
Hu Fu @SHUFE, Oct 14, 2023

Sparse Recovery
Application of Count-Sketch

The Sparse Recovery Problem

The Sparse Recovery Problem

• Recall: In a streaming algorithm setting, we are sometimes interested in having a
sparse vector that approximates the frequency vector x ∈ ℝd

The Sparse Recovery Problem

• Recall: In a streaming algorithm setting, we are sometimes interested in having a
sparse vector that approximates the frequency vector x ∈ ℝd

• A vector is sparse if it has few non-zero entries

The Sparse Recovery Problem

• Recall: In a streaming algorithm setting, we are sometimes interested in having a
sparse vector that approximates the frequency vector x ∈ ℝd

• A vector is sparse if it has few non-zero entries

• We may measure the quality of approximation by distanceℓ2

The Sparse Recovery Problem

• Recall: In a streaming algorithm setting, we are sometimes interested in having a
sparse vector that approximates the frequency vector x ∈ ℝd

• A vector is sparse if it has few non-zero entries

• We may measure the quality of approximation by distanceℓ2

• So given and , we are interested in finding , with k ∈ ℕ ϵ ∈ (0,
1
2

) y ∈ ℝd

The Sparse Recovery Problem

• Recall: In a streaming algorithm setting, we are sometimes interested in having a
sparse vector that approximates the frequency vector x ∈ ℝd

• A vector is sparse if it has few non-zero entries

• We may measure the quality of approximation by distanceℓ2

• So given and , we are interested in finding , with k ∈ ℕ ϵ ∈ (0,
1
2

) y ∈ ℝd

• ∥y∥0 ≤ k

The Sparse Recovery Problem

• Recall: In a streaming algorithm setting, we are sometimes interested in having a
sparse vector that approximates the frequency vector x ∈ ℝd

• A vector is sparse if it has few non-zero entries

• We may measure the quality of approximation by distanceℓ2

• So given and , we are interested in finding , with k ∈ ℕ ϵ ∈ (0,
1
2

) y ∈ ℝd

• ∥y∥0 ≤ k

• , where ∥y − x∥2 ≤ (1 + ϵ)Ek
2(x) Ek

2(x) := min
z∈ℝd,∥z∥0≤k

∥z − x∥2

The Sparse Recovery Problem

• Recall: In a streaming algorithm setting, we are sometimes interested in having a
sparse vector that approximates the frequency vector x ∈ ℝd

• A vector is sparse if it has few non-zero entries

• We may measure the quality of approximation by distanceℓ2

• So given and , we are interested in finding , with k ∈ ℕ ϵ ∈ (0,
1
2

) y ∈ ℝd

• ∥y∥0 ≤ k

• , where ∥y − x∥2 ≤ (1 + ϵ)Ek
2(x) Ek

2(x) := min
z∈ℝd,∥z∥0≤k

∥z − x∥2

Quantifying the error using is necessary. It can be as large as comparable to Ek
2(x) ∥x∥2

Sparse Recovery with Count-Sketch

Sparse Recovery with Count-Sketch

• Offline optimum solution: pick the entries of with the largest absolute valuesk x

Sparse Recovery with Count-Sketch

• Offline optimum solution: pick the entries of with the largest absolute valuesk x
• Recall Count-Sketch:

Sparse Recovery with Count-Sketch

• Offline optimum solution: pick the entries of with the largest absolute valuesk x
• Recall Count-Sketch:

• Draw hash functions , independently from a pairwise
independent hash family

ℓ = O(log d) h1, ⋯, hℓ : [d] → [w]

Sparse Recovery with Count-Sketch

• Offline optimum solution: pick the entries of with the largest absolute valuesk x
• Recall Count-Sketch:

• Draw hash functions , independently from a pairwise
independent hash family

ℓ = O(log d) h1, ⋯, hℓ : [d] → [w]

• Draw hash functions , independently from a pairwise
independent hash family

ℓ g1, ⋯, gℓ : [d] → {−1, + 1}

Sparse Recovery with Count-Sketch

• Offline optimum solution: pick the entries of with the largest absolute valuesk x
• Recall Count-Sketch:

• Draw hash functions , independently from a pairwise
independent hash family

ℓ = O(log d) h1, ⋯, hℓ : [d] → [w]

• Draw hash functions , independently from a pairwise
independent hash family

ℓ g1, ⋯, gℓ : [d] → {−1, + 1}

• At input , increase counter by , for it Cj[hj(it)] gj(it)Δt j = 1,…, ℓ

Sparse Recovery with Count-Sketch

• Offline optimum solution: pick the entries of with the largest absolute valuesk x
• Recall Count-Sketch:

