Sparse Recovery Application of Count-Sketch

The Sparse Recovery Problem

The Sparse Recovery Problem

- Recall: In a streaming algorithm setting, we are sometimes interested in having a sparse vector that approximates the frequency vector $\mathbf{x} \in \mathbb{R}^{d}$

The Sparse Recovery Problem

- Recall: In a streaming algorithm setting, we are sometimes interested in having a sparse vector that approximates the frequency vector $\mathbf{x} \in \mathbb{R}^{d}$
- A vector is sparse if it has few non-zero entries

The Sparse Recovery Problem

- Recall: In a streaming algorithm setting, we are sometimes interested in having a sparse vector that approximates the frequency vector $\mathbf{x} \in \mathbb{R}^{d}$
- A vector is sparse if it has few non-zero entries
- We may measure the quality of approximation by ℓ_{2} distance

The Sparse Recovery Problem

- Recall: In a streaming algorithm setting, we are sometimes interested in having a sparse vector that approximates the frequency vector $\mathbf{x} \in \mathbb{R}^{d}$
- A vector is sparse if it has few non-zero entries
- We may measure the quality of approximation by ℓ_{2} distance
- So given $k \in \mathbb{N}$ and $\epsilon \in\left(0, \frac{1}{2}\right)$, we are interested in finding $\mathbf{y} \in \mathbb{R}^{d}$, with

The Sparse Recovery Problem

- Recall: In a streaming algorithm setting, we are sometimes interested in having a sparse vector that approximates the frequency vector $\mathbf{x} \in \mathbb{R}^{d}$
- A vector is sparse if it has few non-zero entries
- We may measure the quality of approximation by ℓ_{2} distance
- So given $k \in \mathbb{N}$ and $\epsilon \in\left(0, \frac{1}{2}\right)$, we are interested in finding $\mathbf{y} \in \mathbb{R}^{d}$, with
- $\|\mathbf{y}\|_{0} \leq k$

The Sparse Recovery Problem

- Recall: In a streaming algorithm setting, we are sometimes interested in having a sparse vector that approximates the frequency vector $\mathbf{x} \in \mathbb{R}^{d}$
- A vector is sparse if it has few non-zero entries
- We may measure the quality of approximation by ℓ_{2} distance
- So given $k \in \mathbb{N}$ and $\epsilon \in\left(0, \frac{1}{2}\right)$, we are interested in finding $\mathbf{y} \in \mathbb{R}^{d}$, with
- $\|\mathbf{y}\|_{0} \leq k$
- $\|\mathbf{y}-\mathbf{x}\|_{2} \leq(1+\epsilon) E_{2}^{k}(\mathbf{x})$, where $E_{2}^{k}(\mathbf{x}):=\min _{\mathbf{z} \in \mathbb{R}^{d},\|z\|_{0} \leq k}\|\mathbf{z}-\mathbf{x}\|_{2}$

The Sparse Recovery Problem

- Recall: In a streaming algorithm setting, we are sometimes interested in having a sparse vector that approximates the frequency vector $\mathbf{x} \in \mathbb{R}^{d}$
- A vector is sparse if it has few non-zero entries
- We may measure the quality of approximation by ℓ_{2} distance
- So given $k \in \mathbb{N}$ and $\epsilon \in\left(0, \frac{1}{2}\right)$, we are interested in finding $\mathbf{y} \in \mathbb{R}^{d}$, with
- $\|\mathbf{y}\|_{0} \leq k$
- $\|\mathbf{y}-\mathbf{x}\|_{2} \leq(1+\epsilon) E_{2}^{k}(\mathbf{x})$, where $E_{2}^{k}(\mathbf{x}):=\min _{\mathbf{z} \in \mathbb{R}^{d},\|z\|_{0} \leq k}\|\mathbf{z}-\mathbf{x}\|_{2}$

Sparse Recovery with Count-Sketch

Sparse Recovery with Count-Sketch

- Offline optimum solution: pick the k entries of \mathbf{x} with the largest absolute values

Sparse Recovery with Count-Sketch

- Offline optimum solution: pick the k entries of \mathbf{x} with the largest absolute values
- Recall Count-Sketch:

Sparse Recovery with Count-Sketch

- Offline optimum solution: pick the k entries of \mathbf{x} with the largest absolute values
- Recall Count-Sketch:
- Draw $\ell=O(\log d)$ hash functions $h_{1}, \cdots, h_{\ell}:[d] \rightarrow[w]$, independently from a pairwise independent hash family

Sparse Recovery with Count-Sketch

- Offline optimum solution: pick the k entries of \mathbf{x} with the largest absolute values
- Recall Count-Sketch:
- Draw $\ell=O(\log d)$ hash functions $h_{1}, \cdots, h_{\ell}:[d] \rightarrow[w]$, independently from a pairwise independent hash family
- Draw ℓ hash functions $g_{1}, \cdots, g_{\ell}:[d] \rightarrow\{-1,+1\}$, independently from a pairwise independent hash family

Sparse Recovery with Count-Sketch

- Offline optimum solution: pick the k entries of \mathbf{x} with the largest absolute values
- Recall Count-Sketch:
- Draw $\ell=O(\log d)$ hash functions $h_{1}, \cdots, h_{\ell}:[d] \rightarrow[w]$, independently from a pairwise independent hash family
- Draw ℓ hash functions $g_{1}, \cdots, g_{\ell}:[d] \rightarrow\{-1,+1\}$, independently from a pairwise independent hash family
- At input i_{t}, increase counter $C_{j}\left[h_{j}\left(i_{t}\right)\right]$ by $g_{j}\left(i_{t}\right) \Delta_{t}$, for $j=1, \ldots, \ell$

Sparse Recovery with Count-Sketch

- Offline optimum solution: pick the k entries of \mathbf{x} with the largest absolute values
- Recall Count-Sketch:
- Draw $\ell=O(\log d)$ hash functions $h_{1}, \cdots, h_{\ell}:[d] \rightarrow[w]$, independently from a pairwise independent hash family
- Draw ℓ hash functions $g_{1}, \cdots, g_{\ell}:[d] \rightarrow\{-1,+1\}$, independently from a pairwise independent hash family
- At input i_{t}, increase counter $C_{j}\left[h_{j}\left(i_{t}\right)\right]$ by $g_{j}\left(i_{t}\right) \Delta_{t}$, for $j=1, \ldots, \ell$
- Output: for coordinate i, report $\tilde{x}_{i}:=$ median $\left\{g_{j}(i) C_{j}\left[h_{j}(i)\right]\right\}$

