Learning Goals

- Understand the design idea of skip lists
- Carry out more involved probabilistic runtime analysis using Chernoff bound and union bound
- Understand the idea of SkipNet in Peer-to-Peer systems

• Problem with storing ordered data with linked list: FIND takes O(n) time.

3

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

- Problem with storing ordered data with linked list: FIND takes O(n) time.
- Imagine building faster links among the nodes:
 - At the bottom level *L*₀, we have the original linked list, sorted;

イロト イポト イヨト イヨト

- Problem with storing ordered data with linked list: FIND takes O(n) time.
- Imagine building faster links among the nodes:
 - At the bottom level *L*₀, we have the original linked list, sorted;
 - One level above, at L₁, we have a linked list storing every other node, also sorted, with [n/2] nodes;

イロト イポト イヨト イヨト

- Problem with storing ordered data with linked list: FIND takes O(n) time.
- Imagine building faster links among the nodes:
 - At the bottom level *L*₀, we have the original linked list, sorted;
 - One level above, at L₁, we have a linked list storing every other node, also sorted, with [n/2] nodes;
 - One level above, at L_2 , we have a linked list storing every four node from L_0 , or every other node from L_1 , also sorted, with $\lfloor n/4 \rfloor$ nodes, etc..
- Each copy of a node v in L_i stores pointers to v's copies in L_{i-1} and L_{i+1} (if they exist), and also the predecessor and successor in L_i.

・ロト ・ ア・ ・ ア・ ・ ア・ ア

Skip List: Illustration

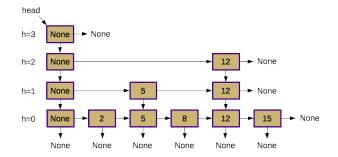


Image credit: Mike Lam at James Madison University

э

イロト イロト イヨト

- Now FIND takes time $O(\log n)$.
 - The highest level is L_H , where $H = \lceil \log n \rceil$.

э

イロト イポト イヨト イヨト

- Now FIND takes time $O(\log n)$.
 - The highest level is L_H , where $H = \lceil \log n \rceil$.
 - To find a key *x*, first walk in *L_H* as far as we can, stopping at the largest value in *L_H* still less than *x*;

イロト イポト イヨト イヨト

- Now FIND takes time $O(\log n)$.
 - The highest level is L_H , where $H = \lceil \log n \rceil$.
 - To find a key *x*, first walk in *L_H* as far as we can, stopping at the largest value in *L_H* still less than *x*;
 - Then walk down one level, and continue walking in level L_{H-1} until we find again the largest key in L_{H-1} smaller than x;

イロト イポト イヨト イヨト 一日

• Now FIND takes time $O(\log n)$.

- The highest level is L_H , where $H = \lceil \log n \rceil$.
- To find a key *x*, first walk in *L_H* as far as we can, stopping at the largest value in *L_H* still less than *x*;
- Then walk down one level, and continue walking in level L_{H-1} until we find again the largest key in L_{H-1} smaller than x;
- Repeat, until we reach the node with x in level L_0 .
- We may keep only the keys in levels other than *L*₀, and store the actual content only in nodes of *L*₀.

イロト イポト イヨト イヨト

• Now FIND takes time $O(\log n)$.

- The highest level is L_H , where $H = \lceil \log n \rceil$.
- To find a key *x*, first walk in *L_H* as far as we can, stopping at the largest value in *L_H* still less than *x*;
- Then walk down one level, and continue walking in level L_{H-1} until we find again the largest key in L_{H-1} smaller than x;
- Repeat, until we reach the node with x in level L_0 .
- We may keep only the keys in levels other than *L*₀, and store the actual content only in nodes of *L*₀.
- Problem: INSERT and DELETE take time O(n) if we were to keep the structures.

・ロト ・ ア・ ・ ア・ ・ ア・ ア

• Idea: Use randomization to construct the upper levels.

э

イロト イポト イヨト イヨト

- Idea: Use randomization to construct the upper levels.
 - When we insert a new node, after we find its position in L₀ and inserting it there, we toss a coin, and with probability ¹/₂ insert a copy in L₁, otherwise stop;

• □ ▶ • • • • • • • • •

- Idea: Use randomization to construct the upper levels.
 - When we insert a new node, after we find its position in L₀ and inserting it there, we toss a coin, and with probability ¹/₂ insert a copy in L₁, otherwise stop;
 - If we made a copy in L₁, then toss another coin, insert with probability ¹/₂ a copy to level L₂, etc.

- Idea: Use randomization to construct the upper levels.
 - When we insert a new node, after we find its position in L₀ and inserting it there, we toss a coin, and with probability ¹/₂ insert a copy in L₁, otherwise stop;
 - If we made a copy in L₁, then toss another coin, insert with probability ¹/₂ a copy to level L₂, etc.
- The expected number of copies we insert for each node is 2.

