper levels.

When we insert a new node, a�er we find its position in L0 and inserting

it there, we toss a coin, and with probability
1

2
insert a copy in L1,

otherwise stop;

If we made a copy in L1, then toss another coin, insert with probability
1

2

a copy to level L2, etc.

The expected number of copies we insert for each node is 2.

We need to show that this randomized construction yields similar

performance for Find as the previous deterministic structure.

September 24, 2023 5 / 12



Skip List

Randomized Skip List: ILlustration

Image credit: Wikipedia

September 24, 2023 6 / 12



Skip List

Analysis of Find on Skip List

Find may take too long for two possible reasons: there may be too

many layers, or Find takes too many horizontal steps.

Let’s first bound the number of levels H.

The probability that a particular node has a copy at a level at least as

high as H is 2
−H

.

By the union bound, when n2
−H ≤ 1

n2
, i.e., H ≥ 3 log n, with probability

no more than
1

n2
, there are no more than H levels.

September 24, 2023 7 / 12



Skip List

Analysis of Find on Skip List

Find may take too long for two possible reasons: there may be too

many layers, or Find takes too many horizontal steps.

Let’s first bound the number of levels H.

The probability that a particular node has a copy at a level at least as

high as H is 2
−H

.

By the union bound, when n2
−H ≤ 1

n2
, i.e., H ≥ 3 log n, with probability

no more than
1

n2
, there are no more than H levels.

September 24, 2023 7 / 12



Skip List

Analysis of Find on Skip List

Find may take too long for two possible reasons: there may be too

many layers, or Find takes too many horizontal steps.

Let’s first bound the number of levels H.

The probability that a particular node has a copy at a level at least as

high as H is 2
−H

.

By the union bound, when n2
−H ≤ 1

n2
, i.e., H ≥ 3 log n, with probability

no more than
1

n2
, there are no more than H levels.

September 24, 2023 7 / 12



Skip List

Bounding the number of horizontal steps

For a fixed key x , let’s bound the number of steps it takes to reach x via

a search path from the top level.

It is easier to think of the path from node x up to the top level.

Key observation: at every step, we go either le� or up

If the current node has a copy in the level above, we step up: this

happens with probability
1

2
;

Otherwise, we step le�.

Once we reach level H, we declare success.

The problem becomes: what’s the probability that, a�er taking at least

X steps, we haven’t made H upward steps?

September 24, 2023 8 / 12



Skip List

Bounding the number of horizontal steps

For a fixed key x , let’s bound the number of steps it takes to reach x via

a search path from the top level.

It is easier to think of the path from node x up to the top level.

Key observation: at every step, we go either le� or up

If the current node has a copy in the level above, we step up: this

happens with probability
1

2
;

Otherwise, we step le�.

Once we reach level H, we declare success.

The problem becomes: what’s the probability that, a�er taking at least

X steps, we haven’t made H upward steps?

September 24, 2023 8 / 12



Skip List

Bounding the number of horizontal steps

For a fixed key x , let’s bound the number of steps it takes to reach x via

a search path from the top level.

It is easier to think of the path from node x up to the top level.

Key observation: at every step, we go either le� or up

If the current node has a copy in the level above, we step up: this

happens with probability
1

2
;

Otherwise, we step le�.

Once we reach level H, we declare success.

The problem becomes: what’s the probability that, a�er taking at least

X steps, we haven’t made H upward steps?

September 24, 2023 8 / 12



Skip List

Bounding the number of horizontal steps

For a fixed key x , let’s bound the number of steps it takes to reach x via

a search path from the top level.

It is easier to think of the path from node x up to the top level.

Key observation: at every step, we go either le� or up

If the current node has a copy in the level above, we step up: this

happens with probability
1

2
;

Otherwise, we step le�.

Once we reach level H, we declare success.

The problem becomes: what’s the probability that, a�er taking at least

X steps, we haven’t made H upward steps?

September 24, 2023 8 / 12



Skip List

Bounding the number of horizontal steps

For a fixed key x , let’s bound the number of steps it takes to reach x via

a search path from the top level.

It is easier to think of the path from node x up to the top level.

Key observation: at every step, we go either le� or up

If the current node has a copy in the level above, we step up: this

happens with probability
1

2
;

Otherwise, we step le�.

Once we reach level H, we declare success.

The problem becomes: what’s the probability that, a�er taking at least

X steps, we haven’t made H upward steps?

September 24, 2023 8 / 12



Skip List

Bounding the number of horizontal steps

For a fixed key x , let’s bound the number of steps it takes to reach x via

a search path from the top level.