Sparse Recovery with Count-Sketch

- Offline optimum solution: pick the k entries of \mathbf{x} with the largest absolute values
- Recall Count-Sketch:
- Draw $\ell=O(\log d)$ hash functions $h_{1}, \cdots, h_{\ell}:[d] \rightarrow[w]$, independently from a pairwise independent hash family
- Draw ℓ hash functions $g_{1}, \cdots, g_{\ell}:[d] \rightarrow\{-1,+1\}$, independently from a pairwise independent hash family
- At input i_{t}, increase counter $C_{j}\left[h_{j}\left(i_{t}\right)\right]$ by $g_{j}\left(i_{t}\right) \Delta_{t}$, for $j=1, \ldots, \ell$
- Output: for coordinate i, report $\tilde{x}_{i}:=$ median $\left\{g_{j}(i) C_{j}\left[h_{j}(i)\right]\right\}$
- To solve sparse recovery, take $w=3 k / \epsilon^{2}$, take the k largest coordinates of $\tilde{\mathbf{x}}$

Sparse Recovery with Count-Sketch

- Offline optimum solution: pick the k entries of \mathbf{x} with the largest absolute values
- Recall Count-Sketch:
- Draw $\ell=O(\log d)$ hash functions $h_{1}, \cdots, h_{\ell}:[d] \rightarrow[w]$, independently from a pairwise independent hash family
- Draw ℓ hash functions $g_{1}, \cdots, g_{\ell}:[d] \rightarrow\{-1,+1\}$, independently from a pairwise independent hash family
- At input i_{t}, increase counter $C_{j}\left[h_{j}\left(i_{t}\right)\right]$ by $g_{j}\left(i_{t}\right) \Delta_{t}$, for $j=1, \ldots, \ell$
- Output: for coordinate i, report $\tilde{x}_{i}:=$ median $\left\{g_{j}(i) C_{j}\left[h_{j}(i)\right]\right\}$
- To solve sparse recovery, take $w=3 k / \epsilon^{2}$, take the k largest coordinates of $\tilde{\mathbf{x}}$

Ideas of Proof

Ideas of Proof

- Main idea:

Ideas of Proof

- Main idea:
- If we chose the k "correct" entries, since total error should be ϵE_{2}^{k}, the error allowed for each entry should be controlled to $\frac{\epsilon}{\sqrt{k}} E_{2}^{k}$

Ideas of Proof

- Main idea:
- If we chose the k "correct" entries, since total error should be ϵE_{2}^{k}, the error allowed for each entry should be controlled to $\frac{\epsilon}{\sqrt{k}} E_{2}^{k}$
- But the k entries we chose may differ from the "correct" ones. We should argue that, when all entries are estimated accurately enough, this doesn't introduce too much error.

Ideas of Proof

- Main idea:
- If we chose the k "correct" entries, since total error should be ϵE_{2}^{k}, the error allowed for each entry should be controlled to $\frac{\epsilon}{\sqrt{k}} E_{2}^{k}$

Lemma. Count-Sketch with $w=3 k / \epsilon^{2}, \ell=O(\log n)$ guarantees $\left|x_{j}-\tilde{x}_{j}\right| \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}$ for
each j with high probability.

Ideas of Proof

- Main idea:
- If we chose the k "correct" entries, since total error should be ϵE_{2}^{k}, the error allowed for each entry should be controlled to $\frac{\epsilon}{\sqrt{k}} E_{2}^{k}$
- But the k entries we chose may differ from the "correct" ones. We should argue that, when all entries are estimated accurately enough, this doesn't introduce too much error.

Lemma. For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$, if $\|\mathbf{x}-\mathbf{y}\|_{\infty} \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})$, let \mathbf{z} be the k-sparse recovery of \mathbf{y}, then
$\|\mathbf{x}-\mathbf{z}\| \leq(1+5 \epsilon) E_{2}^{k}(\mathbf{x})$

Proof of First Lemma

Lemma. Count-Sketch with $w=3 k / \epsilon^{2}, \ell=O(\log n)$ guarantees $\left|x_{j}-\tilde{x}_{j}\right| \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}$ for each j with high probability.

Proof of First Lemma

Lemma. Count-Sketch with $w=3 k / \epsilon^{2}, \ell=O(\log n)$ guarantees $\left|x_{j}-\tilde{x}_{j}\right| \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}$ for each j with high probability.

Recall the analysis of Count-Sketch. For each $j \in[d], i \in[\ell]$, the i-th estimate is $z_{i}:=C_{i}\left[h_{i}(j)\right] g_{i}(j)$,

Proof of First Lemma

Lemma. Count-Sketch with $w=3 k / \epsilon^{2}, \ell=O(\log n)$ guarantees $\left|x_{j}-\tilde{x}_{j}\right| \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}$ for each j with high probability.

Recall the analysis of Count-Sketch. For each $j \in[d], i \in[\ell]$, the i-th estimate is $z_{i}:=C_{i}\left[h_{i}(j)\right] g_{i}(j)$, then $\mathbb{E}\left[z_{i}\right]=x_{i}$.

Proof of First Lemma

Lemma. Count-Sketch with $w=3 k / \epsilon^{2}, \ell=O(\log n)$ guarantees $\left|x_{j}-\tilde{x}_{j}\right| \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}$ for each j with high probability.

Recall the analysis of Count-Sketch. For each $j \in[d], i \in[\ell]$, the i-th estimate is $z_{i}:=C_{i}\left[h_{i}(j)\right] g_{i}(j)$,
then $\mathbb{E}\left[z_{i}\right]=x_{i}$.
To apply Chebyshev's inequality, we bound the variance of z_{i}.

Proof of First Lemma

Lemma. Count-Sketch with $w=3 k / \epsilon^{2}, \ell=O(\log n)$ guarantees $\left|x_{j}-\tilde{x}_{j}\right| \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}$ for each j with high probability.

Recall the analysis of Count-Sketch. For each $j \in[d], i \in[\ell]$, the i-th estimate is $z_{i}:=C_{i}\left[h_{i}(j)\right] g_{i}(j)$, then $\mathbb{E}\left[z_{i}\right]=x_{i}$.
To apply Chebyshev's inequality, we bound the variance of z_{i}.
Let $Y_{j, j^{\prime}}$ be the indicator variable for the event $h_{i}(j)=h_{i}\left(j^{\prime}\right)$, then by pairwise independence of the hash family, $\mathbb{P}\left[Y_{j, j^{\prime}}\right]=\frac{1}{w}$.

