
Learning Goals

Review steps of breadth �rst search (BFS) and depth �rst search

(DFS) algorithms

Running time of BFS and DFS

Properties of BFS and DFS trees

September 6, 2019 1 / 10

Graph Traversal

Problem: Given an undirected graph G = (V ,E) and two nodes s, t ∈ V ,

decide whether there is a path connecting s and t.

A

B

C

D

E G

F

Breadth First Search (BFS):

mark s as visited, imeediately

mark all neighbors of s as

visited, and THEN recursively do

the same for all the nodes that

are newly marked as visited.

September 6, 2019 2 / 10

Graph Traversal

Problem: Given an undirected graph G = (V ,E) and two nodes s, t ∈ V ,

decide whether there is a path connecting s and t.

A

B

C

D

E G

F

Breadth First Search (BFS):

mark s as visited, imeediately

mark all neighbors of s as

visited, and THEN recursively do

the same for all the nodes that

are newly marked as visited.

September 6, 2019 2 / 10

BFS example

A

B

C

D

E G

F

The given graph

A

A

B D F

A

B

C

D

E

F

A

B

C

D

E G

F

The BFS tree

A

B

C

D

E G

F

BFS tree with edges in
the original graph.

September 6, 2019 3 / 10

BFS example

A

B

C

D

E G

F

The given graph

A

A

B D F

A

B

C

D

E

F

A

B

C

D

E G

F

The BFS tree

A

B

C

D

E G

F

BFS tree with edges in
the original graph.

September 6, 2019 3 / 10

BFS example

A

B

C

D

E G

F

The given graph

A

A

B D F

A

B

C

D

E

F

A

B

C

D

E G

F

The BFS tree

A

B

C

D

E G

F

BFS tree with edges in
the original graph.

September 6, 2019 3 / 10

BFS example

A

B

C

D

E G

F

The given graph

A

A

B D F

A

B

C

D

E

F

A

B

C

D

E G

F

The BFS tree

A

B

C

D

E G

F

BFS tree with edges in
the original graph.

September 6, 2019 3 / 10

BFS example

A

B

C

D

E G

F

The given graph

A

A

B D F

A

B

C

D

E

F

A

B

C

D

E G

F

The BFS tree

A

B

C

D

E G

F

BFS tree with edges in
the original graph.

September 6, 2019 3 / 10

BFS implementation

Create a queue containing starting point s. Mark s as visited.

As long as the queue is not empty:

Take the node in the front of queue, mark all its neighbors as visited,
and append those newly marked to the queue.

In general this algorithm visits all the nodes in the same connected

component as s.

s-t path: whenever t is marked visited, we �nd a path from s to t; if
algorithm terminates without t being visited, there is no path

connecting s and t.

Running time: O(n +m).

Throughout the course we use n to denote the number of nodes in a
graph, and m the number of edges.
Each node is appended to the queue at most once, and each edge is
followed at most twice. (Assuming an adjancy list representation of the
graph.)
This is called linear time.

September 6, 2019 4 / 10

BFS implementation

Create a queue containing starting point s. Mark s as visited.

As long as the queue is not empty:

Take the node in the front of queue, mark all its neighbors as visited,
and append those newly marked to the queue.

In general this algorithm visits all the nodes in the same connected

component as s.

s-t path: whenever t is marked visited, we �nd a path from s to t; if
algorithm terminates without t being visited, there is no path

connecting s and t.

Running time: O(n +m).

Throughout the course we use n to denote the number of nodes in a
graph, and m the number of edges.
Each node is appended to the queue at most once, and each edge is
followed at most twice. (Assuming an adjancy list representation of the
graph.)
This is called linear time.

September 6, 2019 4 / 10

BFS implementation

Create a queue containing starting point s. Mark s as visited.

As long as the queue is not empty:

Take the node in the front of queue, mark all its neighbors as visited,
and append those newly marked to the queue.

In general this algorithm visits all the nodes in the same connected

component as s.

s-t path: whenever t is marked visited, we �nd a path from s to t; if
algorithm terminates without t being visited, there is no path

connecting s and t.

Running time: O(n +m).