• Draw hash functions , independently from a pairwise
independent hash family

ℓ = O(log d) h1, ⋯, hℓ : [d] → [w]

• Draw hash functions , independently from a pairwise
independent hash family

ℓ g1, ⋯, gℓ : [d] → {−1, + 1}

• At input , increase counter by , for it Cj[hj(it)] gj(it)Δt j = 1,…, ℓ

• Output: for coordinate , report median i x̃i := {gj(i)Cj[hj(i)]}

Sparse Recovery with Count-Sketch

• Offline optimum solution: pick the entries of with the largest absolute valuesk x
• Recall Count-Sketch:

• Draw hash functions , independently from a pairwise
independent hash family

ℓ = O(log d) h1, ⋯, hℓ : [d] → [w]

• Draw hash functions , independently from a pairwise
independent hash family

ℓ g1, ⋯, gℓ : [d] → {−1, + 1}

• At input , increase counter by , for it Cj[hj(it)] gj(it)Δt j = 1,…, ℓ

• Output: for coordinate , report median i x̃i := {gj(i)Cj[hj(i)]}

• To solve sparse recovery, take , take the largest coordinates of w = 3k/ϵ2 k x̃

Sparse Recovery with Count-Sketch

• Offline optimum solution: pick the entries of with the largest absolute valuesk x
• Recall Count-Sketch:

• Draw hash functions , independently from a pairwise
independent hash family

ℓ = O(log d) h1, ⋯, hℓ : [d] → [w]

• Draw hash functions , independently from a pairwise
independent hash family

ℓ g1, ⋯, gℓ : [d] → {−1, + 1}

• At input , increase counter by , for it Cj[hj(it)] gj(it)Δt j = 1,…, ℓ

• Output: for coordinate , report median i x̃i := {gj(i)Cj[hj(i)]}

• To solve sparse recovery, take , take the largest coordinates of w = 3k/ϵ2 k x̃

Note the dependence on k

Ideas of Proof

Ideas of Proof

• Main idea:

Ideas of Proof

• Main idea:

• If we chose the “correct” entries, since total error should be , the error
allowed for each entry should be controlled to

k ϵEk
2ϵ

k
Ek

2

Ideas of Proof

• Main idea:

• If we chose the “correct” entries, since total error should be , the error
allowed for each entry should be controlled to

k ϵEk
2ϵ

k
Ek

2

• But the entries we chose may differ from the “correct” ones. We should argue
that, when all entries are estimated accurately enough, this doesn’t introduce too
much error.

k

Ideas of Proof

• Main idea:

• If we chose the “correct” entries, since total error should be , the error
allowed for each entry should be controlled to

k ϵEk
2ϵ

k
Ek

2

Lemma. Count-Sketch with guarantees for

each with high probability.

w = 3k/ϵ2, ℓ = O(log n) |xj − x̃j | ≤
ϵ

k
Ek

2

j

Ideas of Proof

• Main idea:

• If we chose the “correct” entries, since total error should be , the error
allowed for each entry should be controlled to

• But the entries we chose may differ from the “correct” ones. We should argue
that, when all entries are estimated accurately enough, this doesn’t introduce too
much error.

k ϵEk
2ϵ

k
Ek

2

k

Lemma. For , if , let be the -sparse recovery of , then x, y ∈ ℝd ∥x − y∥∞ ≤
ϵ

k
Ek

2(x) z k y

∥x − z∥ ≤ (1 + 5ϵ)Ek
2(x)

Proof of First Lemma

Lemma. Count-Sketch with guarantees for each with high

probability.

w = 3k/ϵ2, ℓ = O(log n) |xj − x̃j | ≤
ϵ

k
Ek

2 j

Proof of First Lemma

Lemma. Count-Sketch with guarantees for each with high

probability.

w = 3k/ϵ2, ℓ = O(log n) |xj − x̃j | ≤
ϵ

k
Ek

2 j

Recall the analysis of Count-Sketch. For each , , the -th estimate is ,j ∈ [d] i ∈ [ℓ] i zi := Ci[hi(j)]gi(j)

Proof of First Lemma

Lemma. Count-Sketch with guarantees for each with high

probability.

w = 3k/ϵ2, ℓ = O(log n) |xj − x̃j | ≤
ϵ

k
Ek

2 j

Recall the analysis of Count-Sketch. For each , , the -th estimate is ,j ∈ [d] i ∈ [ℓ] i zi := Ci[hi(j)]gi(j)
then .𝔼[zi] = xi

Proof of First Lemma

Lemma. Count-Sketch with guarantees for each with high

probability.