It is easier to think of the path from node x up to the top level.

Key observation: at every step, we go either le� or up

If the current node has a copy in the level above, we step up: this

happens with probability
1

2
;

Otherwise, we step le�.

Once we reach level H, we declare success.

The problem becomes: what’s the probability that, a�er taking at least

X steps, we haven’t made H upward steps?

September 24, 2023 8 / 12



Skip List

Bounding the number of horizontal steps

For a fixed key x , let’s bound the number of steps it takes to reach x via

a search path from the top level.

It is easier to think of the path from node x up to the top level.

Key observation: at every step, we go either le� or up

If the current node has a copy in the level above, we step up: this

happens with probability
1

2
;

Otherwise, we step le�.

Once we reach level H, we declare success.

The problem becomes: what’s the probability that, a�er taking at least

X steps, we haven’t made H upward steps?

September 24, 2023 8 / 12



Skip List

Apply Cherno� Bound

Take X to be, say, 36 log n, and let Yi , i = 1, · · · ,X , be the indicator variable

that the i-th step is upward. Then E[Yi] =
1

2
. Let Y be

∑
i Yi .

By Cherno� bound,

Pr [Y ≤ 3 log n] = Pr [Y ≤ E [Y ]− 15 log n]

≤ exp

(
−2 · (15 log n)2

36 log n

)
<

1

n2
.

This analysis was performed for a specific node x . By the union bound, with

probability at least 1− 1

n , no node takes more than 36 log n steps to reach

level H.

September 24, 2023 9 / 12



Skip List

Apply Cherno� Bound

Take X to be, say, 36 log n, and let Yi , i = 1, · · · ,X , be the indicator variable

that the i-th step is upward. Then E[Yi] =
1

2
. Let Y be

∑
i Yi .

By Cherno� bound,

Pr [Y ≤ 3 log n] = Pr [Y ≤ E [Y ]− 15 log n]

≤ exp

(
−2 · (15 log n)2

36 log n

)
<

1

n2
.

This analysis was performed for a specific node x . By the union bound, with

probability at least 1− 1

n , no node takes more than 36 log n steps to reach

level H.

September 24, 2023 9 / 12



Skip List

Apply Cherno� Bound

Take X to be, say, 36 log n, and let Yi , i = 1, · · · ,X , be the indicator variable

that the i-th step is upward. Then E[Yi] =
1

2
. Let Y be

∑
i Yi .

By Cherno� bound,

Pr [Y ≤ 3 log n] = Pr [Y ≤ E [Y ]− 15 log n]

≤ exp

(
−2 · (15 log n)2

36 log n

)
<

1

n2
.

This analysis was performed for a specific node x . By the union bound, with

probability at least 1− 1

n , no node takes more than 36 log n steps to reach

level H.

September 24, 2023 9 / 12



Skip List

Pu�ing Everything Together

Let A be the bad event that the highest level is more than 3 log n, and B
be the bad event that, starting from some node, out of 36 log n steps

there are fewer than 3 log n steps.

We have bounded Pr[A] ≤ 1

n2
, and Pr[B] ≤ 1

n .

Now by a final union bound, with probability at least 1− 2

n , there are

no nodes beyond level L3 log n and every node reaches that level within

36 log n steps.

So Find takes time O(log n) for every node with high probability.

September 24, 2023 10 / 12



Skip List

Pu�ing Everything Together

Let A be the bad event that the highest level is more than 3 log n, and B
be the bad event that, starting from some node, out of 36 log n steps

there are fewer than 3 log n steps.

We have bounded Pr[A] ≤ 1

n2
, and Pr[B] ≤ 1

n .

Now by a final union bound, with probability at least 1− 2

n , there are

no nodes beyond level L3 log n and every node reaches that level within

36 log n steps.

So Find takes time O(log n) for every node with high probability.

September 24, 2023 10 / 12



Skip List

Pu�ing Everything Together

Let A be the bad event that the highest level is more than 3 log n, and B
be the bad event that, starting from some node, out of 36 log n steps

there are fewer than 3 log n steps.

We have bounded Pr[A] ≤ 1

n2
, and Pr[B] ≤ 1

n .

Now by a final union bound, with probability at least 1− 2

n , there are

no nodes beyond level L3 log n and every node reaches that level within

36 log n steps.

So Find takes time O(log n) for every node with high probability.

September 24, 2023 10 / 12



Skip List

Pu�ing Everything Together

Let A be the bad event that the highest level is more than 3 log n, and B
be the bad event that, starting from some node, out of 36 log n steps

there are fewer than 3 log n steps.

