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» We may measure the quality of approximation by £, distance

. Sogivenk € Nand e & ((),5), we are interested in finding y € R¢, with

* |lyllg <k

. |y —Xx]|, < (1 + €)E§(X), where Eé‘(x) — glin |z — x]||,
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Quantifying the error using Ef(x) is necessary. It can be as large as comparable to ||x||,
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 Offline optimum solution: pick the k entries of X with the largest absolute values

* Recall Count-Sketch:

* Draw £ = O(log d) hash functions hy, ---, h, : [d] — [w], independently from a pairwise
independent hash family

* Draw 7 hash functions g, -+, g, : [d] = {—1, + 1}, independently from a pairwise
independent hash family

» Atinput i, increase counter C;[h(i,)] by g(i)A, forj=1,....7
» Output: for coordinate i, report X; := median {g;,({)C;[ ()]}

» To solve sparse recovery, take w = 3k/e?, take the k largest coordinates of X

Note the dependence on k
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e Main idea:

» If we chose the k “correct” entries, since total error should be €Ek, the error
€
allowed for each entry should be controlled to —Ef

Vi

* But the k entries we chose may differ from the “correct” ones. We should argue
that, when all entries are estimated accurately enough, this doesn’t introduce too
much error.
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Refining the Analysis

 Whatiis Eé‘(x)?

» Let T be the set of k entries of X with the largest absolute values, then

Ef(x) = Z x]g

\

* The error introduced by collision with entries not in 7' is controllable by Eé‘

 What about collision with the entries in 77
» This is where we make use of w = Q(k/¢e?)

» With w growing linearly with £, this can be made to happen with small probability.
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Recall the proof we gave for
the performance of SkipList.
We had a similar use of
union bound.
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Putting Things Together..

One last thing: to give the sketch from X, naively we need to go through all the coordinates, which takes time O(d).

We can do faster by maintaining a record as the input comes!