Proof of First Lemma

Lemma. Count-Sketch with $w=3 k / \epsilon^{2}, \ell=O(\log n)$ guarantees $\left|x_{j}-\tilde{x}_{j}\right| \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}$ for each j with high probability.

Recall the analysis of Count-Sketch. For each $j \in[d], i \in[\ell]$, the i-th estimate is $z_{i}:=C_{i}\left[h_{i}(j)\right] g_{i}(j)$, then $\mathbb{E}\left[z_{i}\right]=x_{i}$.
To apply Chebyshev's inequality, we bound the variance of z_{i}.
Let $Y_{j, j^{\prime}}$ be the indicator variable for the event $h_{i}(j)=h_{i}\left(j^{\prime}\right)$, then by pairwise independence of the hash family, $\mathbb{P}\left[Y_{j, j^{\prime}}\right]=\frac{1}{w}$.
$\operatorname{Var}\left(z_{i}\right)=\mathbb{E}\left[\left(z_{i}-x_{i}\right)^{2}\right]=\mathbb{E}\left[\left(\sum_{j^{\prime} \neq j} g_{i}(j) g_{i}\left(j^{\prime}\right) Y_{j, j^{\prime}} x_{j^{\prime}}\right)^{2}\right]=\sum_{j^{\prime} \neq j} x_{j^{\prime}}^{2} \mathbb{E}\left[Y_{j, j^{\prime}}^{2}\right] \leq \frac{\|x\|^{2}}{w}$

Refining the Analysis

Refining the Analysis

- What is $E_{2}^{k}(\mathbf{x})$?

Refining the Analysis

- What is $E_{2}^{k}(\mathbf{x})$?
- Let T be the set of k entries of \mathbf{x} with the largest absolute values, then $E_{2}^{k}(\mathbf{x})=\sqrt{\sum_{j^{\prime} \notin T} x_{j^{\prime}}^{2}}$

Refining the Analysis

- What is $E_{2}^{k}(\mathbf{x})$?
- Let T be the set of k entries of \mathbf{x} with the largest absolute values, then $E_{2}^{k}(\mathbf{x})=\sqrt{\sum_{j^{\prime} \notin T} x_{j^{\prime}}^{2}}$
- The error introduced by collision with entries not in T is controllable by E_{2}^{k}

Refining the Analysis

- What is $E_{2}^{k}(\mathbf{x})$?
- Let T be the set of k entries of \mathbf{x} with the largest absolute values, then $E_{2}^{k}(\mathbf{x})=\sqrt{\sum_{j^{\prime} \notin T} x_{j^{\prime}}^{2}}$
- The error introduced by collision with entries not in T is controllable by E_{2}^{k}
- What about collision with the entries in T ?

Refining the Analysis

- What is $E_{2}^{k}(\mathbf{x})$?
- Let T be the set of k entries of \mathbf{x} with the largest absolute values, then $E_{2}^{k}(\mathbf{x})=\sqrt{\sum_{j^{\prime} \notin T} x_{j^{\prime}}^{2}}$
- The error introduced by collision with entries not in T is controllable by E_{2}^{k}
- What about collision with the entries in T ?
- This is where we make use of $w=\Omega\left(k / \epsilon^{2}\right)$

Refining the Analysis

- What is $E_{2}^{k}(\mathbf{x})$?
- Let T be the set of k entries of \mathbf{x} with the largest absolute values, then $E_{2}^{k}(\mathbf{x})=\sqrt{\sum_{j^{\prime} \notin T} x_{j^{\prime}}^{2}}$
- The error introduced by collision with entries not in T is controllable by E_{2}^{k}
- What about collision with the entries in T ?
- This is where we make use of $w=\Omega\left(k / \epsilon^{2}\right)$
- With w growing linearly with k, this can be made to happen with small probability.

Proof of First Lemma

 page 1Lemma. Count-Sketch with $w=3 k / \epsilon^{2}, \ell=O(\log n)$ guarantees $\left|x_{j}-\tilde{x}_{j}\right| \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}$ for each j with high probability.

Proof of First Lemma

page 1

Lemma. Count-Sketch with $w=3 k / \epsilon^{2}, \ell=O(\log n)$ guarantees $\left|x_{j}-\tilde{x}_{j}\right| \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}$ for each j with high probability.

Recall the analysis of Count-Sketch. For each $j \in[d], i \in[\ell]$, the i-th estimate is $z_{i}:=C_{i}\left[h_{i}(j)\right] g_{i}(j)$, then $\mathbb{E}\left[z_{i}\right]=x_{j}$.

Proof of First Lemma

page 1

Lemma. Count-Sketch with $w=3 k / \epsilon^{2}, \ell=O(\log n)$ guarantees $\left|x_{j}-\tilde{x}_{j}\right| \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}$ for each j with high probability.

Recall the analysis of Count-Sketch. For each $j \in[d], i \in[\ell]$, the i-th estimate is $z_{i}:=C_{i}\left[h_{i}(j)\right] g_{i}(j)$, then $\mathbb{E}\left[z_{i}\right]=x_{j}$.

Lemma. $\mathbb{P}\left[\left|z_{i}-x_{j}\right| \geq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})\right] \leq \frac{2}{5}$

Proof of First Lemma

page 1

Lemma. Count-Sketch with $w=3 k / \epsilon^{2}, \ell=O(\log n)$ guarantees $\left|x_{j}-\tilde{x}_{j}\right| \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}$ for each j with high probability.

Recall the analysis of Count-Sketch. For each $j \in[d], i \in[\ell]$, the i-th estimate is $z_{i}:=C_{i}\left[h_{i}(j)\right] g_{i}(j)$, then $\mathbb{E}\left[z_{i}\right]=x_{j}$.

Lemma. $\mathbb{P}\left[\left|z_{i}-x_{j}\right| \geq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})\right] \leq \frac{2}{5}$

Proof of First Lemma

page 1

Lemma. Count-Sketch with $w=3 k / \epsilon^{2}, \ell=O(\log n)$ guarantees $\left|x_{j}-\tilde{x}_{j}\right| \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}$ for each j with high probability.

Recall the analysis of Count-Sketch. For each $j \in[d], i \in[\ell]$, the i-th estimate is $z_{i}:=C_{i}\left[h_{i}(j)\right] g_{i}(j)$, then $\mathbb{E}\left[z_{i}\right]=x_{j}$.

Lemma. $\mathbb{P}\left[\left|z_{i}-x_{j}\right| \geq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})\right] \leq \frac{2}{5}$

Proof of First Lemma

page 1

Lemma. Count-Sketch with $w=3 k / \epsilon^{2}, \ell=O(\log n)$ guarantees $\left|x_{j}-\tilde{x}_{j}\right| \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}$ for each j with high probability.