We have bounded Pr[A] ≤ 1

n2
, and Pr[B] ≤ 1

n .

Now by a final union bound, with probability at least 1− 2

n , there are

no nodes beyond level L3 log n and every node reaches that level within

36 log n steps.

So Find takes time O(log n) for every node with high probability.

September 24, 2023 10 / 12



Skip List

Application in Distributed Systems: Peer-to-Peer Systems

A peer-to-peer (P2P) system has n nodes, each maintaining a host of

connections to its neighbors, and none having global knowledge.

Keeping everything fully connected is way too expensive.

Image credit: mysterium.network

A request of a node to communicate with another can take O(n) time

to traverse the network if we are not careful.

September 24, 2023 11 / 12



Skip List

Application in Distributed Systems: Peer-to-Peer Systems

A peer-to-peer (P2P) system has n nodes, each maintaining a host of

connections to its neighbors, and none having global knowledge.

Keeping everything fully connected is way too expensive.

Image credit: mysterium.network

A request of a node to communicate with another can take O(n) time

to traverse the network if we are not careful.

September 24, 2023 11 / 12



Skip List

Application in Distributed Systems: Peer-to-Peer Systems

A peer-to-peer (P2P) system has n nodes, each maintaining a host of

connections to its neighbors, and none having global knowledge.

Keeping everything fully connected is way too expensive.

Image credit: mysterium.network

A request of a node to communicate with another can take O(n) time

to traverse the network if we are not careful.

September 24, 2023 11 / 12



Skip List

Idea of SkipNet

We can use the idea of skip list to organize nodes in a P2P network.

Give each node an identifier, similar to the key value of a node in the

database.

Given each node a bitstring of length O(log n).

There are multiple levels. Nodes sharing the same prefixes of length k
are connected by an (ordered) linked list on level k.

The resulting structure is similar to a skip list, except that on each level

there are multiple lists.

To access a node, we go as far as possible on a high level, then descend

and continue.

September 24, 2023 12 / 12



Skip List

Idea of SkipNet

We can use the idea of skip list to organize nodes in a P2P network.

Give each node an identifier, similar to the key value of a node in the

database.

Given each node a bitstring of length O(log n).

There are multiple levels. Nodes sharing the same prefixes of length k
are connected by an (ordered) linked list on level k.

The resulting structure is similar to a skip list, except that on each level

there are multiple lists.

To access a node, we go as far as possible on a high level, then descend

and continue.

September 24, 2023 12 / 12



Skip List

Idea of SkipNet

We can use the idea of skip list to organize nodes in a P2P network.

Give each node an identifier, similar to the key value of a node in the

database.

Given each node a bitstring of length O(log n).

There are multiple levels. Nodes sharing the same prefixes of length k
are connected by an (ordered) linked list on level k.

The resulting structure is similar to a skip list, except that on each level

there are multiple lists.

To access a node, we go as far as possible on a high level, then descend

and continue.

September 24, 2023 12 / 12



Skip List

Idea of SkipNet

We can use the idea of skip list to organize nodes in a P2P network.

Give each node an identifier, similar to the key value of a node in the

database.

Given each node a bitstring of length O(log n).

There are multiple levels. Nodes sharing the same prefixes of length k
are connected by an (ordered) linked list on level k.

The resulting structure is similar to a skip list, except that on each level

there are multiple lists.

To access a node, we go as far as possible on a high level, then descend

and continue.

September 24, 2023 12 / 12



Skip List

Idea of SkipNet

We can use the idea of skip list to organize nodes in a P2P network.

Give each node an identifier, similar to the key value of a node in the

database.

Given each node a bitstring of length O(log n).

There are multiple levels. Nodes sharing the same prefixes of length k
are connected by an (ordered) linked list on level k.

The resulting structure is similar to a skip list, except that on each level

there are multiple lists.

To access a node, we go as far as possible on a high level, then descend

and continue.

September 24, 2023 12 / 12



Skip List

Idea of SkipNet

We can use the idea of skip list to organize nodes in a P2P network.

Give each node an identifier, similar to the key value of a node in the

database.

Given each node a bitstring of length O(log n).

There are multiple levels. Nodes sharing the same prefixes of length k
are connected by an (ordered) linked list on level k.

The resulting structure is similar to a skip list, except that on each level

there are multiple lists.

To access a node, we go as far as possible on a high level, then descend

and continue.

September 24, 2023 12 / 12


	Skip List