w = 3k/ϵ2, ℓ = O(log n) |xj − x̃j | ≤
ϵ

k
Ek

2 j

Recall the analysis of Count-Sketch. For each , , the -th estimate is ,j ∈ [d] i ∈ [ℓ] i zi := Ci[hi(j)]gi(j)
then .𝔼[zi] = xi
To apply Chebyshev’s inequality, we bound the variance of .zi

Proof of First Lemma

Lemma. Count-Sketch with guarantees for each with high

probability.

w = 3k/ϵ2, ℓ = O(log n) |xj − x̃j | ≤
ϵ

k
Ek

2 j

Recall the analysis of Count-Sketch. For each , , the -th estimate is ,j ∈ [d] i ∈ [ℓ] i zi := Ci[hi(j)]gi(j)
then .𝔼[zi] = xi
To apply Chebyshev’s inequality, we bound the variance of .zi
Let be the indicator variable for the event , then by pairwise independence of the hash

family, .

Yj,j′￼
hi(j) = hi(j′￼)

ℙ[Yj,j′￼
] =

1
w

Proof of First Lemma

Lemma. Count-Sketch with guarantees for each with high

probability.

w = 3k/ϵ2, ℓ = O(log n) |xj − x̃j | ≤
ϵ

k
Ek

2 j

Recall the analysis of Count-Sketch. For each , , the -th estimate is ,j ∈ [d] i ∈ [ℓ] i zi := Ci[hi(j)]gi(j)
then .𝔼[zi] = xi
To apply Chebyshev’s inequality, we bound the variance of .zi
Let be the indicator variable for the event , then by pairwise independence of the hash

family, .

Yj,j′￼
hi(j) = hi(j′￼)

ℙ[Yj,j′￼
] =

1
w

Var(zi) = 𝔼[(zi − xi)2] = 𝔼 ∑
j′￼≠j

gi(j)gi(j′￼)Yj,j′￼
xj′￼

2

= ∑
j′￼≠j

x2
j′￼
𝔼[Y2

j,j′￼
] ≤

∥x∥2

w

Refining the Analysis

Refining the Analysis

• What is ?Ek
2(x)

Refining the Analysis

• What is ?Ek
2(x)

• Let be the set of entries of with the largest absolute values, then T k x
Ek

2(x) = ∑
j′￼∉T

x2
j′￼

Refining the Analysis

• What is ?Ek
2(x)

• Let be the set of entries of with the largest absolute values, then T k x
Ek

2(x) = ∑
j′￼∉T

x2
j′￼

• The error introduced by collision with entries not in is controllable by T Ek
2

Refining the Analysis

• What is ?Ek
2(x)

• Let be the set of entries of with the largest absolute values, then T k x
Ek

2(x) = ∑
j′￼∉T

x2
j′￼

• The error introduced by collision with entries not in is controllable by T Ek
2

• What about collision with the entries in ?T

Refining the Analysis

• What is ?Ek
2(x)

• Let be the set of entries of with the largest absolute values, then T k x
Ek

2(x) = ∑
j′￼∉T

x2
j′￼

• The error introduced by collision with entries not in is controllable by T Ek
2

• What about collision with the entries in ?T

• This is where we make use of w = Ω(k/ϵ2)

Refining the Analysis

• What is ?Ek
2(x)

• Let be the set of entries of with the largest absolute values, then T k x
Ek

2(x) = ∑
j′￼∉T

x2
j′￼

• The error introduced by collision with entries not in is controllable by T Ek
2

• What about collision with the entries in ?T

• This is where we make use of w = Ω(k/ϵ2)

• With growing linearly with , this can be made to happen with small probability.w k

Proof of First Lemma
page 1

Lemma. Count-Sketch with guarantees for each with high

probability.

w = 3k/ϵ2, ℓ = O(log n) |xj − x̃j | ≤
ϵ

k
Ek

2 j

Proof of First Lemma
page 1

Lemma. Count-Sketch with guarantees for each with high

probability.

w = 3k/ϵ2, ℓ = O(log n) |xj − x̃j | ≤
ϵ

k
Ek

2 j

Recall the analysis of Count-Sketch. For each , , the -th estimate is ,

then .

j ∈ [d] i ∈ [ℓ] i zi := Ci[hi(j)]gi(j)
𝔼[zi] = xj

Proof of First Lemma
page 1

Lemma. Count-Sketch with guarantees for each with high

probability.

w = 3k/ϵ2, ℓ = O(log n) |xj − x̃j | ≤
ϵ

k
Ek

2 j

Recall the analysis of Count-Sketch. For each , , the -th estimate is ,

then .