Recall the analysis of Count-Sketch. For each $j \in[d], i \in[\ell]$, the i-th estimate is $z_{i}:=C_{i}\left[h_{i}(j)\right] g_{i}(j)$, then $\mathbb{E}\left[z_{i}\right]=x_{j}$.

Lemma. $\mathbb{P}\left[\left|z_{i}-x_{j}\right| \geq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})\right] \leq \frac{2}{5}$
Let $z_{i}^{\prime}=\sum_{j^{\prime} \notin T, j^{\prime} \neq j} g_{i}(j) g_{i}\left(j^{\prime}\right) x_{j^{\prime},}$ then $\operatorname{Var}\left[z_{i}^{\prime}\right] \leq \frac{\left(E_{2}^{k}(\mathbf{x})\right)^{2}}{w}=\frac{3 k}{\epsilon^{2}}\left(E_{2}^{k}(\mathbf{x})\right)^{2}$.

Proof of First Lemma

page 1

Lemma. Count-Sketch with $w=3 k / \epsilon^{2}, \ell=O(\log n)$ guarantees $\left|x_{j}-\tilde{x}_{j}\right| \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}$ for each j with high probability.

Recall the analysis of Count-Sketch. For each $j \in[d], i \in[\ell]$, the i-th estimate is $z_{i}:=C_{i}\left[h_{i}(j)\right] g_{i}(j)$, then $\mathbb{E}\left[z_{i}\right]=x_{j}$.

Lemma. $\mathbb{P}\left[\left|z_{i}-x_{j}\right| \geq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})\right] \leq \frac{2}{5}$
Let $z_{i}^{\prime}=\sum_{j^{\prime} \notin T, j^{\prime} \neq j} g_{i}(j) g_{i}\left(j^{\prime}\right) x_{j^{\prime}}$, then $\operatorname{Var}\left[z_{i}^{\prime}\right] \leq \frac{\left(E_{2}^{k}(\mathbf{x})\right)^{2}}{w}=\frac{3 k}{\epsilon^{2}}\left(E_{2}^{k}(\mathbf{x})\right)^{2}$.
By Chebyshev inequality, $\mathbb{P}\left[\left|z_{i}^{\prime}-x_{i}\right|>\frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})\right] \leq \frac{1}{3}$.

Proof of First Lemma

page 1

Lemma. Count-Sketch with $w=3 k / \epsilon^{2}, \ell=O(\log n)$ guarantees $\left|x_{j}-\tilde{x}_{j}\right| \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}$ for each j with high probability.

Recall the analysis of Count-Sketch. For each $j \in[d], i \in[\ell]$, the i-th estimate is $z_{i}:=C_{i}\left[h_{i}(j)\right] g_{i}(j)$, then $\mathbb{E}\left[z_{i}\right]=x_{j}$.

Lemma. $\mathbb{P}\left[\left|z_{i}-x_{j}\right| \geq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})\right] \leq \frac{2}{5}$
Let $z_{i}^{\prime}=\sum_{j^{\prime} \notin T, j^{\prime} \neq j} g_{i}(j) g_{i}\left(j^{\prime}\right) x_{j^{\prime}}$, then $\operatorname{Var}\left[z_{i}^{\prime}\right] \leq \frac{\left(E_{2}^{k}(\mathbf{x})\right)^{2}}{w}=\frac{3 k}{\epsilon^{2}}\left(E_{2}^{k}(\mathbf{x})\right)^{2}$.
By Chebyshev inequality, $\mathbb{P}\left[\left|z_{i}^{\prime}-x_{i}\right|>\frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})\right] \leq \frac{1}{3}$.
Let A be the event that none of entries in T collide with j under
h_{i}, then $\mathbb{P}[A] \geq 1-\frac{\epsilon^{2}}{3}$

Proof of First Lemma

page 2

Lemma. $\mathbb{P}\left[\left|z_{i}-x_{j}\right| \geq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})\right] \leq \frac{2}{5}$
Let $z_{i}^{\prime}=\sum_{j^{\prime} \notin T, j^{\prime} \neq j} g_{i}(j) g_{i}\left(j^{\prime}\right) x_{j^{\prime}}$, then $\operatorname{Var}\left[z_{i}^{\prime}\right] \leq \frac{\left(E_{2}^{k}(\mathbf{x})\right)^{2}}{w}=\frac{3 k}{\epsilon^{2}}\left(E_{2}^{k}(\mathbf{x})\right)^{2}$.
By Chebyshev inequality, $\mathbb{P}\left[\left|z_{i}^{\prime}-x_{i}\right|>\frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})\right] \leq \frac{1}{3}$.
Let A be the event that some entry in T collides with j under h_{i}, then $\mathbb{P}[A] \leq \frac{k}{w}=\frac{\epsilon^{2}}{3}$

$$
\begin{aligned}
& \mathbb{P}\left[\left|z_{i}-x_{j}\right| \geq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})\right] \leq \mathbb{P}[A]+\mathbb{P}\left[\left.\left|z_{i}^{\prime}-x_{i}\right|>\frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x}) \right\rvert\, \bar{A}\right] \cdot \mathbb{P}[\bar{A}] \\
& \leq \frac{\epsilon^{2}}{3}+\frac{1}{3} \leq \frac{2}{5}
\end{aligned}
$$

Proof of First Lemma

page 2

Lemma. $\mathbb{P}\left[\left|z_{i}-x_{j}\right| \geq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})\right] \leq \frac{2}{5}$
Let $z_{i}^{\prime}=\sum_{j^{\prime} \notin T, j^{\prime} \neq j} g_{i}(j) g_{i}\left(j^{\prime}\right) x_{j^{\prime}}$, then $\operatorname{Var}\left[z_{i}^{\prime}\right] \leq \frac{\left(E_{2}^{k}(\mathbf{x})\right)^{2}}{w}=\frac{3 k}{\epsilon^{2}}\left(E_{2}^{k}(\mathbf{x})\right)^{2}$.
By Chebyshev inequality, $\mathbb{P}\left[\left|z_{i}^{\prime}-x_{i}\right|>\frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})\right] \leq \frac{1}{3}$.
Let A be the event that some entry in T collides with j under
h_{i}, then $\mathbb{P}[A] \leq \frac{k}{w}=\frac{\epsilon^{2}}{3}$

$$
\begin{aligned}
& \mathbb{P}\left[\left|z_{i}-x_{j}\right| \geq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})\right] \leq \mathbb{P}[A]+\mathbb{P}\left[\left.\left|z_{i}^{\prime}-x_{i}\right|>\frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x}) \right\rvert\, \bar{A}\right] \cdot \mathbb{P}[\bar{A}] \\
& \leq \frac{\epsilon^{2}}{3}+\frac{1}{3} \leq \frac{2}{5}
\end{aligned}
$$

Recall the proof we gave for the performance of SkipList. We had a similar use of union bound.