Throughout the course we use n to denote the number of nodes in a
graph, and m the number of edges.
Each node is appended to the queue at most once, and each edge is
followed at most twice. (Assuming an adjancy list representation of the
graph.)
This is called linear time.

September 6, 2019 4 / 10

BFS implementation

Create a queue containing starting point s. Mark s as visited.

As long as the queue is not empty:

Take the node in the front of queue, mark all its neighbors as visited,
and append those newly marked to the queue.

In general this algorithm visits all the nodes in the same connected

component as s.

s-t path: whenever t is marked visited, we �nd a path from s to t; if
algorithm terminates without t being visited, there is no path

connecting s and t.

Running time: O(n +m).

Throughout the course we use n to denote the number of nodes in a
graph, and m the number of edges.
Each node is appended to the queue at most once, and each edge is
followed at most twice. (Assuming an adjancy list representation of the
graph.)
This is called linear time.

September 6, 2019 4 / 10

BFS implementation

Create a queue containing starting point s. Mark s as visited.

As long as the queue is not empty:

Take the node in the front of queue, mark all its neighbors as visited,
and append those newly marked to the queue.

In general this algorithm visits all the nodes in the same connected

component as s.

s-t path: whenever t is marked visited, we �nd a path from s to t; if
algorithm terminates without t being visited, there is no path

connecting s and t.

Running time: O(n +m).

Throughout the course we use n to denote the number of nodes in a
graph, and m the number of edges.

Each node is appended to the queue at most once, and each edge is
followed at most twice. (Assuming an adjancy list representation of the
graph.)
This is called linear time.

September 6, 2019 4 / 10

BFS implementation

Create a queue containing starting point s. Mark s as visited.

As long as the queue is not empty:

Take the node in the front of queue, mark all its neighbors as visited,
and append those newly marked to the queue.

In general this algorithm visits all the nodes in the same connected

component as s.

s-t path: whenever t is marked visited, we �nd a path from s to t; if
algorithm terminates without t being visited, there is no path

connecting s and t.

Running time: O(n +m).

Throughout the course we use n to denote the number of nodes in a
graph, and m the number of edges.
Each node is appended to the queue at most once, and each edge is
followed at most twice. (Assuming an adjancy list representation of the
graph.)

This is called linear time.

September 6, 2019 4 / 10

BFS implementation

Create a queue containing starting point s. Mark s as visited.

As long as the queue is not empty:

Take the node in the front of queue, mark all its neighbors as visited,
and append those newly marked to the queue.

In general this algorithm visits all the nodes in the same connected

component as s.

s-t path: whenever t is marked visited, we �nd a path from s to t; if
algorithm terminates without t being visited, there is no path

connecting s and t.

Running time: O(n +m).

Throughout the course we use n to denote the number of nodes in a
graph, and m the number of edges.
Each node is appended to the queue at most once, and each edge is
followed at most twice. (Assuming an adjancy list representation of the
graph.)
This is called linear time.

September 6, 2019 4 / 10

More on BFS

It is straightforward to generalize the algorithm to directed graphs �

just follow outgoing edges when visiting neighbors. This solves the s-t
connectivity problem.

De�nition (Layers of a BFS tree)

The �rst layer, L1, of a BFS tree is the singleton set of the starting node s;
then the (i + 1)-st layer Li+1 is the set of nodes that are newly marked

visited when the algorithm is processing a node in Li .

proposition

The shortest path from s to any node in Li has length i − 1 (i.e., has i − 1

edges).

proposition

For any (u, v) ∈ E , in a BFS tree if u is in Li and v in Lj , then |i − j | ≤ 1.

September 6, 2019 5 / 10

More on BFS

It is straightforward to generalize the algorithm to directed graphs �

just follow outgoing edges when visiting neighbors. This solves the s-t
connectivity problem.

De�nition (Layers of a BFS tree)

The �rst layer, L1, of a BFS tree is the singleton set of the starting node s;
then the (i + 1)-st layer Li+1 is the set of nodes that are newly marked

visited when the algorithm is processing a node in Li .

proposition

The shortest path from s to any node in Li has length i − 1 (i.e., has i − 1

edges).

proposition

For any (u, v) ∈ E , in a BFS tree if u is in Li and v in Lj , then |i − j | ≤ 1.

