
Learning Goals

Dijkstra algorithm: the problem it solves and the description of the

algorithm

Analysis: an inductive proof of correctness

Running time of Dijkstra's algorithm

(Optional) Implementation of Dijkstra's algorithm using priority queues
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Finding minimum-cost paths in a graph

Input: a directed graph G = (V ,E ), with nonnegative cost ce ≥ 0 for

each edge e ∈ E . A node s ∈ V .

Output: for each node v ∈ V , a minimum-cost path from s to v , and
its cost.

Dijkstra's algorithm: a greedy approach

Idea: Find a minimum-cost path to a new node in each step, and then

use the cost to reach this node to update the cost to reach the other

nodes one step further.
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Dijkstra example cont.
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Dijkstra algorithm

Initialize: for each v ∈ V , if (s, v) ∈ E , let d(v)← c(s,v), p(v)← s,
otherwise d(v)←∞, p(v)← ⊥. Let S be {s}.
Meaning: d(v): cost of the min-cost path to v found so far; p(v): the
node preceding v in the minimum-cost path to v .

Iterate: while S 6= V and there exists v ∈ V \ S such that d(v) 6=∞:

let u be the minimizer of d(·) among nodes not in S ;
add u to S
for each (u, v) ∈ E with v /∈ S , if d(v) > d(u) + c(u,v)

update d(v)← d(u) + c(u,v)
p(v)← u.

Output:

For each v ∈ S , d(v) is the cost of the min-cost path from s to v ; the
path is traced back to s using p(·).
For v /∈ S , there is no path from s to v .
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Proof of Correctness

Proof by induction.

Induction hypothesis: at each stage of the algorithm, for any node

u ∈ S , d(u) is the cost of the minimum-cost path from s to u.

Base case: |S | = 1: S = {s}, d(s) = 0, trivial.

Inductive step: suppose the induction hypothesis when |S | ≤ k . Show
that, when the (k + 1)-st node u is added to S , the hypothesis remains

true.

Denote by Pu the path output by the algorithm for node u.

We should show:
1 Among all paths within S , Pu has the minimum cost.
2 Pu has no more cost than any path from s to u that leaves S at some

point.
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Proof of Correctness Cont.

We should show:

1 Among all paths within S , Pu has the minimum cost.

2 Pu has no more cost than any path from s to u that leaves S at some

point.

Proof of each statement:
1 Let p(u) be v ∈ S .

By algorithm, we know d(u) = d(v) + c(v ,u) and it is no larger than

d(w) + c(w ,u) for any w ∈ S .
By induction hypothesis, d(w) is the cost of the min-cost path to w ,

hence d(w) + c(w ,u) is the cost of min-cost path to u with the second

last node being w .

2 For any path P ′ that leaves S by an edge (w , z), w ∈ S , z /∈ S :
The cost of P ′ is at least d(w) + c(w ,z), because by induction

hypothesis d(w) is the cost of min-cost path to w , and the part of P
from z to u adds nonnegative cost.

d(u) ≤ d(w) + c(w ,z), because when d(u) is added to S ,
d(z) ≤ d(w) + c(w ,z), and d(u) ≤ d(z).
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Implementation of Dijkstra

Implementation with an array that stores d(·):

Each time we look for a minimum d(·), search the array in O(n) time;

this is done n times, so this takes O(n2) time.

Each edge is traversed at most once, each involving constant time; so

overall this takes O(m) times.

Altogether O(n2 +m) = O(n2) time.

Implementation using priority queue

Store d(·) using a priority queue, which allows us to �nd and delete a

minimum element in O(log n) time

Updating an element now also needs O(log n) time

We may update elements in the queue at most m times.

Total Running time: O(m log n).

Choose the better one depending on how dense the graph is. Overall

running time O(min(n2,m log n)).
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minimum element in O(log n) time

Updating an element now also needs O(log n) time

We may update elements in the queue at most m times.

Total Running time: O(m log n).

Choose the better one depending on how dense the graph is. Overall

running time O(min(n2,m log n)).
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