Proof of Second Lemma

Lemma. If for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ we have $\|\mathbf{x}-\mathbf{y}\|_{\infty} \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})$, let \mathbf{z} be the k-sparse recovery of \mathbf{y}, then

$$
\|\mathbf{x}-\mathbf{z}\| \leq(1+5 \epsilon) E_{2}^{k}(\mathbf{x})
$$

Proof of Second Lemma

Lemma. If for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ we have $\|\mathbf{x}-\mathbf{y}\|_{\infty} \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})$, let \mathbf{z} be the k-sparse recovery of \mathbf{y}, then $\|\mathbf{x}-\mathbf{z}\| \leq(1+5 \epsilon) E_{2}^{k}(\mathbf{x})$

Let $T \subseteq[d]$ be the set of k "big" entries of \mathbf{x}, and T^{\prime} be that for \mathbf{y}, then $\|\mathbf{x}-\mathbf{z}\|_{2}^{2}$ has three parts:

Proof of Second Lemma

Lemma. If for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ we have $\|\mathbf{x}-\mathbf{y}\|_{\infty} \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})$, let \mathbf{z} be the k-sparse recovery of \mathbf{y}, then

$$
\|\mathbf{x}-\mathbf{z}\| \leq(1+5 \epsilon) E_{2}^{k}(\mathbf{x})
$$

Let $T \subseteq[d]$ be the set of k "big" entries of \mathbf{x}, and T^{\prime} be that for \mathbf{y}, then $\|\mathbf{x}-\mathbf{z}\|_{2}^{2}$ has three parts:

$$
\|\mathbf{x}-\mathbf{z}\|_{2}^{2}=\sum_{j \in T \cap T^{\prime}}\left|x_{j}-z_{j}\right|^{2}+\sum_{j \notin T \cup T^{\prime}} x_{j}^{2}+\sum_{j \in T \backslash T^{\prime}} x_{j}^{2}+\sum_{j \in T \backslash T}\left|x_{j}-z_{j}\right|^{2}
$$

Proof of Second Lemma

Lemma. If for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ we have $\|\mathbf{x}-\mathbf{y}\|_{\infty} \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})$, let \mathbf{z} be the k-sparse recovery of \mathbf{y}, then

$$
\|\mathbf{x}-\mathbf{z}\| \leq(1+5 \epsilon) E_{2}^{k}(\mathbf{x})
$$

Let $T \subseteq[d]$ be the set of k "big" entries of \mathbf{x}, and T^{\prime} be that for \mathbf{y}, then $\|\mathbf{x}-\mathbf{z}\|_{2}^{2}$ has three parts:

$$
\|\mathbf{x}-\mathbf{z}\|_{2}^{2}=\sum_{j \in T \cap T^{\prime}}\left|x_{j}-z_{j}\right|^{2}+\sum_{j \notin T \cup T^{\prime}} x_{j}^{2}+\sum_{j \in T \backslash T^{\prime}} x_{j}^{2}+\sum_{j \in T \backslash T}\left|x_{j}-z_{j}\right|^{2}
$$

. entries in $T \cap T^{\prime}$ and $T^{\prime} \backslash T$: by assumption, each entry contributes $\leq \frac{\epsilon^{2}}{k}\left(E_{2}^{k}(\mathbf{x})\right)^{2}$, and there are k of them

Proof of Second Lemma

Lemma. If for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ we have $\|\mathbf{x}-\mathbf{y}\|_{\infty} \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})$, let \mathbf{z} be the k-sparse recovery of \mathbf{y}, then

$$
\|\mathbf{x}-\mathbf{z}\| \leq(1+5 \epsilon) E_{2}^{k}(\mathbf{x})
$$

Let $T \subseteq[d]$ be the set of k "big" entries of \mathbf{x}, and T^{\prime} be that for \mathbf{y}, then $\|\mathbf{x}-\mathbf{z}\|_{2}^{2}$ has three parts:

$$
\|\mathbf{x}-\mathbf{z}\|_{2}^{2}=\sum_{j \in T \cap T^{\prime}}\left|x_{j}-z_{j}\right|^{2}+\sum_{j \notin T \cup T^{\prime}} x_{j}^{2}+\sum_{j \in T \backslash T^{\prime}} x_{j}^{2}+\sum_{j \in T \backslash T}\left|x_{j}-z_{j}\right|^{2}
$$

. entries in $T \cap T^{\prime}$ and $T^{\prime} \backslash T$: by assumption, each entry contributes $\leq \frac{\epsilon^{2}}{k}\left(E_{2}^{k}(\mathbf{x})\right)^{2}$, and there are k of them

- entries in $\bar{T} \cap \bar{T}^{\prime}$: by definition, these are original components of $\left(E_{2}^{k}(\mathbf{x})\right)^{2}$

Proof of Second Lemma

Lemma. If for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ we have $\|\mathbf{x}-\mathbf{y}\|_{\infty} \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})$, let \mathbf{z} be the k-sparse recovery of \mathbf{y}, then

$$
\|\mathbf{x}-\mathbf{z}\| \leq(1+5 \epsilon) E_{2}^{k}(\mathbf{x})
$$

Let $T \subseteq[d]$ be the set of k "big" entries of \mathbf{x}, and T^{\prime} be that for \mathbf{y}, then $\|\mathbf{x}-\mathbf{z}\|_{2}^{2}$ has three parts:

$$
\|\mathbf{x}-\mathbf{z}\|_{2}^{2}=\sum_{j \in T \cap T^{\prime}}\left|x_{j}-z_{j}\right|^{2}+\sum_{j \notin T \cup T^{\prime}} x_{j}^{2}+\sum_{j \in T \backslash T^{\prime}} x_{j}^{2}+\sum_{j \in T \backslash T}\left|x_{j}-z_{j}\right|^{2}
$$

. entries in $T \cap T^{\prime}$ and $T^{\prime} \backslash T$: by assumption, each entry contributes $\leq \frac{\epsilon^{2}}{k}\left(E_{2}^{k}(\mathbf{x})\right)^{2}$, and there are k of them

