
Random contention resolution

Learning Goals

Basic de�nitions of �nite probabilities: sample space, probability,

events

State and apply union bound.

De�ne independence, and apply its properties in probability

calculations

Contention resolution with random access, and analysis of its e�ciency
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Random contention resolution

Borges's Garden of Forking Paths

Leaves are realizations of the

world.

�Sample space� is the set of

those realizations.

A probability space is de�ned

by weights on those

realizations.
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Random contention resolution

Discrete/Finite Probability Space

Finite sample space: Ω (intuitively, the set of all realizable outcomes)

Each point (outcome) i ∈ Ω has a probability mass p(i) ≥ 0. We

require
∑

i p(i) = 1.

An event E is a subset of Ω.

Pr[E ] =
∑

i∈E p(i).

Example

Let Ω be the set of outcomes of two rolls of a die. Then |Ω| = 36.

If everything is fair, then each outcome has probability mass 1/36.

Let E be the event that the sum of the two numbers is 11, then

E = {(6, 5), (5, 6)}, so Pr[E ] = 1/18.
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Random contention resolution

Set operations on events

Let A and B be two events of a probability space.

A, the complement of A, is the event that event A does not happen,

and Pr[A] = 1− Pr[A].

A ∪ B is the event that at least one of A and B happens.

Proposition (Union Bound)

Pr[A ∪ B] ≤ Pr[A] + Pr[B].

A ∩ B is the event that both A and B happen.

De�nition

A and B are said to be independent if Pr[A ∩ B] = Pr[A] · Pr[B].

Exercise: If A and B are independent, then so are A and B , and so are A
and B .
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Random contention resolution

Contention Resolution

Set up: one server, n tasks

Tasks all want to use the server for a time step (we have discrete time

steps)

At each time step, each task may request the server:

If exactly one task requests the server, the task gets served successfully;
If more than one tasks request the server, clash and no task gets served
in that step (but later steps are not a�ected).

We would like that all tasks to get served fast.

Trivial if the tasks can agree on some ordering and requests the service

one by one.

Problem: The tasks cannot talk with each other and there is no

central authority.

Randomized strategy: In each time step, each task requests with

some small probability p, independently.
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Random contention resolution

Initial analysis

Let A[i , t] denote the event that task i sends a request at time t.
Then Pr[A[i , t]] = p.

Then A[i , t] is the event that task i does not request service at time t,
and Pr[A[i , t]] = 1− p.

Let S [i , t] denote the event that task i sends a request at time t and

gets served, then

Pr [S [i , t]] = Pr

A[i , t] ∩
⋂
j 6=i

A[j , t]

 = p(1− p)n−1.

The last equality comes from independence.

To maximize Pr[S [i , t]], set p = 1/n.
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Random contention resolution

Rate of success at each time step

We set p to maximize Pr[S [i , t]] to 1

n (1− 1

n )n−1. How good is this?

Proposition

1 The function (1− 1

n )n converges monotonically from 1

4
up to 1

e as n
increases from 2.

2 The function (1− 1

n )n−1 converges monotonically from 1

2
down to 1

e
as n increases from 2.

So 1/(en) ≤ Pr[S [i , t]] ≤ 1/(2n). Therefore Pr[S [i , t]] is asymtotically

Θ(1/n).
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Random contention resolution

Waiting time for a particular task to succeed

In each round, task i succeeds with probability Pr[S [i , t]]. Roughly
what is the waiting time for task i to succeed (for the �rst time)?

Answers to �roughly what is X � where X is a random quantity:

Give the expectation of X (think of it as the average): next week
Give a range [a, b], and show that X is in [a, b] with �high probability�:
today
Remark: in many situations, the two give answers that are close:
sometimes one may show that the random quantity concentrates

around its expectation. Tail bounds are used to prove this.

Probability with which task i does not succeed in the �rst t steps:

Pr
[
∩tr=1S [i , r ]

]
=

t∏
r=1

[1− Pr [S [i , r ]]] =

[
1− 1

n

(
1− 1

n

)n−1
]t

.
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Random contention resolution

Waiting time for a particular task to succeed

Probability that a task fails in the �rst t steps: [1− 1

n (1− 1

n )n−1]t .

We'd like to upper bound this probability:

Pr
[
∩tr=1S [i , r ]

]
≤
[
1− 1

en

]t
=

[
1− 1

en

]en· t
en

≤ e−t/en.

Setting t to be enc ln n for some c > 0, the probability of failure for

the �rst t steps is at most n−c , which vanishes as n grows.

Big picture (useful rough estimations): if we have a biased coin that
gives Heads with probability 1/k :

In about k independent tosses, one �expects� to see a Heads;
However, with constant probability, a Heads doesn't show in k tosses;
But if one tosses the coin Θ(k log k) times, the probability that no
Heads shows up quickly tends to 0.
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Random contention resolution

Waiting time for all tasks to succeed

Let F [i , t] denote the event that task i fails in the �rst t steps, we

have shown Pr[F [i , t]] ≤ e−t/en ≤ n−c for t = den · c ln ne.

The event that some task keeps failing in the �rst t steps is then

∪ni=1
F [i , t].

By the union bound, we have

Pr [∪ni=1
F [i , t]] ≤

n∑
i=1

e−t/en = ne−
t
en .

So for t = d2en ln ne, this is at most 1

n .
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