- Idea: Use randomization to construct the upper levels.
 - When we insert a new node, after we find its position in L₀ and inserting it there, we toss a coin, and with probability ¹/₂ insert a copy in L₁, otherwise stop;
 - If we made a copy in L₁, then toss another coin, insert with probability ¹/₂ a copy to level L₂, etc.
- The expected number of copies we insert for each node is 2.
- We need to show that this randomized construction yields similar performance for FIND as the previous deterministic structure.

Randomized Skip List: ILlustration

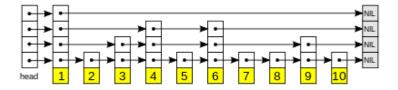


Image credit: Wikipedia

• • • • • • • •

Analysis of FIND on Skip List

- FIND may take too long for two possible reasons: there may be too many layers, or FIND takes too many horizontal steps.
- Let's first bound the number of levels H.

• □ ▶ • • • • • • • • •

Analysis of FIND on Skip List

- FIND may take too long for two possible reasons: there may be too many layers, or FIND takes too many horizontal steps.
- Let's first bound the number of levels H.
- The probability that a particular node has a copy at a level at least as high as H is 2^{-H} .

• □ ▶ • • • • • • • • •

Analysis of FIND on Skip List

- FIND may take too long for two possible reasons: there may be too many layers, or FIND takes too many horizontal steps.
- Let's first bound the number of levels H.
- The probability that a particular node has a copy at a level at least as high as H is 2^{-H} .
- By the union bound, when $n2^{-H} \le \frac{1}{n^2}$, i.e., $H \ge 3 \log n$, with probability no more than $\frac{1}{n^2}$, there are no more than *H* levels.

• For a fixed key *x*, let's bound the number of steps it takes to reach *x* via a search path from the top level.

A D F A B F A B F A

- For a fixed key *x*, let's bound the number of steps it takes to reach *x* via a search path from the top level.
- It is easier to think of the path from node *x* up to the top level.

• □ ▶ • • • • • • • • •

- For a fixed key *x*, let's bound the number of steps it takes to reach *x* via a search path from the top level.
- It is easier to think of the path from node *x* up to the top level.
- Key observation: at every step, we go either left or up

- For a fixed key *x*, let's bound the number of steps it takes to reach *x* via a search path from the top level.
- It is easier to think of the path from node *x* up to the top level.
- Key observation: at every step, we go either left or up
 - If the current node has a copy in the level above, we step up: this happens with probability ¹/₂;

- For a fixed key *x*, let's bound the number of steps it takes to reach *x* via a search path from the top level.
- It is easier to think of the path from node *x* up to the top level.
- Key observation: at every step, we go either left or up
 - If the current node has a copy in the level above, we step up: this happens with probability ¹/₂;
 - Otherwise, we step left.

- For a fixed key *x*, let's bound the number of steps it takes to reach *x* via a search path from the top level.
- It is easier to think of the path from node *x* up to the top level.
- Key observation: at every step, we go either left or up
 - If the current node has a copy in the level above, we step up: this happens with probability ¹/₂;
 - Otherwise, we step left.
- Once we reach level *H*, we declare success.

- For a fixed key *x*, let's bound the number of steps it takes to reach *x* via a search path from the top level.
- It is easier to think of the path from node *x* up to the top level.
- Key observation: at every step, we go either left or up
 - If the current node has a copy in the level above, we step up: this happens with probability ¹/₂;
 - Otherwise, we step left.
- Once we reach level *H*, we declare success.
- The problem becomes: what's the probability that, after taking at least *X* steps, we haven't made *H* upward steps?

Apply Chernoff Bound

Take X to be, say, 36 log *n*, and let Y_i , $i = 1, \dots, X$, be the indicator variable that the *i*-th step is upward. Then $\mathbf{E}[Y_i] = \frac{1}{2}$. Let Y be $\sum_i Y_i$.

イロト イポト イヨト イヨト 一日

Apply Chernoff Bound

Take X to be, say, 36 log *n*, and let Y_i , $i = 1, \dots, X$, be the indicator variable that the *i*-th step is upward. Then $\mathbf{E}[Y_i] = \frac{1}{2}$. Let Y be $\sum_i Y_i$. By Chernoff bound,

$$\Pr\left[Y \le 3\log n\right] = \Pr\left[Y \le \mathbb{E}\left[Y\right] - 15\log n\right]$$
$$\le \exp\left(-\frac{2 \cdot (15\log n)^2}{36\log n}\right) < \frac{1}{n^2}.$$

イロト イポト イヨト イヨト 一日

Apply Chernoff Bound

Take X to be, say, 36 log *n*, and let Y_i , $i = 1, \dots, X$, be the indicator variable that the *i*-th step is upward. Then $\mathbf{E}[Y_i] = \frac{1}{2}$. Let Y be $\sum_i Y_i$. By Chernoff bound,

$$\Pr\left[Y \le 3\log n\right] = \Pr\left[Y \le \mathbb{E}\left[Y\right] - 15\log n\right]$$
$$\le \exp\left(-\frac{2 \cdot (15\log n)^2}{36\log n}\right) < \frac{1}{n^2}.$$

This analysis was performed for a specific node *x*. By the union bound, with probability at least $1 - \frac{1}{n}$, no node takes more than $36 \log n$ steps to reach level *H*.