- entries in $\bar{T} \cap \bar{T}^{\prime}$: by definition, these are original components of $\left(E_{2}^{k}(\mathbf{x})\right)^{2}$
- entries in $T-T^{\prime}$ and $T^{\prime}-T$:

Proof of Second Lemma

Lemma. If for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ we have $\|\mathbf{x}-\mathbf{y}\|_{\infty} \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})$, let \mathbf{z} be the k-sparse recovery of \mathbf{y}, then

$$
\|\mathbf{x}-\mathbf{z}\| \leq(1+5 \epsilon) E_{2}^{k}(\mathbf{x})
$$

Let $T \subseteq[d]$ be the set of k "big" entries of \mathbf{x}, and T^{\prime} be that for \mathbf{y}, then $\|\mathbf{x}-\mathbf{z}\|_{2}^{2}$ has three parts:

$$
\|\mathbf{x}-\mathbf{z}\|_{2}^{2}=\sum_{j \in T \cap T^{\prime}}\left|x_{j}-z_{j}\right|^{2}+\sum_{j \notin T \cup T^{\prime}} x_{j}^{2}+\sum_{j \in T \backslash T^{\prime}} x_{j}^{2}+\sum_{j \in T \backslash T}^{N 2}\left|x_{j}-z_{j}\right|^{2}
$$

. entries in $T \cap T^{\prime}$ and $T^{\prime} \backslash T$: by assumption, each entry contributes $\leq \frac{\epsilon^{2}}{k}\left(E_{2}^{k}(\mathbf{x})\right)^{2}$, and there are k of them

- entries in $\bar{T} \cap \bar{T}^{\prime}$: by definition, these are original components of $\left(E_{2}^{k}(\mathbf{x})\right)^{2}$
- entries in $T-T^{\prime}$ and $T^{\prime}-T$:
.in $\left(E_{2}^{k}(\mathbf{x})\right)^{2}$ we should have $\sum_{j \in T \backslash T} x_{j}^{2}$

Proof of Second Lemma

Lemma. If for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ we have $\|\mathbf{x}-\mathbf{y}\|_{\infty} \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})$, let \mathbf{z} be the k-sparse recovery of \mathbf{y}, then

$$
\|\mathbf{x}-\mathbf{z}\| \leq(1+5 \epsilon) E_{2}^{k}(\mathbf{x})
$$

Let $T \subseteq[d]$ be the set of k "big" entries of \mathbf{x}, and T^{\prime} be that for \mathbf{y}, then $\|\mathbf{x}-\mathbf{z}\|_{2}^{2}$ has three parts:

$$
\|\mathbf{x}-\mathbf{z}\|_{2}^{2}=\sum_{j \in T \cap T^{\prime}}\left|x_{j}-z_{j}\right|^{2}+\sum_{j \notin T \cup T^{\prime}} x_{j}^{2}+\sum_{j \in T \backslash T^{\prime}} x_{j}^{2}+\sum_{j \in T \backslash T}^{N 2}\left|x_{j}-z_{j}\right|^{2}
$$

. entries in $T \cap T^{\prime}$ and $T^{\prime} \backslash T$: by assumption, each entry contributes $\leq \frac{\epsilon^{2}}{k}\left(E_{2}^{k}(\mathbf{x})\right)^{2}$, and there are k of them

- entries in $\bar{T} \cap \bar{T}^{\prime}$: by definition, these are original components of $\left(E_{2}^{k}(\mathbf{x})\right)^{2}$
- entries in $T-T^{\prime}$ and $T^{\prime}-T$:
.in $\left(E_{2}^{k}(\mathbf{x})\right)^{2}$ we should have $\sum_{j \in T \backslash T} x_{j}^{2}$
- note that $\left|T-T^{\prime}\right|=\left|T^{\prime}-T\right|$ since $|T|=\left|T^{\prime}\right|=k$.

Proof of Second Lemma

Lemma. If for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ we have $\|\mathbf{x}-\mathbf{y}\|_{\infty} \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})$, let \mathbf{z} be the k-sparse recovery of \mathbf{y}, then

$$
\|\mathbf{x}-\mathbf{z}\| \leq(1+5 \epsilon) E_{2}^{k}(\mathbf{x})
$$

Let $T \subseteq[d]$ be the set of k "big" entries of \mathbf{x}, and T^{\prime} be that for \mathbf{y}, then $\|\mathbf{x}-\mathbf{z}\|_{2}^{2}$ has three parts:

$$
\|\mathbf{x}-\mathbf{z}\|_{2}^{2}=\sum_{j \in T \cap T^{\prime}}\left|x_{j}-z_{j}\right|^{2}+\sum_{j \notin T \cup T^{\prime}} x_{j}^{2}+\sum_{j \in T \backslash T^{\prime}} x_{j}^{2}+\sum_{j \in T \backslash T}^{N 2}\left|x_{j}-z_{j}\right|^{2}
$$

. entries in $T \cap T^{\prime}$ and $T^{\prime} \backslash T$: by assumption, each entry contributes $\leq \frac{\epsilon^{2}}{k}\left(E_{2}^{k}(\mathbf{x})\right)^{2}$, and there are k of them

- entries in $\bar{T} \cap \bar{T}^{\prime}$: by definition, these are original components of $\left(E_{2}^{k}(\mathbf{x})\right)^{2}$
- entries in $T-T^{\prime}$ and $T^{\prime}-T$:
.in $\left(E_{2}^{k}(\mathbf{x})\right)^{2}$ we should have $\sum_{j \in T \backslash T} x_{j}^{2}$
- note that $\left|T-T^{\prime}\right|=\left|T^{\prime}-T\right|$ since $|T|=\left|T^{\prime}\right|=k$.