j ∈ [d] i ∈ [ℓ] i zi := Ci[hi(j)]gi(j)
𝔼[zi] = xj

Lemma. ℙ[|zi − xj | ≥
ϵ

k
Ek

2(x)] ≤
2
5

Proof of First Lemma
page 1

Lemma. Count-Sketch with guarantees for each with high

probability.

w = 3k/ϵ2, ℓ = O(log n) |xj − x̃j | ≤
ϵ

k
Ek

2 j

Recall the analysis of Count-Sketch. For each , , the -th estimate is ,

then .

j ∈ [d] i ∈ [ℓ] i zi := Ci[hi(j)]gi(j)
𝔼[zi] = xj

Lemma. ℙ[|zi − xj | ≥
ϵ

k
Ek

2(x)] ≤
2
5

Proof of First Lemma
page 1

Lemma. Count-Sketch with guarantees for each with high

probability.

w = 3k/ϵ2, ℓ = O(log n) |xj − x̃j | ≤
ϵ

k
Ek

2 j

Recall the analysis of Count-Sketch. For each , , the -th estimate is ,

then .

j ∈ [d] i ∈ [ℓ] i zi := Ci[hi(j)]gi(j)
𝔼[zi] = xj

Lemma. ℙ[|zi − xj | ≥
ϵ

k
Ek

2(x)] ≤
2
5

Chernoff

bound

Proof of First Lemma
page 1

Lemma. Count-Sketch with guarantees for each with high

probability.

w = 3k/ϵ2, ℓ = O(log n) |xj − x̃j | ≤
ϵ

k
Ek

2 j

Recall the analysis of Count-Sketch. For each , , the -th estimate is ,

then .

j ∈ [d] i ∈ [ℓ] i zi := Ci[hi(j)]gi(j)
𝔼[zi] = xj

Lemma. ℙ[|zi − xj | ≥
ϵ

k
Ek

2(x)] ≤
2
5

Let , then . z′￼i = ∑
j′￼∉T,j′￼≠j

gi(j)gi(j′￼)xj′￼
Var[z′￼i] ≤

(Ek
2(x))2

w
=

3k
ϵ2

(Ek
2(x))2

Chernoff

bound

Proof of First Lemma
page 1

Lemma. Count-Sketch with guarantees for each with high

probability.

w = 3k/ϵ2, ℓ = O(log n) |xj − x̃j | ≤
ϵ

k
Ek

2 j

Recall the analysis of Count-Sketch. For each , , the -th estimate is ,

then .

j ∈ [d] i ∈ [ℓ] i zi := Ci[hi(j)]gi(j)
𝔼[zi] = xj

Lemma. ℙ[|zi − xj | ≥
ϵ

k
Ek

2(x)] ≤
2
5

Let , then . z′￼i = ∑
j′￼∉T,j′￼≠j

gi(j)gi(j′￼)xj′￼
Var[z′￼i] ≤

(Ek
2(x))2

w
=

3k
ϵ2

(Ek
2(x))2

By Chebyshev inequality, .ℙ[|z′￼i − xi | >
ϵ

k
Ek

2(x)] ≤
1
3

Chernoff

bound

Proof of First Lemma
page 1

Lemma. Count-Sketch with guarantees for each with high

probability.

w = 3k/ϵ2, ℓ = O(log n) |xj − x̃j | ≤
ϵ

k
Ek

2 j

Recall the analysis of Count-Sketch. For each , , the -th estimate is ,

then .

j ∈ [d] i ∈ [ℓ] i zi := Ci[hi(j)]gi(j)
𝔼[zi] = xj

Lemma. ℙ[|zi − xj | ≥
ϵ

k
Ek

2(x)] ≤
2
5

Let , then . z′￼i = ∑
j′￼∉T,j′￼≠j

gi(j)gi(j′￼)xj′￼
Var[z′￼i] ≤

(Ek
2(x))2

w
=

3k
ϵ2

(Ek
2(x))2

By Chebyshev inequality, .ℙ[|z′￼i − xi | >
ϵ

k
Ek

2(x)] ≤
1
3

Let be the event that none of
entries in collide with under

, then

A
T j

hi ℙ[A] ≥ 1 −
ϵ2

3

Chernoff

bound

Proof of First Lemma
page 2

Lemma. ℙ[|zi − xj | ≥
ϵ

k
Ek

2(x)] ≤
2
5

Let , then .