September 6, 2019 5 / 10

More on BFS

It is straightforward to generalize the algorithm to directed graphs �

just follow outgoing edges when visiting neighbors. This solves the s-t
connectivity problem.

De�nition (Layers of a BFS tree)

The �rst layer, L1, of a BFS tree is the singleton set of the starting node s;
then the (i + 1)-st layer Li+1 is the set of nodes that are newly marked

visited when the algorithm is processing a node in Li .

proposition

The shortest path from s to any node in Li has length i − 1 (i.e., has i − 1

edges).

proposition

For any (u, v) ∈ E , in a BFS tree if u is in Li and v in Lj , then |i − j | ≤ 1.

September 6, 2019 5 / 10

More on BFS

It is straightforward to generalize the algorithm to directed graphs �

just follow outgoing edges when visiting neighbors. This solves the s-t
connectivity problem.

De�nition (Layers of a BFS tree)

The �rst layer, L1, of a BFS tree is the singleton set of the starting node s;
then the (i + 1)-st layer Li+1 is the set of nodes that are newly marked

visited when the algorithm is processing a node in Li .

proposition

The shortest path from s to any node in Li has length i − 1 (i.e., has i − 1

edges).

proposition

For any (u, v) ∈ E , in a BFS tree if u is in Li and v in Lj , then |i − j | ≤ 1.

September 6, 2019 5 / 10

Depth First Search

Problem: Given an undirected graph G = (V ,E) and two nodes s, t ∈ V ,

decide whether there is a path connecting s and t.

A

B

C

D

E G

F

Depth First Search (DFS) idea:

go headlong till a dead end, then

backtrack.

Mark s as visited, then for each

neighbor of s, if it is unmarked,

recursively do the same.

In other words, process the �rst

neighbor of s completely before

going on to the next unvisited

neighbor.

September 6, 2019 6 / 10

Depth First Search

Problem: Given an undirected graph G = (V ,E) and two nodes s, t ∈ V ,

decide whether there is a path connecting s and t.

A

B

C

D

E G

F

Depth First Search (DFS) idea:

go headlong till a dead end, then

backtrack.

Mark s as visited, then for each

neighbor of s, if it is unmarked,

recursively do the same.

In other words, process the �rst

neighbor of s completely before

going on to the next unvisited

neighbor.

September 6, 2019 6 / 10

Depth First Search

Problem: Given an undirected graph G = (V ,E) and two nodes s, t ∈ V ,

decide whether there is a path connecting s and t.

A

B

C

D

E G

F

Depth First Search (DFS) idea:

go headlong till a dead end, then

backtrack.

Mark s as visited, then for each

neighbor of s, if it is unmarked,

recursively do the same.

In other words, process the �rst

neighbor of s completely before

going on to the next unvisited

neighbor.

September 6, 2019 6 / 10

Depth First Search

Problem: Given an undirected graph G = (V ,E) and two nodes s, t ∈ V ,

decide whether there is a path connecting s and t.

A

B

C

D

E G

F

Depth First Search (DFS) idea:

go headlong till a dead end, then

backtrack.

Mark s as visited, then for each

neighbor of s, if it is unmarked,

recursively do the same.

In other words, process the �rst

neighbor of s completely before

going on to the next unvisited

neighbor.

September 6, 2019 6 / 10

DFS example

A

B

C

D

E G

F

The given graph

A

A

B

A

B

C

A

B

C E

A

B

C

D

E G

A

B

C

D

E G

F

A DFS tree

September 6, 2019 7 / 10

DFS example

A

B

C

D

E G

F

The given graph

A

A

B

A

B

C

A

B

C E

A

B

C

D

E G

A

B

C

D

E G

F

A DFS tree

September 6, 2019 7 / 10

DFS example

A

B

C

D

E G

F

The given graph

A

A

B

A

B

C

A

B

C E

A

B

C

D

E G

A

B

C

D

E G

F

A DFS tree

September 6, 2019 7 / 10

DFS example

A

B

C

D

E G

F

The given graph

A

A

B

A

B

C

A

B

C E

A

B

C

D

E G

A

B

C

D

E G

F

A DFS tree

September 6, 2019 7 / 10

DFS example

A

B

C

D

E G

F

The given graph

A

A

B

A

B

C

A

B

C E

A

B

C

D

E G

A

B

C

D

E G

F

A DFS tree

September 6, 2019 7 / 10

DFS example

A

B

C

D

E G

F

The given graph

A

A

B

A

B

C

A

B

C E

A

B

C

D

E G

A

B

C

D

E G

F

A DFS tree
September 6, 2019 7 / 10

DFS example

A

B

C

D

E G

F

The given graph

A

A

B

A

B

C

A

B

C E

A

B

C

D

E G

A

B

C

D

E G

F

A DFS tree
September 6, 2019 8 / 10

DFS implementation

Create a stack containing starting point s.