Proof of Second Lemma

Lemma. If for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ we have $\|\mathbf{x}-\mathbf{y}\|_{\infty} \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})$, let \mathbf{z} be the k-sparse recovery of \mathbf{y}, then

$$
\|\mathbf{x}-\mathbf{z}\| \leq(1+5 \epsilon) E_{2}^{k}(\mathbf{x})
$$

Let $T \subseteq[d]$ be the set of k "big" entries of \mathbf{x}, and T^{\prime} be that for \mathbf{y}, then $\|\mathbf{x}-\mathbf{z}\|_{2}^{2}$ has three parts:

$$
\|\mathbf{x}-\mathbf{z}\|_{2}^{2}=\sum_{j \in T \cap T^{\prime}}\left|x_{j}-z_{j}\right|^{2}+\sum_{j \notin T \cup T^{\prime}} x_{j}^{2}+\sum_{j \in T \backslash T^{\prime}} x_{j}^{2}+\sum_{j \in T \backslash T}\left|x_{j}-z_{j}\right|^{2}
$$

. entries in $T \cap T^{\prime}$ and $T^{\prime} \backslash T$: by assumption, each entry contributes $\leq \frac{\epsilon^{2}}{k}\left(E_{2}^{k}(\mathbf{x})\right)^{2}$, and there are k of them

- entries in $\bar{T} \cap \bar{T}^{\prime}$: by definition, these are original components of $\left(E_{2}^{k}(\mathbf{x})\right)^{2}$
- entries in $T-T^{\prime}$ and $T^{\prime}-T$:
.in $\left(E_{2}^{k}(\mathbf{x})\right)^{2}$ we should have $\sum_{j \in T \backslash T} x_{j}^{2}$
- note that $\left|T-T^{\prime}\right|=\left|T^{\prime}-T\right|$ since $|T|=\left|T^{\prime}\right|=k$.
- Key observation: entries in $T-T^{\prime}$ and $T^{\prime}-T$ must all be close (in absolute value)

Lemm. If for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ we have $\|\mathbf{x}-\mathbf{y}\|_{\infty} \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})$, let \mathbf{z} be the k-sparse recovery of \mathbf{y}, then

$$
\|\mathbf{x}-\mathbf{z}\| \leq(1+5 \epsilon) E_{2}^{k}(\mathbf{x})
$$

Let $T \subseteq[d]$ be the set of k "big" entries of \mathbf{x}, and T^{\prime} be that for \mathbf{y}, then $\|\mathbf{x}-\mathbf{z}\|_{2}^{2}$ has three parts:

$$
\|\mathbf{x}-\mathbf{z}\|_{2}^{2}=\sum_{j \in T \cap T^{\prime}}\left|x_{j}-z_{j}\right|^{2}+\sum_{j \notin T \cup T^{\prime}} x_{j}^{2}+\sum_{j \in T \backslash T^{\prime}} x_{j}^{2}+\sum_{j \in T \backslash T}\left|x_{j}-z_{j}\right|^{2}
$$

- entries in $T-T^{\prime}$ and $T^{\prime}-T$:
.in $\left(E_{2}^{k}(\mathbf{x})\right)^{2}$ we should have $\sum_{j \in T \backslash T} x_{j}^{2}$
- note that $\left|T-T^{\prime}\right|=\left|T^{\prime}-T\right|$ since $|T|=\left|T^{\prime}\right|=k$.
- Key observation: entries in $T-T^{\prime}$ and $T^{\prime}-T$ must all be close (in absolute value)

Claim. If $j \in T \backslash T^{\prime}$ and $j^{\prime} \in T^{\prime} \backslash T$, then $x_{j} \leq x_{j^{\prime}}+\frac{2 \epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})$

Lemma. If for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ we have $\|\mathbf{x}-\mathbf{y}\|_{\infty} \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})$, let \mathbf{z} be the k-sparse recovery of \mathbf{y}, then

$$
\|\mathbf{x}-\mathbf{z}\| \leq(1+5 \epsilon) E_{2}^{k}(\mathbf{x})
$$

Let $T \subseteq[d]$ be the set of k "big" entries of \mathbf{x}, and T^{\prime} be that for \mathbf{y}, then $\|\mathbf{x}-\mathbf{z}\|_{2}^{2}$ has three parts:

$$
\|\mathbf{x}-\mathbf{z}\|_{2}^{2}=\sum_{j \in T \cap T^{\prime}}\left|x_{j}-z_{j}\right|^{2}+\sum_{j \notin T \cup T^{\prime}} x_{j}^{2}+\sum_{j \in T \backslash T^{\prime}} x_{j}^{2}+\sum_{j \in T^{\prime} \backslash T}^{N i n}\left|x_{j}-z_{j}\right|^{2}
$$

- entries in $T-T^{\prime}$ and $T^{\prime}-T$:
.in $\left(E_{2}^{k}(\mathbf{x})\right)^{2}$ we should have $\sum_{j \in T \backslash T} x_{j}^{2}$
- note that $\left|T-T^{\prime}\right|=\left|T^{\prime}-T\right|$ since $|T|=\left|T^{\prime}\right|=k$.
- Key observation: entries in $T-T^{\prime}$ and $T^{\prime}-T$ must all be close (in absolute value)

Claim. If $j \in T \backslash T^{\prime}$ and $j^{\prime} \in T^{\prime} \backslash T$, then $x_{j} \leq x_{j^{\prime}}+\frac{2 \epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})$
$\sum_{j \in T \backslash T^{\prime}} x_{j}^{2} \leq \sum_{j \in T \backslash T}\left(\left|x_{j}\right|+\frac{2 \epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})\right)^{2} \leq \sum_{j \in T \backslash T} x_{j}^{2}+\frac{4 \epsilon^{2}}{k}\left(E_{2}^{k}(\mathbf{x})\right)^{2}+\frac{4 \epsilon\left|x_{j}\right|}{\sqrt{k}} E_{2}^{k}(\mathbf{x}) \leq \sum_{j \in T \backslash T} x_{j}^{2}+8 \epsilon\left(E_{2}^{k}(\mathbf{x})\right)^{2}$

Lemma. If for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ we have $\|\mathbf{x}-\mathbf{y}\|_{\infty} \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})$, let \mathbf{z} be the k-sparse recovery of \mathbf{y}, then

$$
\|\mathbf{x}-\mathbf{z}\| \leq(1+5 \epsilon) E_{2}^{k}(\mathbf{x})
$$

Let $T \subseteq[d]$ be the set of k "big" entries of \mathbf{x}, and T^{\prime} be that for \mathbf{y}, then $\|\mathbf{x}-\mathbf{z}\|_{2}^{2}$ has three parts:

$$
\|\mathbf{x}-\mathbf{z}\|_{2}^{2}=\sum_{j \in T \cap T^{\prime}}\left|x_{j}-z_{j}\right|^{2}+\sum_{j \notin T \cup T^{\prime}} x_{j}^{2}+\sum_{j \in T \backslash T^{\prime}} x_{j}^{2}+\sum_{j \in T^{\prime} \backslash T}^{T i n}\left|x_{j}-z_{j}\right|^{2}
$$