• Let *A* be the bad event that the highest level is more than $3 \log n$, and *B* be the bad event that, starting from some node, out of $36 \log n$ steps there are fewer than $3 \log n$ steps.

- Let *A* be the bad event that the highest level is more than $3 \log n$, and *B* be the bad event that, starting from some node, out of $36 \log n$ steps there are fewer than $3 \log n$ steps.
- We have bounded $\Pr[A] \leq \frac{1}{n^2}$, and $\Pr[B] \leq \frac{1}{n}$.

- Let *A* be the bad event that the highest level is more than $3 \log n$, and *B* be the bad event that, starting from some node, out of $36 \log n$ steps there are fewer than $3 \log n$ steps.
- We have bounded $\Pr[A] \leq \frac{1}{n^2}$, and $\Pr[B] \leq \frac{1}{n}$.
- Now by a final union bound, with probability at least $1 \frac{2}{n}$, there are no nodes beyond level $L_{3 \log n}$ and every node reaches that level within $36 \log n$ steps.

- Let *A* be the bad event that the highest level is more than $3 \log n$, and *B* be the bad event that, starting from some node, out of $36 \log n$ steps there are fewer than $3 \log n$ steps.
- We have bounded $\Pr[A] \leq \frac{1}{n^2}$, and $\Pr[B] \leq \frac{1}{n}$.
- Now by a final union bound, with probability at least $1 \frac{2}{n}$, there are no nodes beyond level $L_{3\log n}$ and every node reaches that level within $36 \log n$ steps.
- So FIND takes time $O(\log n)$ for every node with high probability.

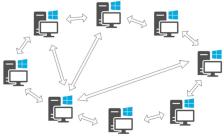
Application in Distributed Systems: Peer-to-Peer Systems

• A peer-to-peer (P2P) system has *n* nodes, each maintaining a host of connections to its neighbors, and none having global knowledge.

• □ ▶ • • • • • • • • •

Application in Distributed Systems: Peer-to-Peer Systems

- A peer-to-peer (P2P) system has *n* nodes, each maintaining a host of connections to its neighbors, and none having global knowledge.
 - Keeping everything fully connected is way too expensive.

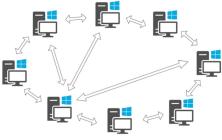


A simulation of a peer-to-peer network

Image credit: mysterium.network

Application in Distributed Systems: Peer-to-Peer Systems

- A peer-to-peer (P2P) system has *n* nodes, each maintaining a host of connections to its neighbors, and none having global knowledge.
 - Keeping everything fully connected is way too expensive.



A simulation of a peer-to-peer network

Image credit: mysterium.network

 A request of a node to communicate with another can take O(n) time to traverse the network if we are not careful.

• We can use the idea of skip list to organize nodes in a P2P network.

3

イロト イポト イヨト イヨト

- We can use the idea of skip list to organize nodes in a P2P network.
- Give each node an *identifier*, similar to the key value of a node in the database.

- We can use the idea of skip list to organize nodes in a P2P network.
- Give each node an *identifier*, similar to the key value of a node in the database.
- Given each node a bitstring of length $O(\log n)$.

- We can use the idea of skip list to organize nodes in a P2P network.
- Give each node an *identifier*, similar to the key value of a node in the database.
- Given each node a bitstring of length $O(\log n)$.
- There are multiple levels. Nodes sharing the same prefixes of length *k* are connected by an (ordered) linked list on level *k*.

- We can use the idea of skip list to organize nodes in a P2P network.
- Give each node an *identifier*, similar to the key value of a node in the database.
- Given each node a bitstring of length $O(\log n)$.
- There are multiple levels. Nodes sharing the same prefixes of length *k* are connected by an (ordered) linked list on level *k*.
- The resulting structure is similar to a skip list, except that on each level there are multiple lists.

- We can use the idea of skip list to organize nodes in a P2P network.
- Give each node an *identifier*, similar to the key value of a node in the database.
- Given each node a bitstring of length $O(\log n)$.
- There are multiple levels. Nodes sharing the same prefixes of length *k* are connected by an (ordered) linked list on level *k*.
- The resulting structure is similar to a skip list, except that on each level there are multiple lists.
- To access a node, we go as far as possible on a high level, then descend and continue.