By Chebyshev inequality, .

z′￼i = ∑
j′￼∉T,j′￼≠j

gi(j)gi(j′￼)xj′￼
Var[z′￼i] ≤

(Ek
2(x))2

w
=

3k
ϵ2

(Ek
2(x))2

ℙ[|z′￼i − xi | >
ϵ

k
Ek

2(x)] ≤
1
3

Let be the event that some
entry in collides with under

, then

A
T j

hi ℙ[A] ≤
k
w

=
ϵ2

3

ℙ[|zi − xj | ≥
ϵ

k
Ek

2(x)] ≤ ℙ[A] + ℙ[|z′￼i − xi | >
ϵ

k
Ek

2(x) ∣ A] ⋅ ℙ[A]

≤
ϵ2

3
+

1
3

≤
2
5

Proof of First Lemma
page 2

Lemma. ℙ[|zi − xj | ≥
ϵ

k
Ek

2(x)] ≤
2
5

Let , then .

By Chebyshev inequality, .

z′￼i = ∑
j′￼∉T,j′￼≠j

gi(j)gi(j′￼)xj′￼
Var[z′￼i] ≤

(Ek
2(x))2

w
=

3k
ϵ2

(Ek
2(x))2

ℙ[|z′￼i − xi | >
ϵ

k
Ek

2(x)] ≤
1
3

Let be the event that some
entry in collides with under

, then

A
T j

hi ℙ[A] ≤
k
w

=
ϵ2

3

ℙ[|zi − xj | ≥
ϵ

k
Ek

2(x)] ≤ ℙ[A] + ℙ[|z′￼i − xi | >
ϵ

k
Ek

2(x) ∣ A] ⋅ ℙ[A]

≤
ϵ2

3
+

1
3

≤
2
5

Recall the proof we gave for
the performance of SkipList.

We had a similar use of
union bound.

Proof of Second Lemma

Lemma. If for we have , let be the -sparse recovery of , then
x, y ∈ ℝd ∥x − y∥∞ ≤
ϵ

k
Ek

2(x) z k y

∥x − z∥ ≤ (1 + 5ϵ)Ek
2(x)

Proof of Second Lemma

Lemma. If for we have , let be the -sparse recovery of , then
x, y ∈ ℝd ∥x − y∥∞ ≤
ϵ

k
Ek

2(x) z k y

∥x − z∥ ≤ (1 + 5ϵ)Ek
2(x)

Let be the set of “big” entries of , and be that for , then has three parts:T ⊆ [d] k x T′￼ y ∥x − z∥2
2

Proof of Second Lemma

Lemma. If for we have , let be the -sparse recovery of , then
x, y ∈ ℝd ∥x − y∥∞ ≤
ϵ

k
Ek

2(x) z k y

∥x − z∥ ≤ (1 + 5ϵ)Ek
2(x)

Let be the set of “big” entries of , and be that for , then has three parts:T ⊆ [d] k x T′￼ y ∥x − z∥2
2

∥x − z∥2
2 = ∑

j∈T∩T′￼

|xj − zj |
2 + ∑

j∉T∪T′￼

x2
j + ∑

j∈T∖T′￼

x2
j + ∑

j∈T′￼∖T

|xj − zj |
2

Proof of Second Lemma

Lemma. If for we have , let be the -sparse recovery of , then
x, y ∈ ℝd ∥x − y∥∞ ≤
ϵ

k
Ek

2(x) z k y

∥x − z∥ ≤ (1 + 5ϵ)Ek
2(x)

Let be the set of “big” entries of , and be that for , then has three parts:T ⊆ [d] k x T′￼ y ∥x − z∥2
2

∥x − z∥2
2 = ∑

j∈T∩T′￼

|xj − zj |
2 + ∑

j∉T∪T′￼

x2
j + ∑

j∈T∖T′￼

x2
j + ∑

j∈T′￼∖T

|xj − zj |
2

• entries in and : by assumption, each entry contributes , and there are of themT ∩ T′￼ T′￼∖T ≤
ϵ2

k
(Ek

2(x))2 k

Proof of Second Lemma

Lemma. If for we have , let be the -sparse recovery of , then
x, y ∈ ℝd ∥x − y∥∞ ≤
ϵ

k
Ek

2(x) z k y

∥x − z∥ ≤ (1 + 5ϵ)Ek
2(x)

Let be the set of “big” entries of , and be that for , then has three parts:T ⊆ [d] k x T′￼ y ∥x − z∥2
2

∥x − z∥2
2 = ∑

j∈T∩T′￼

|xj − zj |
2 + ∑

j∉T∪T′￼

x2
j + ∑

j∈T∖T′￼

x2
j + ∑

j∈T′￼∖T

|xj − zj |
2

• entries in and : by assumption, each entry contributes , and there are of themT ∩ T′￼ T′￼∖T ≤
ϵ2

k
(Ek

2(x))2 k

• entries in : by definition, these are original components of T ∩ T′￼ (Ek
2(x))2