- entries in $T-T^{\prime}$ and $T^{\prime}-T$:
.in $\left(E_{2}^{k}(\mathbf{x})\right)^{2}$ we should have $\sum_{j \in T \backslash T} x_{j}^{2}$
- note that $\left|T-T^{\prime}\right|=\left|T^{\prime}-T\right|$ since $|T|=\left|T^{\prime}\right|=k$.
- Key observation: entries in $T-T^{\prime}$ and $T^{\prime}-T$ must all be close (in absolute value)

Claim. If $j \in T \backslash T^{\prime}$ and $j^{\prime} \in T^{\prime} \backslash T$, then $x_{j} \leq x_{j^{\prime}}+\frac{2 \epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})$

$$
\begin{array}{r}
\sum_{j \in T \backslash T^{\prime}} x_{j}^{2} \leq \sum_{j \in T \backslash T}\left(\left|x_{j}\right|+\frac{2 \epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})\right)^{2} \leq \sum_{j \in T \backslash T} x_{j}^{2}+\frac{4 \epsilon^{2}}{k}\left(E_{2}^{k}(\mathbf{x})\right)^{2}+\frac{4 \epsilon\left|x_{j}\right|}{\sqrt{k}} E_{2}^{k}(\mathbf{x}) \leq \sum_{j \in T \backslash T} x_{j}^{2}+8 \epsilon\left(E_{2}^{k}(\mathbf{x})\right)^{2} \\
\text { By Cauchy-Schwartz, } \sum_{j \in T \backslash T}\left|x_{j}\right| \leq \sum_{j \notin T}\left|x_{j}\right| \leq \sqrt{k \sum_{j \notin T} x_{j}^{2}}=\sqrt{k} E_{2}^{k}(\mathbf{x})
\end{array}
$$

Proof of Second Lemma

Lemma. If for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ we have $\|\mathbf{x}-\mathbf{y}\|_{\infty} \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})$, let \mathbf{z} be the k-sparse recovery of \mathbf{y}, then

$$
\|\mathbf{x}-\mathbf{z}\| \leq(1+5 \epsilon) E_{2}^{k}(\mathbf{x})
$$

Let $T \subseteq[d]$ be the set of k "big" entries of \mathbf{x}, and T^{\prime} be that for \mathbf{y}, then $\|\mathbf{x}-\mathbf{z}\|_{2}^{2}$ has three parts:

$$
\|\mathbf{x}-\mathbf{z}\|_{2}^{2}=\sum_{j \in T \cap T^{\prime}}\left|x_{j}-z_{j}\right|^{2}+\sum_{j \notin T \cup T^{\prime}} x_{j}^{2}+\sum_{j \in T \backslash T^{\prime}} x_{j}^{2}+\sum_{j \in T \backslash T}\left|x_{j}-z_{j}\right|^{2}
$$

. entries in $T \cap T^{\prime}$ and $T^{\prime} \backslash T$: by assumption, each entry contributes $\leq \frac{\epsilon^{2}}{k}\left(E_{2}^{k}(\mathbf{x})\right)^{2}$, and there are k of them

- entries in $\bar{T} \cap \bar{T}^{\prime}$: by definition, these are original components of $\left(E_{2}^{k}(\mathbf{x})\right)^{2}$
. entries in $T-T^{\prime}$ and $T^{\prime}-T: \sum_{j \in T \backslash T^{\prime}} x_{j}^{2} \leq \sum_{j \in T \backslash T} x_{j}^{2}+8 \epsilon\left(E_{2}^{k}(\mathbf{x})\right)^{2}$
Putting everything together, $\|\mathbf{x}-\mathbf{z}\|_{2}^{2} \leq(1+9 \epsilon)\left(E_{2}^{k}(\mathbf{x})\right)^{2}$, hence $\|\mathbf{x}-\mathbf{z}\| \leq \sqrt{1+9 \epsilon} E_{2}^{k}(\mathbf{x}) \leq(1+5 \epsilon) E_{2}^{k}(\mathbf{x})$.

Putting Things Together..

Lemma. Count-Sketch with $w=3 k / \epsilon^{2}, \ell=O(\log n)$ guarantees $\left|x_{j}-\tilde{x}_{j}\right| \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}$ for each j w.h.p.
Lemma. If for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ we have $\|\mathbf{x}-\mathbf{y}\|_{\infty} \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})$, let \mathbf{z} be the k-sparse recovery of \mathbf{y}, then

$$
\|\mathbf{x}-\mathbf{z}\| \leq(1+5 \epsilon) E_{2}^{k}(\mathbf{x})
$$

Putting the two Lemmas together, we have that with high probability, the sparse recovery yielded by Count-Sketch has error $\leq(1+5 \epsilon) E_{2}^{k}(\mathbf{x})$

Putting Things Together..

Lemma. Count-Sketch with $w=3 k / \epsilon^{2}, \ell=O(\log n)$ guarantees $\left|x_{j}-\tilde{x}_{j}\right| \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}$ for each j w.h.p.
Lemma. If for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ we have $\|\mathbf{x}-\mathbf{y}\|_{\infty} \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})$, let \mathbf{z} be the k-sparse recovery of \mathbf{y}, then

$$
\|\mathbf{x}-\mathbf{z}\| \leq(1+5 \epsilon) E_{2}^{k}(\mathbf{x})
$$

Putting the two Lemmas together, we have that with high probability, the sparse recovery yielded by Count-Sketch has error $\leq(1+5 \epsilon) E_{2}^{k}(\mathbf{x})$

One last thing: to give the sketch from $\tilde{\mathbf{x}}$, naïvely we need to go through all the coordinates, which takes time $O(d)$.

Putting Things Together..

Lemma. Count-Sketch with $w=3 k / \epsilon^{2}, \ell=O(\log n)$ guarantees $\left|x_{j}-\tilde{x}_{j}\right| \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}$ for each j w.h.p.
Lemma. If for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ we have $\|\mathbf{x}-\mathbf{y}\|_{\infty} \leq \frac{\epsilon}{\sqrt{k}} E_{2}^{k}(\mathbf{x})$, let \mathbf{z} be the k-sparse recovery of \mathbf{y}, then

$$
\|\mathbf{x}-\mathbf{z}\| \leq(1+5 \epsilon) E_{2}^{k}(\mathbf{x})
$$

Putting the two Lemmas together, we have that with high probability, the sparse recovery yielded by Count-Sketch has error $\leq(1+5 \epsilon) E_{2}^{k}(\mathbf{x})$

One last thing: to give the sketch from $\tilde{\mathbf{x}}$, naïvely we need to go through all the coordinates, which takes time $O(d)$.
We can do faster by maintaining a record as the input comes!