As long as the stack is not empty:

Pop the node on top of the stack. If it is unmarked, mark it as visited,
then put all its neighbors onto the stack.

DFS also visits all the nodes in the same connected component as s.

Running time: O(n +m).

Each edge is followed at most twice; each �stacking� follows from an
edge visit.

September 6, 2019 9 / 10

DFS implementation

Create a stack containing starting point s.

As long as the stack is not empty:

Pop the node on top of the stack. If it is unmarked, mark it as visited,
then put all its neighbors onto the stack.

DFS also visits all the nodes in the same connected component as s.

Running time: O(n +m).

Each edge is followed at most twice; each �stacking� follows from an
edge visit.

September 6, 2019 9 / 10

DFS implementation

Create a stack containing starting point s.

As long as the stack is not empty:

Pop the node on top of the stack. If it is unmarked, mark it as visited,
then put all its neighbors onto the stack.

DFS also visits all the nodes in the same connected component as s.

Running time: O(n +m).

Each edge is followed at most twice; each �stacking� follows from an
edge visit.

September 6, 2019 9 / 10

DFS implementation

Create a stack containing starting point s.

As long as the stack is not empty:

Pop the node on top of the stack. If it is unmarked, mark it as visited,
then put all its neighbors onto the stack.

DFS also visits all the nodes in the same connected component as s.

Running time: O(n +m).

Each edge is followed at most twice; each �stacking� follows from an
edge visit.

September 6, 2019 9 / 10

More on DFS

It is also straightforward to generalize the algorithm to directed graphs

� just follow outgoing edges when visiting neighbors.

proposition

If (u, v) ∈ E in an undirected graph, let T be a DFS tree with u, v ∈ T .

Then either u is an ancestor of v or v is an ancestor of u.

Proof.

Either u is added to T before v or v before u. If u is added �rst, when

processing u, the algorithm checks the edge (u, v) before backtracking. If

v is unmarked at the time, (u, v) is added to T , and v is a child of u; if v
is already marked visited at the time, it is marked between the start and

end of the processing of u, and hence is a descendant of u.
The other case (when v is added �rst) follows the same argument.

September 6, 2019 10 / 10

More on DFS

It is also straightforward to generalize the algorithm to directed graphs

� just follow outgoing edges when visiting neighbors.

proposition

If (u, v) ∈ E in an undirected graph, let T be a DFS tree with u, v ∈ T .

Then either u is an ancestor of v or v is an ancestor of u.

Proof.

Either u is added to T before v or v before u. If u is added �rst, when

processing u, the algorithm checks the edge (u, v) before backtracking. If

v is unmarked at the time, (u, v) is added to T , and v is a child of u; if v
is already marked visited at the time, it is marked between the start and

end of the processing of u, and hence is a descendant of u.
The other case (when v is added �rst) follows the same argument.

September 6, 2019 10 / 10

More on DFS

It is also straightforward to generalize the algorithm to directed graphs

� just follow outgoing edges when visiting neighbors.

proposition

If (u, v) ∈ E in an undirected graph, let T be a DFS tree with u, v ∈ T .

Then either u is an ancestor of v or v is an ancestor of u.

Proof.

Either u is added to T before v or v before u. If u is added �rst, when

processing u, the algorithm checks the edge (u, v) before backtracking. If

v is unmarked at the time, (u, v) is added to T , and v is a child of u; if v
is already marked visited at the time, it is marked between the start and

end of the processing of u, and hence is a descendant of u.
The other case (when v is added �rst) follows the same argument.

September 6, 2019 10 / 10

	Review: Graph Traversal Algorithms