Proof of Second Lemma

Lemma. If for we have , let be the -sparse recovery of , then
x, y ∈ ℝd ∥x − y∥∞ ≤
ϵ

k
Ek

2(x) z k y

∥x − z∥ ≤ (1 + 5ϵ)Ek
2(x)

Let be the set of “big” entries of , and be that for , then has three parts:T ⊆ [d] k x T′￼ y ∥x − z∥2
2

∥x − z∥2
2 = ∑

j∈T∩T′￼

|xj − zj |
2 + ∑

j∉T∪T′￼

x2
j + ∑

j∈T∖T′￼

x2
j + ∑

j∈T′￼∖T

|xj − zj |
2

• entries in and : by assumption, each entry contributes , and there are of themT ∩ T′￼ T′￼∖T ≤
ϵ2

k
(Ek

2(x))2 k

• entries in : by definition, these are original components of T ∩ T′￼ (Ek
2(x))2

• entries in and : T − T′￼ T′￼− T

Proof of Second Lemma

Lemma. If for we have , let be the -sparse recovery of , then
x, y ∈ ℝd ∥x − y∥∞ ≤
ϵ

k
Ek

2(x) z k y

∥x − z∥ ≤ (1 + 5ϵ)Ek
2(x)

Let be the set of “big” entries of , and be that for , then has three parts:T ⊆ [d] k x T′￼ y ∥x − z∥2
2

∥x − z∥2
2 = ∑

j∈T∩T′￼

|xj − zj |
2 + ∑

j∉T∪T′￼

x2
j + ∑

j∈T∖T′￼

x2
j + ∑

j∈T′￼∖T

|xj − zj |
2

• entries in and : by assumption, each entry contributes , and there are of themT ∩ T′￼ T′￼∖T ≤
ϵ2

k
(Ek

2(x))2 k

• entries in : by definition, these are original components of T ∩ T′￼ (Ek
2(x))2

• entries in and : T − T′￼ T′￼− T

•
in we should have (Ek

2(x))2 ∑
j∈T′￼∖T

x2
j

Proof of Second Lemma

Lemma. If for we have , let be the -sparse recovery of , then
x, y ∈ ℝd ∥x − y∥∞ ≤
ϵ

k
Ek

2(x) z k y

∥x − z∥ ≤ (1 + 5ϵ)Ek
2(x)

Let be the set of “big” entries of , and be that for , then has three parts:T ⊆ [d] k x T′￼ y ∥x − z∥2
2

∥x − z∥2
2 = ∑

j∈T∩T′￼

|xj − zj |
2 + ∑

j∉T∪T′￼

x2
j + ∑

j∈T∖T′￼

x2
j + ∑

j∈T′￼∖T

|xj − zj |
2

• entries in and : by assumption, each entry contributes , and there are of themT ∩ T′￼ T′￼∖T ≤
ϵ2

k
(Ek

2(x))2 k

• entries in : by definition, these are original components of T ∩ T′￼ (Ek
2(x))2

• entries in and : T − T′￼ T′￼− T

•
in we should have (Ek

2(x))2 ∑
j∈T′￼∖T

x2
j

• note that since .|T − T′￼| = |T′￼− T | |T | = |T′￼| = k

Proof of Second Lemma

Lemma. If for we have , let be the -sparse recovery of , then
x, y ∈ ℝd ∥x − y∥∞ ≤
ϵ

k
Ek

2(x) z k y

∥x − z∥ ≤ (1 + 5ϵ)Ek
2(x)

Let be the set of “big” entries of , and be that for , then has three parts:T ⊆ [d] k x T′￼ y ∥x − z∥2
2

∥x − z∥2
2 = ∑

j∈T∩T′￼

|xj − zj |
2 + ∑

j∉T∪T′￼

x2
j + ∑

j∈T∖T′￼

x2
j + ∑

j∈T′￼∖T

|xj − zj |
2

• entries in and : by assumption, each entry contributes , and there are of themT ∩ T′￼ T′￼∖T ≤
ϵ2

k
(Ek

2(x))2 k

• entries in : by definition, these are original components of T ∩ T′￼ (Ek
2(x))2

• entries in and : T − T′￼ T′￼− T

•
in we should have (Ek

2(x))2 ∑
j∈T′￼∖T

x2
j

• note that since .|T − T′￼| = |T′￼− T | |T | = |T′￼| = k

Proof of Second Lemma

Lemma. If for we have , let be the -sparse recovery of , then
x, y ∈ ℝd ∥x − y∥∞ ≤
ϵ

k
Ek

2(x) z k y

∥x − z∥ ≤ (1 + 5ϵ)Ek
2(x)

