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Sparse Recovery
Application of Count-Sketch
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• We may measure the quality of approximation by  distanceℓ2

• So given  and , we are interested in finding , with k ∈ ℕ ϵ ∈ (0,
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) y ∈ ℝd

•  ∥y∥0 ≤ k

• , where ∥y − x∥2 ≤ (1 + ϵ)Ek
2(x) Ek

2(x) := min
z∈ℝd,∥z∥0≤k

∥z − x∥2

Quantifying the error using  is necessary.  It can be as large as comparable to Ek
2(x) ∥x∥2
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• Offline optimum solution: pick the  entries of  with the largest absolute valuesk x
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• Draw  hash functions , independently from a pairwise 
independent hash family

ℓ g1, ⋯, gℓ : [d] → {−1, + 1}

• At input , increase counter  by , for it Cj[hj(it)] gj(it)Δt j = 1,…, ℓ
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• To solve sparse recovery, take , take the  largest coordinates of w = 3k/ϵ2 k x̃

Note the dependence on k
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x2
j′￼

• The error introduced by collision with entries not in  is controllable by T Ek
2

• What about collision with the entries in ?T

• This is where we make use of w = Ω(k/ϵ2)

• With  growing linearly with , this can be made to happen with small probability.w k
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One last thing: to give the sketch from , naïvely we need to go through all the coordinates, which takes time .x̃ O(d)

We can do faster by maintaining a record as the input comes!


