Sparse Recovery

Application of Count-Sketch

Hu Fu @SHUFE, Oct 14, 2023

The Sparse Recovery Problem

The Sparse Recovery Problem

* Recall: In a streaming algorithm setting, we are sometimes interested in having a
d

sparse vector that approximates the frequency vector X € |

The Sparse Recovery Problem

* Recall: In a streaming algorithm setting, we are sometimes interested in having a
d

sparse vector that approximates the frequency vector X € |

* A vector is sparse if it has few non-zero entries

The Sparse Recovery Problem

* Recall: In a streaming algorithm setting, we are sometimes interested in having a
d

sparse vector that approximates the frequency vector X € |

* A vector is sparse if it has few non-zero entries

» We may measure the quality of approximation by £, distance

The Sparse Recovery Problem

* Recall: In a streaming algorithm setting, we are sometimes interested in having a
d

sparse vector that approximates the frequency vector X € |

* A vector is sparse if it has few non-zero entries

» We may measure the quality of approximation by £, distance

. Sogivenk € Nand e & ((),5), we are interested in finding y € R¢, with

The Sparse Recovery Problem

* Recall: In a streaming algorithm setting, we are sometimes interested in having a
d

sparse vector that approximates the frequency vector X € |

* A vector is sparse if it has few non-zero entries

» We may measure the quality of approximation by £, distance

. Sogivenk € Nand e & ((),5), we are interested in finding y € R¢, with

* |lyllg <k

The Sparse Recovery Problem

* Recall: In a streaming algorithm setting, we are sometimes interested in having a
d

sparse vector that approximates the frequency vector X € |

* A vector is sparse if it has few non-zero entries

» We may measure the quality of approximation by £, distance

. Sogivenk € Nand e & ((),5), we are interested in finding y € R¢, with

* |lyllg <k

. |y —Xx]|, < (1 + €)E§(X), where Ef(x) — glin |z — x]||,
zeR 9”Z”0Sk

The Sparse Recovery Problem

* Recall: In a streaming algorithm setting, we are sometimes interested in having a
d

sparse vector that approximates the frequency vector X € |

* A vector is sparse if it has few non-zero entries

» We may measure the quality of approximation by £, distance

. Sogivenk € Nand e & ((),5), we are interested in finding y € R¢, with

* |lyllg <k

. |y —Xx]|, < (1 + €)E§(X), where Eé‘(x) — glin |z — x]||,
zeR 9”Z”0Sk

Quantifying the error using Ef(x) is necessary. It can be as large as comparable to ||x||,

Sparse Recovery with Count-Sketch

Sparse Recovery with Count-Sketch

 Offline optimum solution: pick the k entries of X with the largest absolute values

Sparse Recovery with Count-Sketch

 Offline optimum solution: pick the k entries of X with the largest absolute values

* Recall Count-Sketch:

Sparse Recovery with Count-Sketch

 Offline optimum solution: pick the k entries of X with the largest absolute values

* Recall Count-Sketch:

* Draw £ = O(log d) hash functions hy, ---, h, : [d] — [w], independently from a pairwise
independent hash family

Sparse Recovery with Count-Sketch

 Offline optimum solution: pick the k entries of X with the largest absolute values

* Recall Count-Sketch:

* Draw £ = O(log d) hash functions hy, ---, h, : [d] — [w], independently from a pairwise
independent hash family

* Draw 7 hash functions g, -+, g, : [d] = {—1, + 1}, independently from a pairwise
independent hash family

Sparse Recovery with Count-Sketch

 Offline optimum solution: pick the k entries of X with the largest absolute values

* Recall Count-Sketch:

* Draw £ = O(log d) hash functions hy, ---, h, : [d] — [w], independently from a pairwise
independent hash family

* Draw 7 hash functions g, -+, g, : [d] = {—1, + 1}, independently from a pairwise
independent hash family

» Atinput i, increase counter C;[h(i,)] by g(i)A, forj=1,....7

Sparse Recovery with Count-Sketch

 Offline optimum solution: pick the k entries of X with the largest absolute values

* Recall Count-Sketch:

* Draw £ = O(log d) hash functions hy, ---, h, : [d] — [w], independently from a pairwise
independent hash family

* Draw 7 hash functions g, -+, g, : [d] = {—1, + 1}, independently from a pairwise
independent hash family

» Atinput i, increase counter C;[h(i,)] by g(i)A, forj=1,....7

» Output: for coordinate i, report X; := median {g;,({)C;[()]}

Sparse Recovery with Count-Sketch

 Offline optimum solution: pick the k entries of X with the largest absolute values

* Recall Count-Sketch:

* Draw £ = O(log d) hash functions hy, ---, h, : [d] — [w], independently from a pairwise
independent hash family