Let be the set of “big” entries of , and be that for , then has three parts:T ⊆ [d] k x T′￼ y ∥x − z∥2
2

∥x − z∥2
2 = ∑

j∈T∩T′￼

|xj − zj |
2 + ∑

j∉T∪T′￼

x2
j + ∑

j∈T∖T′￼

x2
j + ∑

j∈T′￼∖T

|xj − zj |
2

• entries in and : by assumption, each entry contributes , and there are of themT ∩ T′￼ T′￼∖T ≤
ϵ2

k
(Ek

2(x))2 k

• entries in : by definition, these are original components of T ∩ T′￼ (Ek
2(x))2

• entries in and : T − T′￼ T′￼− T

•
in we should have (Ek

2(x))2 ∑
j∈T′￼∖T

x2
j

• note that since .|T − T′￼| = |T′￼− T | |T | = |T′￼| = k

• Key observation: entries in and must all be close (in absolute value)T − T′￼ T′￼− T

Lemma. If for we have , let be the -sparse recovery of , then
x, y ∈ ℝd ∥x − y∥∞ ≤
ϵ

k
Ek

2(x) z k y

∥x − z∥ ≤ (1 + 5ϵ)Ek
2(x)

Let be the set of “big” entries of , and be that for , then has three parts:

• entries in and :

•
in we should have

• note that since .

• Key observation: entries in and must all be close (in absolute value)

T ⊆ [d] k x T′￼ y ∥x − z∥2
2

∥x − z∥2
2 = ∑

j∈T∩T′￼

|xj − zj |
2 + ∑

j∉T∪T′￼

x2
j + ∑

j∈T∖T′￼

x2
j + ∑

j∈T′￼∖T

|xj − zj |
2

T − T′￼ T′￼− T
(Ek

2(x))2 ∑
j∈T′￼∖T

x2
j

|T − T′￼| = |T′￼− T | |T | = |T′￼| = k

T − T′￼ T′￼− T

Claim. If and , then j ∈ T∖T′￼ j′￼∈ T′￼∖T xj ≤ xj′￼
+

2ϵ

k
Ek

2(x)

Lemma. If for we have , let be the -sparse recovery of , then
x, y ∈ ℝd ∥x − y∥∞ ≤
ϵ

k
Ek

2(x) z k y

∥x − z∥ ≤ (1 + 5ϵ)Ek
2(x)

Let be the set of “big” entries of , and be that for , then has three parts:

• entries in and :

•
in we should have

• note that since .

• Key observation: entries in and must all be close (in absolute value)

T ⊆ [d] k x T′￼ y ∥x − z∥2
2

∥x − z∥2
2 = ∑

j∈T∩T′￼

|xj − zj |
2 + ∑

j∉T∪T′￼

x2
j + ∑

j∈T∖T′￼

x2
j + ∑

j∈T′￼∖T

|xj − zj |
2

T − T′￼ T′￼− T
(Ek

2(x))2 ∑
j∈T′￼∖T

x2
j

|T − T′￼| = |T′￼− T | |T | = |T′￼| = k

T − T′￼ T′￼− T

Claim. If and , then j ∈ T∖T′￼ j′￼∈ T′￼∖T xj ≤ xj′￼
+

2ϵ

k
Ek

2(x)

∑
j∈T∖T′￼

x2
j ≤ ∑

j∈T′￼∖T

(|xj | +
2ϵ

k
Ek

2(x))2 ≤ ∑
j∈T′￼∖T

x2
j +

4ϵ2

k
(Ek

2(x))2 +
4ϵ |xj |

k
Ek

2(x) ≤ ∑
j∈T′￼∖T

x2
j + 8ϵ(Ek

2(x))2

Lemma. If for we have , let be the -sparse recovery of , then
x, y ∈ ℝd ∥x − y∥∞ ≤
ϵ

k
Ek

2(x) z k y

∥x − z∥ ≤ (1 + 5ϵ)Ek
2(x)

Let be the set of “big” entries of , and be that for , then has three parts:

• entries in and :

•
in we should have

• note that since .

• Key observation: entries in and must all be close (in absolute value)

T ⊆ [d] k x T′￼ y ∥x − z∥2
2

∥x − z∥2
2 = ∑

j∈T∩T′￼

|xj − zj |
2 + ∑

j∉T∪T′￼

x2
j + ∑

j∈T∖T′￼

x2
j + ∑

j∈T′￼∖T

|xj − zj |
2

T − T′￼ T′￼− T
(Ek

2(x))2 ∑
j∈T′￼∖T

x2
j

|T − T′￼| = |T′￼− T | |T | = |T′￼| = k

T − T′￼ T′￼− T

Claim. If and , then j ∈ T∖T′￼ j′￼∈ T′￼∖T xj ≤ xj′￼
+

2ϵ

k
Ek

2(x)

∑
j∈T∖T′￼

x2
j ≤ ∑

j∈T′￼∖T

(|xj | +
2ϵ

k
Ek

2(x))2 ≤ ∑
j∈T′￼∖T

x2
j +

4ϵ2

k
(Ek

2(x))2 +
4ϵ |xj |

k
Ek

2(x) ≤ ∑
j∈T′￼∖T

x2
j + 8ϵ(Ek

2(x))2

By Cauchy-Schwartz, ∑
j∈T′￼∖T

|xj | ≤ ∑
j∉T

|xj | ≤ k∑
j∉T

x2
j = kEk

2(x)

Proof of Second Lemma

Lemma. If for we have , let be the -sparse recovery of , then
x, y ∈ ℝd ∥x − y∥∞ ≤
ϵ

k
Ek

2(x) z k y

∥x − z∥ ≤ (1 + 5ϵ)Ek
2(x)

Let be the set of “big” entries of , and be that for , then has three parts:

• entries in and : by assumption, each entry contributes , and there are of them

• entries in : by definition, these are original components of

•
entries in and :

Putting everything together, , hence .

T ⊆ [d] k x T′￼ y ∥x − z∥2
2

∥x − z∥2
2 = ∑

j∈T∩T′￼

|xj − zj |
2 + ∑

j∉T∪T′￼

x2
j + ∑

j∈T∖T′￼

x2
j + ∑

j∈T′￼∖T

|xj − zj |
2

T ∩ T′￼ T′￼∖T ≤
ϵ2

k
(Ek

2(x))2 k

T ∩ T′￼ (Ek
2(x))2

T − T′￼ T′￼− T ∑
j∈T∖T′￼

x2
j ≤ ∑

j∈T′￼∖T

x2
j + 8ϵ(Ek

2(x))2

∥x − z∥2
2 ≤ (1 + 9ϵ)(Ek

2(x))2 ∥x − z∥ ≤ 1 + 9ϵEk
2(x) ≤ (1 + 5ϵ)Ek

2(x)

Putting Things Together..

Lemma. Count-Sketch with guarantees for each w.h.p.w = 3k/ϵ2, ℓ = O(log n) |xj − x̃j | ≤
ϵ

k
Ek

2 j

Lemma. If for we have , let be the -sparse recovery of , then
x, y ∈ ℝd ∥x − y∥∞ ≤
ϵ

k
Ek

2(x) z k y

∥x − z∥ ≤ (1 + 5ϵ)Ek
2(x)

Putting the two Lemmas together, we have that with high probability, the sparse recovery yielded by Count-Sketch
has error ≤ (1 + 5ϵ)Ek

2(x)

Putting Things Together..

Lemma. Count-Sketch with guarantees for each w.h.p.w = 3k/ϵ2, ℓ = O(log n) |xj − x̃j | ≤
ϵ

k
Ek

2 j

Lemma. If for we have , let be the -sparse recovery of , then
x, y ∈ ℝd ∥x − y∥∞ ≤
ϵ

k
Ek

2(x) z k y

∥x − z∥ ≤ (1 + 5ϵ)Ek
2(x)

Putting the two Lemmas together, we have that with high probability, the sparse recovery yielded by Count-Sketch
has error ≤ (1 + 5ϵ)Ek

2(x)

One last thing: to give the sketch from , naïvely we need to go through all the coordinates, which takes time .x̃ O(d)

Putting Things Together..

Lemma. Count-Sketch with guarantees for each w.h.p.w = 3k/ϵ2, ℓ = O(log n) |xj − x̃j | ≤
ϵ

k
Ek

2 j

Lemma. If for we have , let be the -sparse recovery of , then
x, y ∈ ℝd ∥x − y∥∞ ≤
ϵ

k
Ek

2(x) z k y

∥x − z∥ ≤ (1 + 5ϵ)Ek
2(x)

Putting the two Lemmas together, we have that with high probability, the sparse recovery yielded by Count-Sketch
has error ≤ (1 + 5ϵ)Ek

2(x)

One last thing: to give the sketch from , naïvely we need to go through all the coordinates, which takes time .x̃ O(d)

We can do faster by maintaining a record as the input comes!