* Draw 7 hash functions g, -+, g, : [d] = {—1, + 1}, independently from a pairwise
independent hash family

» Atinput i, increase counter C;[h(i,)] by g(i)A, forj=1,....7
» Output: for coordinate i, report X; := median {g;,({)C;[()]}

» To solve sparse recovery, take w = 3k/e?, take the k largest coordinates of X

Sparse Recovery with Count-Sketch

 Offline optimum solution: pick the k entries of X with the largest absolute values

* Recall Count-Sketch:

* Draw £ = O(log d) hash functions hy, ---, h, : [d] — [w], independently from a pairwise
independent hash family

* Draw 7 hash functions g, -+, g, : [d] = {—1, + 1}, independently from a pairwise
independent hash family

» Atinput i, increase counter C;[h(i,)] by g(i)A, forj=1,....7
» Output: for coordinate i, report X; := median {g;,({)C;[()]}

» To solve sparse recovery, take w = 3k/e?, take the k largest coordinates of X

Note the dependence on k

Ideas of Proof

Ideas of Proof

e Main idea:

Ideas of Proof

e Main idea:

* If we chose the k “correct” entries, since total error should be €E§, the error

allowed for each entry should be controlled to iEf

Vi

Ideas of Proof

e Main idea:

* If we chose the k “correct” entries, since total error should be eEk, the error

allowed for each entry should be controlled to iEf

Vi

* But the k entries we chose may differ from the “correct” ones. We should argue
that, when all entries are estimated accurately enough, this doesn’t introduce too
much error.

Ideas of Proof

e Main idea:

» If we chose the k “correct” entries, since total error should be €E§, the error

allowed for each entry should be controlled to iEf

Vi

Ideas of Proof

e Main idea:

» If we chose the k “correct” entries, since total error should be €Ek, the error
€
allowed for each entry should be controlled to —Ef

Vi

* But the k entries we chose may differ from the “correct” ones. We should argue
that, when all entries are estimated accurately enough, this doesn’t introduce too
much error.

Proof of First Lemma

Proof of First Lemma

Proof of First Lemma

Proof of First Lemma

Proof of First Lemma

Proof of First Lemma

Refining the Analysis

Refining the Analysis

 Whatiis Eé‘(x)?

Refining the Analysis

 Whatiis Eé‘(x)?

» Let T be the set of k entries of X with the largest absolute values, then

Ef(x) = Z x]g

\

Refining the Analysis

 Whatiis Eé‘(x)?

» Let T be the set of k entries of X with the largest absolute values, then

Ef(x) = Z x]g

\

* The error introduced by collision with entries not in 7' is controllable by Eé‘

Refining the Analysis

 Whatiis Eé‘(x)?

» Let T be the set of k entries of X with the largest absolute values, then

Ef(x) = Z x]g

\

* The error introduced by collision with entries not in 7' is controllable by Eé‘

« What about collision with the entries in 77

Refining the Analysis

 Whatiis Eé‘(x)?

» Let T be the set of k entries of X with the largest absolute values, then

Ef(x) = Z x]g

\

* The error introduced by collision with entries not in 7' is controllable by Eé‘

« What about collision with the entries in 77

» This is where we make use of w = Q(k/¢e?)

Refining the Analysis

 Whatiis Eé‘(x)?

» Let T be the set of k entries of X with the largest absolute values, then

Ef(x) = Z x]g

\

* The error introduced by collision with entries not in 7' is controllable by Eé‘

 What about collision with the entries in 77
» This is where we make use of w = Q(k/¢e?)

» With w growing linearly with £, this can be made to happen with small probability.

Proof of First Lemma
page 1

Proof of First Lemma
page 1

Proof of First Lemma
page 1

Proof of First Lemma
page 1

Proof of First Lemma
page 1

Proof of First Lemma
page 1

Proof of First Lemma
page 1

Proof of First Lemma
page 1

Proof of First Lemma
page 2

Proof of First Lemma
page 2

Recall the proof we gave for
the performance of SkipList.
We had a similar use of
union bound.

Proof of Second Lemma

Proof of Second Lemma

Proof of Second Lemma

Proof of Second Lemma

Proof of Second Lemma

Proof of Second Lemma

Proof of Second Lemma

Proof of Second Lemma

Proof of Second Lemma

Proof of Second Lemma

Proof of Second Lemma

Putting Things Together..

Putting Things Together..

One last thing: to give the sketch from X, naively we need to go through all the coordinates, which takes time O(d).

Putting Things Together..

One last thing: to give the sketch from X, naively we need to go through all the coordinates, which takes time O(d).

We can do faster by maintaining a record as the input comes!

